
A Polynomial Time Algorithm for a Generalized
Longest Common Subsequence Problem

Xiaodong Wang2, Yingjie Wu3, and Daxin Zhu1(B)

1 Quanzhou Normal University, Quanzhou 362000, China
dex@qztc.edu.cn

2 Fujian University of Technology, Fuzhou 350108, China
3 Fuzhou University, Fuzhou 350002, China

Abstract. In this paper, we consider a generalized longest common sub-
sequence problem with multiple substring exclusive constraints. For the
two input sequences X and Y of lengths n and m, and a set of d con-
straints P = {P1, · · · , Pd} of total length r, the problem is to find a
common subsequence Z of X and Y excluding each of constraint string
in P as a substring and the length of Z is maximized. A very simple
dynamic programming algorithm to this problem is presented in this
paper. The correctness of the new algorithm is demonstrated. The time
and space complexities of the new algorithm are both O(nmr).

1 Introduction

The longest common subsequence (LCS) problem is a classic computer science
problem, and has applications in bioinformatics. It is also widely applied in
diverse areas, such as file comparison, pattern matching and computational biol-
ogy [3,4,8,9]. Given two sequences X and Y , the longest common subsequence
problem is to find a subsequence of X and Y whose length is the longest among
all common subsequences of the two given sequences. It differs from the problems
of finding common substrings: unlike substrings, subsequences are not required
to occupy consecutive positions within the original sequences. The most referred
algorithm, proposed by Wagner and Fischer [29], solves the LCS problem by
using a dynamic programming algorithm in quadratic time. Other advanced
algorithms were proposed in the past decades [2–4,16,17,19,21]. If the number
of input sequences is not fixed, the problem to find the LCS of multiple sequences
has been proved to be NP-hard [23]. Some approximate and heuristic algorithms
were proposed for these problems [6,25].

For some biological applications some constraints must be applied to the LCS
problem. These kinds of variants of the LCS problem are called the constrained
LCS (CLCS) problem. One of the recent variants of the LCS problem, the con-
strained longest common subsequence (CLCS) which was first addressed by Tsai
[27], has received much attention. It generalizes the LCS measure by introducing
of a third sequence, which allows to extort that the obtained CLCS has some
special properties [26]. For two given input sequences X and Y of lengths m and

c© Springer International Publishing Switzerland 2016
X. Huang et al. (Eds.): GPC 2016, LNCS 9663, pp. 18–29, 2016.
DOI: 10.1007/978-3-319-39077-2 2



A Polynomial Time Algorithm 19

n, respectively, and a constrained sequence P of length r, the CLCS problem is
to find the common subsequences Z of X and Y such that P is a subsequence of
Z and the length of Z is the maximum. The most referred algorithms were pro-
posed independently [5,8], which solve the CLCS problem in O(mnr) time and
space by using dynamic programming algorithms. Some improved algorithms
have also been proposed [11,18]. The LCS and CLCS problems on the indeter-
minate strings were discussed in [20]. Moreover, the problem was extended to
the one with weighted constraints, a more generalized problem [24].

Recently, a new variant of the CLCS problem, the restricted LCS problem,
was proposed [14], which excludes the given constraint as a subsequence of the
answer. The restricted LCS problem becomes NP-hard when the number of
constraints is not fixed. Some more generalized forms of the CLCS problem, the
generalized constrained longest common subsequence (GC-LCS) problems, were
addressed independently by Chen and Chao [7]. For the two input sequences X
and Y of lengths n and m, respectively, and a constraint string P of length r,
the GC-LCS problem is a set of four problems which are to find the LCS of X
and Y including/excluding P as a subsequence/substring, respectively. The four
generalized constrained LCS [7] can be summarized in Table 1.

Table 1. The GC-LCS problems

Problem Input Output

SEQ-IC-LCS X, Y , and P The longest common subsequence of X and Y
including P as a subsequence

STR-IC-LCS X, Y , and P The longest common subsequence of X and Y
including P as a substring

SEQ-EC-LCS X, Y , and P The longest common subsequence of X and Y
excluding P as a subsequence

STR-EC-LCS X, Y , and P The longest common subsequence of X and Y
excluding P as a substring

For the four problems in Table 1, O(mnr) time algorithms were proposed [7].
For all four variants in Table 1, O(r(m+n)+(m+n) log(m+n)) time algorithms
were proposed by using the finite automata [12]. Recently, a quadratic algorithm
to the STR-IC-LCS problem was proposed [10], and the time complexity of [12]
was pointed out not correct.

The four GC-LCS problems can be generalized further to the cases of multiple
constraints. In these generalized cases, the single constrained pattern P will be
generalized to a set of d constraints P = {P1, · · · , Pd} of total length r, as shown
in Table 2.

The problem M-SEQ-IC-LCS has been proved to be NP-hard in [13]. The
problem M-SEQ-EC-LCS has also been proved to be NP-hard in [14,28]. In
addition, the problems M-STR-IC-LCS and M-STR-EC-LCS were also declared



20 X. Wang et al.

Table 2. The Multiple-GC-LCS problems

Problem Input Output

M-SEQ-IC-LCS X, Y , and a set of
constraints
P = {P1, · · · , Pd}

LCS of X and Y including each of
constraint Pi ∈ P as a
subsequence

M-STR-IC-LCS X, Y , and a set of
constraints
P = {P1, · · · , Pd}

LCS of X and Y including each of
constraint Pi ∈ P as a substring

M-SEQ-EC-LCS X, Y , and a set of
constraints
P = {P1, · · · , Pd}

LCS of X and Y excluding each of
constraint Pi ∈ P as a
subsequence

M-STR-EC-LCS X, Y , and a set of
constraints
P = {P1, · · · , Pd}

LCS of X and Y excluding each of
constraint Pi ∈ P as a substring

to be NP-hard in [7], but without a proof. The exponential-time algorithms for
solving these two problems were also presented in [7].

We will discuss the problem M-STR-EC-LCS in this paper. The failure func-
tions in the Knuth-Morris-Pratt algorithm [22] for solving the string matching
problem have been proved very helpful for solving the STR-EC-LCS problem.
It has been found by Aho and Corasick [1] that the failure functions can be
generalized to the case of keyword tree to speedup the exact string matching of
multiple patterns. This idea can be very supportive in our dynamic programming
algorithm. This is the principle idea of our new algorithm.

The organization of the paper is as follows.
In the following 3 sections, we describe our presented dynamic programming

algorithm for the M-STR-EC-LCS problem.
In Sect. 2 the preliminary knowledge for presenting our algorithm for the M-

STR-EC-LCS problem is discussed. In Sect. 3 we give a new dynamic program-
ming solution for the M-STR-EC-LCS problem with time complexity O(nmr),
where n and m are the lengths of the two given input strings, and r is the total
length of d constraint strings. In Sect. 4, we consider the issues to implement the
algorithm efficiently.

2 Preliminaries

A sequence is a string of characters over an alphabet
∑

. A subsequence of a
sequence X is obtained by deleting zero or more characters from X (not neces-
sarily contiguous). A substring of a sequence X is a subsequence of successive
characters within X.

For a given sequence X = x1x2 · · · xn of length n, the ith character of X
is denoted as xi ∈ ∑

for any i = 1, · · · , n. A substring of X from position i
to j can be denoted as X[i : j] = xixi+1 · · · xj . If i �= 1 or j �= n, then the



A Polynomial Time Algorithm 21

substring X[i : j] = xixi+1 · · · xj is called a proper substring of X. A substring
X[i : j] = xixi+1 · · · xj is called a prefix or a suffix of X if i = 1 or j = n,
respectively.

For the two input sequences X = x1x2 · · · xn and Y = y1y2 · · · ym of lengths
n and m, respectively, and a set of d constraints P = {P1, · · · , Pd} of total length
r, the problem M-STR-EC-LCS is to find an LCS of X and Y excluding each of
constraint Pi ∈ P as a substring.

Keyword tree (Aho-Corasick Automaton) [1,9,15] is a main data structure
in our dynamic programming algorithm to process the constraint set P of the
M-STR-EC-LCS problem.

Definiton 1. The keyword tree for set P is a rooted directed tree T satisfying 3
conditions: 1. each edge is labeled with exactly one character; 2. any two edges
out of the same node have distinct labels; and 3. every string Pi in P maps to
some node v of T such that the characters on the path from the root of T to v
exactly spell out Pi, and every leaf of T is mapped to some string in P .

Fig. 1. Keyword trees

In order to identify the nodes of T , we assign numbers 0, 1, · · · , t − 1 to all
t nodes of T in their preorder numbering. Then, each node will be assigned an
integer i, 0 ≤ i < t, as shown in Fig. 1. For each node numbered i of a keyword
tree T , the concatenation of characters on the path from the root to the node i
spells out a string denoted as L(i). The string L(i) is also called the label of the
node i in the keyword tree T . For example, Fig. 1 shows the keyword tree T for
the constraint set P = {aab, aba, ba}, where P1 = aab, P2 = aba, P3 = ba, and
d = 3, r = 8. Clearly, every node in the keyword tree corresponds to a prefix of
one of the strings in set P , and every prefix of a string Pi in P maps to a distinct
node in the keyword tree T . The keyword tree for set P of total length r of all
strings can be easily constructed in O(r) time for a constant alphabet size.



22 X. Wang et al.

The keyword tree can be extended into an automaton, Aho-Corasick automa-
ton, which is composed of three functions, a goto function, an output function
and a failure function. The goto function is presented as the solid edges of the
keyword tree and the output function indicates when the matches occur and
which strings are output. For each node i, its output function is denoted as Oi,
a set of indices which indicate when the node i is reached then for each index
j ∈ Oi, the string Pj is matched. For example, the output sets of nodes 3, 5 and 7
are O3 = {1}, O5 = {2, 3} and O7 = {3}, which means that the outputs of node
3, 5 and 7 are {P1 = aab}, {P2 = aba, P3 = ba} and {P3 = ba}, respectively.

The failure function indicates which node to go if there is no character to
be further matched. It is a generalization of the failure functions in the Knuth-
Morris-Pratt algorithm for solving the string matching problem. It is represented
by the dashed edges in Fig. 1.

For any node i of T , define lp(i) to be the length of the longest proper suffix
of string L(i) that is a prefix of some string in T . It can be verified readily
that for each node i of T , if A is an lp(i)-length suffix of string L(i), then there
must be a unique node pre(i) in T such that L(pre(i)) = A. If lp(i) = 0 then
pre(i) = 0 is the root of T .

The ordered pair (i, pre(i)) is called a failure link. The failure link is a direct
generalization of the failure functions in the KMP algorithm. For example, in
Fig. 1, failure links are shown as pointers from every node i to node pre(i) where
lp(i) > 0. The other failure links point to the root and are not shown. The
failure links of T define actually a failure function pre for the constraint set P .
As stated in [1,9], for a constant alphabet size, in the worst case, the failure
function pre can be computed in O(r) time.

The failure list of a given node is the ordered list of the nodes which
locate on the path to the root via dashed edges. For example, for the nodes
i = 1, 2, 3, 4, 5, 6, 7, the corresponding values of failure function are pre(i) =
0, 1, 4, 6, 7, 0, 1. The failure list of node 5 is {7 → 1 → 0}, and the failure list of
node 6 is {0}, as shown in Fig. 1.

The failure function pre is used to speedup the search for all occurrences in
a text Z of strings from P . For each node i of T , and a character c ∈ ∑

, if no
edges out of the node i is labeled c, then the failure link of node i direct the
search to the node pre(i). It is equivalent to add the edge (i, pre(i)) labeled c
to the node i. This set matching method generalized the next function in KMP
algorithm to the Aho-Corasick-next function as follows.

Definiton 2. Given a keyword tree T and its failure function, for each node i
of T and each character c ∈ ∑

, Aho-Corasick-next function δ(i, c) denotes the
destination of the first node in i’s failure list which has an edge labeled c. If there
exists no such node in the failure list, the function returns the root.

Table 3 shows the Aho-Corasick-next function δ corresponding to the example
in Fig. 1.

We take node 4 as an example. It can be seen from Fig. 1 that δ(4, a) = 5
and δ(4, b) = 0. It is easy to understand that each element of Aho-Corasick-next
function can be computed in constant time.



A Polynomial Time Algorithm 23

Table 3. Aho-Corasick-next function

δ 0 1 2 3 4 5 6 7

a 1 2 1 4 5 1 7 1

b 6 4 3 0 0 1 0 1

The symbol ⊕ is also used to denote the string concatenation. For example,
if S1 = aaa and S2 = bbb, then it is readily seen that S1 ⊕ S2 = aaabbb.

3 Our Main Result: A Dynamic Programming Algorithm

Let T be a keyword tree for the given constraint set P , and Z[1 : l] =
z1, z2, · · · , zl be any common subsequence of X and Y . If we search the set
matching of Z from the root of T in the direction of the Aho-Corasick-next
function δ of T , then the search will stop in a node i of T . All such common
subsequence of X and Y can be classified into a group k, 0 ≤ k < t. These t
groups can be used to distinguish the different states in our dynamic program-
ming algorithm. For each integer k, 0 ≤ k < t, the state k represents the set of
common subsequence of X and Y in group k.

Definiton 3. Let Z(i, j, k) denote the set of all LCSs of X[1 : i] and Y [1 : j]
with state k, where 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 0 ≤ k < t. The length of an LCS
in Z(i, j, k) is denoted as f(i, j, k).

If we can compute f(i, j, k) for any 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 0 ≤ k < t
efficiently, then the length of an LCS of X and Y excluding P must be
max
0≤k<t

{f(n,m, k)|Ok = ∅}.

By using the keyword tree data structure described in the last section, we
can give a recursive formula for computing f(i, j, k) by the following theorem.

Theorem 1. For the two input sequences X = x1x2 · · · xn and Y = y1y2 · · · ym
of lengths n and m, respectively, and a set of d constraints P = {P1, · · · , Pd} of
total length r, let Z(i, j, k) and f(i, j, k) be defined as in Definition 3. Suppose a
keyword tree T for the constraint set P has been built, and the t nodes of T are
numbered in their preorder numbering. Then, for any 1 ≤ i ≤ n, 1 ≤ j ≤ m, and
0 ≤ k < t, f(i, j, k) can be computed by the following recursive formula.

f(i, j, k) =

⎧
⎪⎨

⎪⎩

max {f(i − 1, j, k), f(i, j − 1, k)} if xi �= yj ,

max

{

f(i − 1, j − 1, k), 1 + max
k̄∈S(k,xi)

{
f(i − 1, j − 1, k̄)

}
}

if xi = yj .
(1)

where,
S(k, xi) = {k̄|0 ≤ k̄ < t, δ(k̄, xi) = k} (2)

The boundary conditions of this recursive formula are f(i, 0, 0) = f(0, j, 0) =
0 for any 0 ≤ i ≤ n, 0 ≤ j ≤ m.



24 X. Wang et al.

Proof. For any 0 ≤ i ≤ n, 0 ≤ j ≤ m, and 0 ≤ k < t, suppose f(i, j, k) = l and
z = z1 · · · zl ∈ Z(i, j, k).

First of all, we notice that for each pair (i′, j′), 1 ≤ i′ ≤ n, 1 ≤ j′ ≤ m,
such that i′ ≤ i and j′ ≤ j, we have f(i′, j′, k) ≤ f(i, j, k), since a common
subsequence z of X[1 : i′] and Y [1 : j′] with state k is also a common subsequence
of X[1 : i] and Y [1 : j] with state k.

(1) In the case of xi �= yj , we have xi �= zl or yj �= zl.
(1.1) If xi �= zl, then z = z1 · · · zl is a common subsequence of X[1 : i − 1]

and Y [1 : j] with state k, and so f(i − 1, j, k) ≥ l. On the other
hand, f(i − 1, j, k) ≤ f(i, j, k) = l. Therefore, in this case we have
f(i, j, k) = f(i − 1, j, k).

(1.2) If yj �= zl, then we can prove similarly that in this case, f(i, j, k) =
f(i, j − 1, k).
Combining the two subcases we conclude that in the case of xi �= yj ,
we have

f(i, j, k) = max {f(i − 1, j, k), f(i, j − 1, k)} .

(2) In the case of xi = yj , there are also two cases to be distinguished.
(2.1) If xi = yj �= zl, then z = z1 · · · zl is also a common subsequence of

X[1 : i − 1] and Y [1 : j − 1] with state k, and so f(i − 1, j − 1, k) ≥ l.
On the other hand, f(i − 1, j − 1, k) ≤ f(i, j, k) = l. Therefore, in this
case we have f(i, j, k) = f(i − 1, j − 1, k).

(2.2) If xi = yj = zl, then f(i, j, k) = l > 0 and z = z1 · · · zl is an LCS of
X[1 : i] and Y [1 : j] with state k.

Let the state of (z1, · · · , zl−1) be k̄, then we have k̄ ∈ S(k, xi), since zl = xi.
It follows that z1 · · · zl−1 is a common subsequence of X[1 : i−1] and Y [1 : j −1]
with state k̄. Therefore, we have

f(i − 1, j − 1, k̄) ≥ l − 1

Furthermore, we have

max
k̄∈S(k,xi)

{
f(i − 1, j − 1, k̄)

} ≥ l − 1

In other words,

f(i, j, k) ≤ 1 + max
k̄∈S(k,xi)

{
f(i − 1, j − 1, k̄)

}
(3)

On the other hand, for any k̄ ∈ S(k, xi), and v = v1 · · · vh ∈ Z(i−1, j −1, k̄),
v ⊕ xi is a common subsequence of X[1 : i] and Y [1 : j] with state k. Therefore,
f(i, j, k) = l ≥ 1 + h = 1 + f(i − 1, j − 1, k̄), and so we conclude that,

f(i, j, k) ≥ 1 + max
k̄∈S(k,xi)

{
f(i − 1, j − 1, k̄)

}
(4)



A Polynomial Time Algorithm 25

Combining (3) and (4) we have, in this case,

f(i, j, k) = 1 + max
k̄∈S(k,xi)

{
f(i − 1, j − 1, k̄)

}
(5)

Combining the two subcases in the case of xi = yj , we conclude that the
recursive formula (1) is correct for the case xi = yj .

The proof is complete. �

4 The Implementation of the Algorithm

According to Theorem 1, our algorithm for computing f(i, j, k) is a standard 3-
dimensional dynamic programming algorithm. By the recursive formula (1), the
dynamic programming algorithm for computing f(i, j, k) can be implemented as
the following Algorithm 1.

Algorithm 1. M-STR-EC-LCS
Input: Strings X = x1 · · · xn, Y = y1 · · · ym of lengths n and m, respectively, and a
set of d constraints P = {P1, · · · , Pd} of total length r
Output: The length of an LCS of X and Y excluding P

1: Build a keyword tree T for P
2: for all i, j, 0 ≤ i ≤ n, 0 ≤ j ≤ m do
3: f(i, 0, 0) ← 0, f(0, j, 0) ← 0 {boundary condition}
4: end for
5: S ← {0} {current set of states}
6: for i = 1 to n do
7: for j = 1 to m do
8: for each k ∈ S do
9: if xi �= yj then

10: f(i, j, k) ← max{f(i − 1, j, k), f(i, j − 1, k)}
11: else
12: k̄ ← δ(k, xi)
13: if |Ok̄| = 0 then
14: f(i, j, k̄) ← max{f(i − 1, j − 1, k̄), 1 + f(i − 1, j − 1, k)}
15: S ← S

⋃{k̄}
16: end if
17: end if
18: end for
19: end for
20: end for
21: return max

0≤k<t
{f(n, m, k)}

In Algorithm 1, T is the keyword tree for set P . The root of the key-
word tree is numbered 0, and the other nodes are numbered 1, 2, · · · , t − 1 in
their preorder numbering. δ(α, c) is the Aho-Corasick-next function defined in



26 X. Wang et al.

Definition 2, which can be computed in O(1) time. Ok is the output set of node
k in T . The variable S is used to record the current states created. When a node
is visited first time, a new state may be created. Therefore, in Algorithm 1, the
current state set S is extended gradually while the for loop processed. In the
worst case, the set S will have a size of r, the total lengths of the constrained
strings. The body of the triple for loops can be computed in O(1) time in the
worst case. Therefor, the total time of Algorithm 1 is O(nmr). The space used
by Algorithm 1 is also O(nmr).

The number of constraints is an influent factor in the time and space com-
plexities of our new algorithm. If a string Pi in the constraint set P is a proper
substring of another string Pj in P , then an LCS of X and Y excluding Pi must
also exclude Pj . For this reason, the constraint string Pj can be removed from
constraint set P without changing the solution of the problem. Without loss of
generality, we can put forward the following two assumptions on the constraint
set P .

Assumption 1. There are not any duplicated strings in the constraint set P .

Assumption 2. No string in the constraint set P is a proper substring of any
other string in P .

If Assumption 1 is violated, then there must be some duplicated strings in the
constraint set P . In this case, we can first sort the strings in the constraint set P ,
then duplicated strings can be removed from P easily and then Assumption 1 on
the constraint set P is satisfied. It is clear that removed strings will not change
the solution of the problem.

For Assumption 2, we first notice that a string A in the constraint set P is a
proper substring of string B in P , if and only if in the keyword tree T of P , there
is a directed path of failure links from a node v on the path from the root to the
leaf node corresponding to string B to the leaf node corresponding to string A
[1,9]. For instance, in Fig. 1, there is a directed path of failure links from node
5 to node 7 and thus we know the string ba corresponding to node 7 is a proper
substring of string aba corresponding to node 5.

With this fact, if Assumption 2 is violated, we can remove all proper super
strings from the constraint set P as follows. We first build a keyword tree T
for the constraint set P , then mark all the leaf nodes pointed by a failure link
in T by using a depth first traversal of T . All the strings corresponding to the
marked leaf node can then be removed from P . Assumption 2 is now satisfied on
the new constraint set and the keyword tree T for the new constraint set is then
rebuilt. It is not difficult to do this preprocessing in O(r) time. It is clear that
the removed proper substrings will not change the solution of the problem.

If we want to compute the longest common subsequence of X and Y excluding
P , but not just its length, we can also present a simple recursive backtracking
algorithm for this purpose as the following Algorithm2.

In the end of our new algorithm, we will find an index k such that f(n,m, k)
gives the length of an LCS of X and Y excluding P . Then, a function call
back(n,m, k) will produce the answer LCS accordingly.



A Polynomial Time Algorithm 27

Algorithm 2. back(i, j, k)
Comments: A recursive back tracing algorithm to construct the answer
LCS

1: if i = 0 or j = 0 then
2: return
3: end if
4: if xi = yj then
5: if f(i, j, k) = f(i − 1, j − 1, k) then
6: back(i − 1, j − 1, k)
7: else
8: for each k̄ ∈ S do
9: if k = δ(k̄, xi) and f(i, j, k) = 1 + f(i − 1, j − 1, k̄) then

10: back(i − 1, j − 1, k̄)
11: print xi

12: end if
13: end for
14: end if
15: else if f(i − 1, j, k) > f(i, j − 1, k) then
16: back(i − 1, j, k)
17: else
18: back(i, j − 1, k)
19: end if

Since the cost of δ(k, xi) is O(1) in the worst case, the time complexity of
the algorithm back(i, j, k) is O(n + m).

Finally we summarize our results in the following theorem.

Theorem 2. For the two input sequences X = x1x2 · · · xn and Y = y1y2 · · · ym
of lengths n and m, respectively, and a set of d constraints P = {P1, · · · , Pd} of
total length r, the Algorithms 1 and 2 solve the M-STR-EC-LCS problem correctly
in O(nmr) time and O(nmr) space, with preprocessing time O(r|Σ|).

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Ann, H.Y., Yang, C.B., Tseng, C.T., Hor, C.Y.: A fast and simple algorithm for
computing the longest common subsequence of run-length encoded strings. Inform.
Process Lett. 108(11), 360–364 (2008)

3. Ann, H.Y., Yang, C.B., Peng, Y.H., Liaw, B.C.: Efficient algorithms for the block
edit problems. Inf. Comput. 208(3), 221–229 (2010)

4. Apostolico, A., Guerra, C.: The longest common subsequences problem revisited.
Algorithmica 2(1), 315–336 (1987)

5. Arslan, A.N., Egecioglu, O.: Algorithms for the constrained longest common sub-
sequence problems. Int. J. Found. Comput. Sci. 16(6), 1099–1109 (2005)

6. Blum, C., Blesa, M.J., Lpez-Ibnez, M.: Beam search for the longest common sub-
sequence problem. Comput. Oper. Res. 36(12), 3178–3186 (2009)



28 X. Wang et al.

7. Chen, Y.C., Chao, K.M.: On the generalized constrained longest common subse-
quence problems. J. Comb. Optim. 21(3), 383–392 (2011)

8. Chin, F.Y.L., Santis, A.D., Ferrara, A.L., Ho, N.L., Kim, S.K.: A simple algo-
rithm for the constrained sequence problems. Inform. Process. Lett. 90(4), 175–179
(2004)

9. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge
University Press, Cambridge, UK (2007)

10. Deorowicz, S.: Quadratic-time algorithm for a string constrained LCS problem.
Inform. Process. Lett. 112(11), 423–426 (2012)

11. Deorowicz, S., Obstoj, J.: Constrained longest common subsequence computing
algorithms in practice. Comput. Inform. 29(3), 427–445 (2010)

12. Farhana, E., Ferdous, J., Moosa, T., Rahman, M.S.: Finite automata based algo-
rithms for the generalized constrained longest common subsequence problems. In:
Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 243–249. Springer,
Heidelberg (2010)

13. Gotthilf, Z., Hermelin, D., Lewenstein, M.: Constrained LCS: hardness and approx-
imation. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp.
255–262. Springer, Heidelberg (2008)

14. Gotthilf, Z., Hermelin, D., Landau, G.M., Lewenstein, M.: Restricted LCS. In:
Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 250–257. Springer,
Heidelberg (2010)

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

16. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J.
ACM 24(4), 664–675 (1977)

17. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common
subsequences. Commun. ACM 20(5), 350–353 (1977)

18. Iliopoulos, C.S., Rahman, M.S.: New efficient algorithms for the LCS and con-
strained LCS problems. Inform. Process. Lett. 106(1), 13–18 (2008)

19. Iliopoulos, C.S., Rahman, M.S.: A new efficient algorithm for computing the longest
common subsequence. Theor. Comput. Sci. 45(2), 355–371 (2009)

20. Iliopoulos, C.S., Rahman, M.S., Rytter, W.: Algorithms for two versions of LCS
problem for indeterminate strings. J. Comb. Math. Comb. Comput. 71, 155–172
(2009)

21. Iliopoulos, C.S., Rahman, M.S., Vorcek, M., Vagner, L.: Finite automata based
algorithms on subsequences and supersequences of degenerate strings. J. Discrete
Algorithm 8(2), 117–130 (2010)

22. Knuth, D.E., Morris, J.H., Pratt, V.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

23. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25, 322–336 (1978)

24. Peng, Y.H., Yang, C.B., Huang, K.S., Tseng, K.T.: An algorithm and applica-
tions to sequence alignment with weighted constraints. Int. J. Found. Comput.
Sci. 21(1), 51–59 (2010)

25. Shyu, S.J., Tsai, C.Y.: Finding the longest common subsequence for multiple bio-
logical sequences by ant colony optimization. Comput. Oper. Res. 36(1), 73–91
(2009)

26. Tang, C.Y., Lu, C.L.: Constrained multiple sequence alignment tool development
and its application to RNase family alignment. J. Bioinform. Comput. Biol. 1,
267–287 (2003)



A Polynomial Time Algorithm 29

27. Tsai, Y.T.: The constrained longest common subsequence problem. Inform.
Process. Lett. 88(4), 173–176 (2003)

28. Tseng, C.T., Yang, C.B., Ann, H.Y.: Efficient algorithms for the longest common
subsequence problem with sequential substring constraints. J. Complex. 29, 44–52
(2013)

29. Wagner, R., Fischer, M.: The string-to-string correction problem. J. ACM 21(1),
168–173 (1974)

30. Wang, L., Wang, X., Wu, Y., Zhu, D.: A dynamic programming solution to a
generalized LCS problem. Inform. Process. Lett. 113(1), 723–728 (2013)



http://www.springer.com/978-3-319-39076-5


	A Polynomial Time Algorithm for a Generalized Longest Common Subsequence Problem
	1 Introduction
	2 Preliminaries
	3 Our Main Result: A Dynamic Programming Algorithm
	4 The Implementation of the Algorithm
	References


