Modeling and Analysis of Data Flow Graphs
Using the Digraph Real-Time Task Model

Morteza Mohaqeqi®™), Jakaria Abdullah, and Wang Yi

Uppsala University, Uppsala, Sweden
morteza.mohageqi@it.uu.se

Abstract. Data flow graphs are widely used for modeling and analysis
of real-time streaming applications in which having a predictable and
reliable implementation is an essential requirement. In this paper, we
consider scheduling a set of data flow graphs such that liveness and
boundedness properties are guaranteed, which leads to a predictable and
correct behavior of the application. A formal translation method is pro-
posed to map a given set of data flow graphs to a set of graph-based real-
time tasks. Additionally, sufficient conditions are derived under which the
obtained task set provides a semantically correct implementation of the
given data flow graphs. It is shown that the proposed approach provides a
higher level of design flexibility compared to the existing methods which
use a simpler, i.e. periodic, task model.

Keywords: Data flow graphs - Real-time task models - Buffer bound-
edness * Schedulability analysis

1 Introduction

During the past decades, data flow graphs [1,2] have been extensively used for
modeling and analysis of real-time streaming and signal processing applications.
A number of prominent measures of these applications, including throughput,
timeliness, liveness, and processing latency have been analyzed based on this
formalism. Such analyses help the designers to have a predictable and reliable
implementation of the mentioned applications.

Recently, increasing attention has been paid to study data flow graphs from
a real-time scheduling point of view [3-8]. A popular approach is mapping each
actor in a given data flow graph to an independent real-time task. Then, the
problem is to specify the real-time tasks parameters such that the timing behav-
ior of the data flow is correctly reflected by the task set. The advantage of this
approach is that it makes it possible to reuse the existing analysis frameworks
developed for real-time systems in the scheduling of a set of data flow graphs. For
instance, using this approach, the interfering effect of different data flow appli-
cations on each other can be analyzed based on the existing theory of real-time
task models.

In spite of the relatively extensive studies in this context, only a limited num-
ber of real-time task models have been explored by the researchers. In particular,

© Springer International Publishing Switzerland 2016
M. Bertogna et al. (Eds.): Ada-Europe 2016, LNCS 9695, pp. 15-29, 2016.
DOI: 10.1007/978-3-319-39083-3_2

16 M. Mohageqi et al.

the work has been mainly focused on the periodic task model. Nonetheless, more
expressive models can provide more flexibility to the designers which can lead
to better solutions.

In this paper, we propose to use one of the most expressive yet efficiently
analyzable real-time task models, namely the Digraph Real-Time (DRT) model
[9], to specify data flow graphs. We present a translation method and discuss the
potential benefits and the restrictions of this approach. The proposed method
guarantees both boundedness and liveness properties of a data flow graph.

The rest of this paper is organized as follows: Sect.2 describes the system
model by presenting a brief review on the syntax and semantics of a data flow
graph. The Digraph Real-Time task model is reviewed in Sect.3. We present
our translation method in Sect.4. The proposed method is evaluated through
the model of an MP3 playback application in Sect.5. The work related to the
current study is reviewed in Sect. 6. The paper is concluded in Sect. 7.

2 System and Application Model

In this paper, we consider a uniprocessor system which runs a number of appli-
cations modeled as a set of static data flow graphs. Formally, a static data flow
is a directed graph (V,E), where V and E represent the set of vertices and
edges, respectively. Each vertex represents an actor. Each edge denotes a FIFO
channel (also called a buffer), connecting the input port and the output port of
two (not necessarily different) actors. A channel ¢ may contain an initial number
of tokens, denoted by ¢, at the system start time. Further, each channel ¢ has
a maximum capacity of ¢. This means that the number of tokens existing in ¢
should never exceed c.

Any release of one instance (job) of an actor is called a firing. An actor can
be fired only when the required number of tokens are available on its input
ports. During its execution, an actor consumes the required tokens from the
input ports, and generates some tokens to its output ports. The number of
tokens which are produced (consumed) at each firing of an actor is called the
production (consumption) rate. Static data flows are classified according to the
variability of an actor behavior and its production/consumption rate in different
firings. In the following, three major classes, namely synchronous, homogeneous,
and cyclo-static data flows [2], are reviewed.

— Synchronous Data Flow (SDF): In an SDF, the execution time as well as the
production/consumption rate of each actor is fixed.

— Homogeneous Synchronous Data Flow (HSDF): An SDF is homogeneous if all
production/consumption rates are equal to one.

— Cyclo-Static Data Flow (CSDF): The cyclo-static data flow (CSDF) model
is a generalization of SDF, in which each actor a has a sequence of differ-
ent behaviors, affecting its execution time and the production/consumption
rates, which repeats cyclically [3]. Let n, be the length of this sequence.

Modeling and Analysis of Data Flow Graphs 17

Then, [fa(1), fa(2),..., fa(na)] represents the execution sequence of an actor
a € V. This means that in its ith firing, the actor execution time is given by
fa (((G—1) mod ng) +1). (1)

Similarly, the production and consumption rates are specified by sequences of
length n,. More specifically, for an actor a, and considering a specific buffer,
e [94(1),94(2),...,9a(ng)] denotes the sequence of production rates;
o [n,(1),ha(2),...,hq(ng)] denotes the sequence of consumption rates.

In the current work, our focus is on the CSDF model.

Ezxample 1. Figurel shows the CSDF graph of an MP3 playback application
[10]. This application consists of four tasks, including MP3, Sample Rate Con-
verter (SRC), Audio Post-Processing (APP), and Digital to Analogue Converter
(DAC).

[0 0576 0 576] 441 1

MP3 SRC APP DAC
480 1 1

Fig.1. A CSDF graph for the MP3 playback application [10]. Production and con-
sumption rates are shown on the edges.

An implementation of a data flow graph is supposed to provide liveness and
boundedness properties. Intuitively, liveness means that each actor will be exe-
cuted infinitely many times. In contrast, boundedness necessitates the existence
of a bound on the maximum size of each buffer which is never exceeded by the
writing actors during the system execution.

3 Digraph Real-Time Task Model

In this section, we review the digraph real-time (DRT) task model [9]. This task
model will be used in the next section for modeling CSDF graphs.

A DRT task T is specified by a directed graph G(T') = (V(T), E(T)), where
V(T) and E(T) denote the graph vertices and edges, respectively. Each vertex
of the graph represents a job type. A vertex v € V(T) is labeled by a pair
(e(v),d(v)), where e(v) and d(v) denote the worst-case execution time (WCET)
and relative deadline of the corresponding job, respectively. Further, each edge
(u,v) € E(T) is labeled with a positive number, p(u,v), denoting the inter-
release time between the two jobs v and v'.

Each path in the graph denotes a possible sequence of jobs which may be
generated by the respective task. If the outgoing degree of each vertex in a

! In the original definition of DRT, an edge label determines the minimum inter-release
time. Nonetheless, the DRT schedulability analyses [9,11] are valid for the modified
version which we use here.

18 M. Mohageqi et al.

(1,3) (1,2) (0, 3) (2,10)
(o
4

(a) A DRT task with two job types (b) A periodic task with an initial phase of
3 modeled as a DRT task

Fig. 2. Two sample DRT tasks.

task graph is restricted by one, that is, no branching is allowed, then the model
reduces to the Generalized Multiframe task model [12].

The focus of this paper is on the constrained deadline DRT tasks. Hence,
given a DRT task 7', it is assumed that for each v € V(T'), we have d(u) < p(u,v)
for all (u,v) € E(T).

Ezxample 2. A sample DRT task with two job types with inter-release times of
5 and 4 is shown in Fig. 2a. Further, Fig. 2b depicts a DRT task which models a
periodic task with an initial phase.

The inherent capability of the DRT model to represent non-fixed and non-
periodic behavior of a component makes it suitable for modeling CSDF graphs.
In the next section, we present our method for representing CSDF graphs using
set of DRT tasks.

4 Translation Method

In this section, we describe our translation method for transforming a given data
flow graph to a set of DRT tasks. The method maps each actor to a real-time
task. In the following, the details of the translation method and the criteria for
determining the real-time task set parameters are provided.

Consider two actors a and b in a given CSDF graph. In addition, let ¢ be
a FIFO channel between them with an initial number of tokens of ¢ and a
maximum capacity of ¢. Let n, be the size of the sequence which specifies the
cyclically variable behavior of the actor a (as defined in the previous section). We
associate a DRT task with n, + 1 vertices, vg, ..., vn,, to a. The starting vertex
denotes a job type with the WCET of zero, which is used to enforce a phase (an
initial phase before the release time of the first job) in the task. Additionally, for
each i, 0 <7 < ng, an edge is added from v; to v;11. Also, we consider an edge
from v, to v;. This set of edges enforce the cyclically repeating pattern of the
given actor’s behavior. The WCET associated with each vertex v;, 0 < i < ng,
is set to be the WCET of the ith firing of the actor, which is specified by f, (7).

As described, the DRT task corresponding to an actor a contains n, + 1
vertices and n, + 1 edges. Edge (vg, v1), which represents the phase of the task,
is labeled by ¢,. Further, let the label of the other edges (v;, vi11), 1 <@ < ng,

Modeling and Analysis of Data Flow Graphs 19

(0, pmp3) (fups(1),d(v1))

@ dmP3 /v\ p1

(fmprs(5),d(vs))

(fmps(2),d(v2))

Pps P2

(fmps(3),d(v3))

(Fups(4), d(vs))

Fig. 3. DRT task for the actor MP3 of the CSDF graph presented in Fig. 1.

be denoted by p;? (also, the edge (vy,,v1) is labeled by p,,,). The edge labels are
parameters which should be determined such that the liveness and boundedness
properties are achieved.

Example 3. Consider the data flow graph of the MP3 player application shown
in Fig. 1. According to the specified translation method, the first actor (MP3)
will be modeled as a DRT task with six vertices, as shown in Fig.3. Given a
sequence of execution times [faps(1), ..., fars(5)] for this actor, we can assign
the WCET of the job types of the DRT task as e(v;) = fups(i), for 1 <4 <5.
Additionally, the other actors will be represented by a DRT task expressing a
periodic behavior, in a similar way as shown in Fig. 2b.

For a complete translation, we need to determine the timing parameters of
the DRT tasks. These parameters include the relative deadline of each job type,
and the edge labels which represent the inter-release time between the jobs.
The timing parameters should be assigned in such a way that the correctness
conditions of the implementation are satisfied.

We use the correctness criteria in terms of the Kahn semantics [13] for a
Kahn process network. As shown in [10], these criteria imply a live and bounded
behavior of the system specified by a data flow graph. For this purpose, it must be
guaranteed that the system never leads to a buffer overflow or buffer underflow.
An overflow happens when writing to a buffer exceeds its maximum capacity. In
turn, an underflow occurs whenever an actor tries to read from an empty buffer.
In the following, we formalize these correctness requirements. To this end, we
first need to determine the number of released and finished instances of each job
(actor) up to each time instant.

2 Please notice that, p; is an actor-specific parameter. However, for brevity reasons, it
is not explicitly indicated in the notation.

20 M. Mohageqi et al.

4.1 Number of Released/Finished Jobs

For an actor a, define Rel,(v,t) and Fing(v,t) as follows:

Rel,(v,t) = the number of instances of job type v released up to and
including time t,
Fing(v,t) = the number of instances of job type v finished up to and

including time ¢.

According to the translation model, the release and completion of a job cor-

responding to an actor firing are governed by the associated DRT tasks. As a

result, Rel,(v,t) and Fing(v,t) depend on the timing parameters of the derived

DRT tasks. Here, we formally specify the relation between function Rel,(v,t)

(also Fing(v,t)) and these parameters. First, it is noted that, for ¢ < ¢, we have

Rel,(v,t) =0 and Fing(v,t) = 0. Thus, in the following, we assume that ¢ > ¢.
According to the defined notations, we can specify Rel,(v,t) as

i—1
Zj:l ij

a

Rel,(vi,t) =1+ \‘t_gba; (2)

where 7, = Z?;l p; is the super-period of the DRT task. In words, 7, denotes
the amount of time that it takes for the DRT to have a complete cycle, through
which, each job (except the first job which represents the initial phase) is released
exactly once. Also, a lower bound for Fin,(v,t) can be obtained by

— a— Y1 Pj — d(vi)J

Ta

Fing(vi,t) > 1+ r (3)

It is worth noting that the equality does not necessarily hold. This is because
that, depending on the scheduling approach, a job may be completed before
its deadline, leading to a possibly higher number of finished jobs up to time ¢
compared to the case in which the job finishes exactly at its deadline.

4.2 TUnderflow Analysis

Based on the semantics of a data flow graph, an actor may produce (consume)
the output (input) tokens at any time during its execution. As a result, for
the underflow analysis, we employ a pessimistic approach [10], in which, we
consider the minimum possible number of tokens that may be buffered at each
instant. Based on this approach, it is assumed that each actor writes to the
output buffer(s) as late as possible. In other words, the tokens are assumed to be
written to the buffer when the actor completes its execution. On the other hand,
we suppose that each actor reads from its input buffer(s) as soon as possible,
namely at its release instant.

Modeling and Analysis of Data Flow Graphs 21

tokens

Fig. 4. Upper and lower bound on the number of produced tokens for the MP3 actor.

Regarding the abovementioned pessimistic assumptions, a lower bound for
the total number of tokens written to the channel ¢ by an actor a up to (and
including) time ¢ can be calculated as

Z 9a (i) X Fing(v;,t). (4)

As an example, the dashed line in Fig. 4 depicts the function GL(t) for the MP3
actor of the CSDF graph specified in Example 1. In this example, it is assumed
that any two successive firings are identically separated by a time interval of
length 7. Further, an implicit deadline has been considered (i.e. d(v;) =).

In addition, an upper bound for the total number of tokens read from a
channel ¢ by an other actor b up to and including time ¢ is given by

Zhb X Rely(v;,). (5)

According to these relations, a sufficient condition for the underflow avoid-
ance of channel c is formulated by

Vt>0:c+GE(t) - HY(t) >0, (6)

where ¢ denotes the initial number of tokens of c.

4.3 Overflow Analysis

Based on an approach similar to the one presented for the underflow, we can
specify a sufficient condition for overflow avoidance. In this case, the pessimistic
assumptions are stated as follows:

— Each actor writes to the output buffer(s) as soon as possible (namely at its
release time);

— Each actor reads from its input buffer(s) as late as possible (namely at its
finish time).

22 M. Mohageqi et al.

Consequently, the maximum number of tokens written to a buffer ¢ by an actor
a up to time t can be specified as

GY(t) = iga(i) x Rely (v, t). (7)

Figure4 partly shows the variation of GY(¢) for the MP3 CSDF graph, under
the previously mentioned assumptions.

Additionally, the minimum number of tokens read from a buffer ¢ by an actor
b up to time t is given by

HE(t) = Z hy (i) % Fing(vi,1). (8)

Regarding the defined notations, no overflow happens if the following condition
holds (recall that ¢ denotes the maximum buffer capacity)

Vt>0:c+GY(t) - HE(t) <@ (9)

4.4 Design Space Exploration

Relations (6) and (9) provide sufficient conditions for the correctness of an imple-
mentation of a data flow graph. Then, the problem is to assign suitable values
to the DRT tasks parameters, namely their inter-release times, p;, and relative
deadlines, d(v;), such that, while the mentioned conditions are satisfied, some
design objective, e.g. the application throughput, is optimized. Furthermore,
from a schedulability point of view, these values must be selected such that the
obtained task set is schedulable, i.e., each job can complete its execution no later
than its deadline. This can be checked using efficient methods proposed in [9,11]
for static-priority and dynamic-priority schedulability analysis of DRT task sets.

Here, we discuss a simplifying technique for improving the efficiency of the
state-space exploration. First, it is observed that the correctness criteria derived
in the previous sections are independent of the worst-case execution time of
the actors. In other words, they deal only with the release times and completion
times. As a result, the problem of finding an appropriate value assignment to the
timing parameters can be first solved irrespective of the schedulability concerns.
Afterwards, we have to consider the schedulability of the system. If the system
with the derived value assignments is not schedulable, one can easily scale up
the timing parameters such that the obtained task set becomes schedulable.

It is worth noting that scaling up all the parameters by the same amount does
not affect the correctness of the system, i.e. the validity of (6) and (9). This is
because that, in this situation, the numerator and denominator of the respective
fractions in (2) and (3) are scaled with the same factor, and the value of the
fraction remains unchanged. It should be noted that a similar approach, called
abstraction-refinement, has been previously used for the periodic task model
[6] to overcome the complexity of the problem. In addition to this technique,

Modeling and Analysis of Data Flow Graphs 23

another simplification can be made by a linear approximation, which is specified
in the following.

Linear Approximation: Based on Relations (2) and (3), it is observed that
the functions Rel,(v;,t) and Fing(v;,t), respectively, can be over-approximated
and under-approximated by some linear functions. These approximations are
constructed on the basis of the inequality z < 1+ |z] < 1 + =z, which holds
for any real number x [14]. Using this, we specify an overapproximation for the
function Rel,(v;,t) as

i—1
t—¢a — 23:1 bj

Ta

RelVA7P (v, 1) = 1 + (10)

In fact, for any ¢ > 0, we have Rel,(v;,t) < RelV4PP (v;,t). In addition, we can
obtain an under-approximation for the function Fin,(v;,t) as

t = ¢a — Z] 1p1 d(v;)

Fink4PP (v, 1) =
Ta

(11)

These approximate functions can be used in calculating GL(¢), HY (t), GY(t),
and HE(t), defined in Eqs. (4), (5), (7), and (8). Then, we can rewrite the
underflow and overflow avoidance conditions, presented in (6) and (9), based on
these approximations. In the following, we elaborate the underflow condition;
the procedure for the overflow condition can be done in a similar manner.
Using the provided approximations, we can rewrite the underflow avoidance
condition as
Ta
Yt>0:¢+ Zga) X FmLApp Zhb) X RelUApp(v“t) > 0.
i=1

Moreover, by replacing Fint4?? (v;,t) and RelV4PP (v;,t) from (11) and (10), we
will get

VE>0: (12)
—¢a—32;—1 pj—d(vs n , — b =351 P;
o+ X o) (SR) e gy (14 SRR) 2

From [10], it is known that, as a necessary condition for overflow and under-
flow avoidance, the average production rate for any buffer must be equal to its
average consumption rate, namely

2?21 ga(i) _ 272171 hy (4) .

Ta Th

(13)

Based on this fact, we can simplify the inequality specified in (12) as
Vt>0:

& [—¢a— i p —d(w) L = 1P
c+;ga(z)< Jwi J >_;hb(2)<1+wbj 1 j)zo'

24 M. Mohageqi et al.

Also, from (13), we can write 7, as a linear function of m,, that is, 7, = ym, for
some constant . Hence, we have

Vt>0:
Na i—1 ngy _ _ i.fl .
T+ Y gali) <¢>a - pi- d(vi)> =3 i) <7ra + w) > 0.
=1 j=1 i=1

As seen, the obtained relation specifies a linear constraint on the problem
parameters, which significantly reduces the complexity of the problem.

5 Evaluation

In this section, we evaluate the effectiveness of the proposed approach compared to
a previously proposed method which employs a periodic task model for the analy-
sis of CSDF graphs [6,10]. We compare the two methods in terms of the through-
put [15] and the buffer size requirements [16]. The throughput of a dataflow graph
measures how often the application is executed in a unit of time. We assume the
preemptive EDF algorithm for scheduling the obtained real-time tasks.

For the evaluation purpose, we apply the mentioned methods to the MP3
playback application shown in Fig. 1. According to [10], the execution time of the
MP3 actor is specified as the sequence fpps(.) = [670,2700,720,2700, 720] ps.
Further, the execution time of SRC, APP, and DAC are specified as 2500 us,
22 us, and 22 us, respectively.

The primary objective is to specify the timing parameters of the task set
S0 as to minimize the total required buffer sizes, while the correctness criteria
specified in (6) and (9) are respected and the task set is EDF-schedulable. As
well, it is desired to increase the application throughput. In the following, we first
present the obtained task sets for each approach. Then, the buffer requirement
and the throughput achieved by each method are reported and discussed.

5.1 Obtained Task Sets

In this section, we first specify the periodic task set obtained in [10] for the MP3
playback application. Next, the corresponding DRT task set is described.

Periodic Task Model: According to the approach utilized in [10], a periodic
task is considered for each actor. In order to have a safe analysis, one needs to
consider the maximum execution time of each actor as the WCET of the corre-
sponding periodic task. As a result, a WCET of max{670, 2700, 720, 2700, 720} =
2700 s is considered for the task associated to the MP3 actor. As the other
actors have a fixed execution time, WCET of the respective tasks are simply set
to those fixed values. The periods and phases assigned to the tasks according to
this method are shown in Table1 [10]. This parameter assignment leads to the
system utilization of 99.96 %, which reveals the schedulability of the task set.

DRT Task Model: As pointed out before, the MP3 application can be modeled
by four DRT tasks. When constructing the tasks, in order to decrease the number

Modeling and Analysis of Data Flow Graphs 25

Table 1. Task set parameters obtained for the periodic tasks [10]

Period (us) | Phase (us)
MP3 | 13219.416 |0

SRC | 27540.45 66647.889
APP 62.45 121760.014
DAC 62.45 121916.139

of design parameters, we assume that the relative deadline of each job type is
set to be equal to the inter-release time between that job and the next one.
As noted in Example 3, for the actors SRC, APP, and DAC we can use the
DRT task structure which models a periodic task with a specific phase. This
is because these actors have a periodically repeating behavior. On the other
hand, the MP3 actor is modeled by a DRT task with six different job types, as
shown in Fig. 3. It is worth noting that, here, as opposed to the periodic task
model, we can consider the actual pattern of the execution times for the MP3
actor, instead of using one conservative maximum value. The goal is to assign
the relative deadline of each job such that the problem objective is optimized.
Initially, we use the same values reported in Table 1 for the DRT tasks asso-
ciated to SRC, APP, and DAC. Additionally, for the DRT task related to MP3,
we assume that the inter-release times, in the average, are equal to the period
specified for the corresponding periodic task. As a result, the super-period of
this task is mypg = 5 x 13219.416. Now, we attempt to determine the concrete
value of the inter-release times for each pair of job types of this task. In order to
decrease the utilization of the task (and hence, increase the schedulability of the
task set), we assign the relative deadline of each job (or equivalently, the inter-
release time between that job and the next one) in proportion to its execution
time. Since in the DRT task, we can consider the actual pattern of execution
times instead of a fixed and pessimistic value (which is done in the periodic task
model), the total utilization is lower than that of the periodic task. As a result,
we can scale down the timing parameters, namely the phases and inter-release
times, so as to increase the application throughput, while the task set is still
schedulable. The results of this approach are shown in Table 2 and Fig. 5.

Table 2. Task set parameters for the DRT tasks (us)

Period Phase

SRC | 25061.809 | 60649.578
APP 56.829 | 110801.612
DAC 56.829 | 110943.686

26 M. Mohageqi et al.

(0,0) (670, 5366.00)
@ 0 (01— 2306-09 (2700, 21624.57)

5766.552 21624.57

(720, 5766.552) (720, 5766.552)

21624.570 5766.552

(2700, 21624.570)

Fig. 5. Parameters for the DRT task which models the MP3 actor (us).

5.2 Evaluation Results

The total buffer requirement and the throughput which is achieved by the two
approaches are reported in Table3. As seen, the DRT-based method outper-
forms the other one in terms of both the buffer requirement and the application
throughput.

Table 3. Total buffer requirement and throughput for each method

Buffer requirement | Throughput (s 1)
Periodic task set | 2273 16013
DRT task set 2155 17596
Improvement 5% 9.8%

As a conclusion, it is seen that the DRT-based approach provides a higher
degree of flexibility in the design of data flow graphs which can lead to better
solutions. Of course, this advantage is achieved at the cost of treating more
parameters, which means a larger state-space which must be explored.

6 Related Work

Synchronous Data Flow (SDF) [1] and Cyclo-Static Data Flow (CSDF) [2] are
two very basic data flow models. In the past, several variants of these models
have been proposed to provide more expressiveness and flexibility in the design
of streaming applications. For instance, the parametric extensions of the SDF
have been developed [17-19] which allow the data flow graph properties, such as
the production and consumption rates, to be changed at runtime. In particular,
Boolean Parametric Data Flow (BPDF) [18] is a parametric model in which the
graph topology can be changed as well as the production and consumption rates

Modeling and Analysis of Data Flow Graphs 27

of the actors. In this model, an edge can be labeled with a boolean expression
which is modified by some actor. At runtime, according to the actual value of the
boolean expression, an edge may be enabled or disabled, determining whether
the edge should be considered in the firing of the actors at that moment. An
assumption made in the related stuies, such as [18-20], is that each actor runs in
a dedicated core. Hence, when analyzing the data flow graph, one does not need
to take into account the interference of the actors (caused by resource contention)
on each other. While this approach provides a high degree of predictability for a
single data flow, it is not easily extendible to incorporate the impact of multiple
data flows on each other when they are running on the same processing platform
with possible resource contention.

Meanwhile, due to the increasing use of real-time operating systems in complex
embedded systems which work in dynamic environments, using dynamic schedul-
ing policies, such as rate-monotonic and earliest-deadline first (EDF), for SDF's
has been considered recent studies. The advantage of this approach is that the
already existing analyses for different scheduling algorithms can be used in this
context. This provides the possibility of running multiple applications on the same
processing resource, while the interfering effects is considered. One approach to
utilize this facility is to use a set of independent real-time tasks to reflect the tim-
ing behavior of data flow graphs. One of the basic studies which use periodic real-
time task model for data flow graphs is presented by Bmakhra and Stefanov [3].
They explore that how the execution of actors can be parallelized to achieve a
maximum throughput. In the same realm, Ali et al. [8] consider the problem of
assigning parameters of periodic tasks modeling an HSDF. They suppose a given
set of applications each one modeled as an HSDF graph. Each application exhibits
two kinds of requirements: a minimum throughput, which is the minimum output
data rate (or iteration rate of the whole graph); and one or multiple latency con-
straints put on a number of pairs of actors. A latency constraint is a timing con-
straint between firing of two actors located on a path. While they consider more
constraints compared to the model considered in this paper, their work is specific
to HSDF, which is less expressive compared to the CSDF.

Moreover, Bouakaz et al. considered a more general category of data flow
graphs. They extended the CSDF model by introducing ultimately periodic
CSDF [10] in which the system behavior becomes repetitive after a finite inter-
val, but it is not needed to be periodic from the beginning. They define the affine
firing relation which specifies the condition under which a data flow implemen-
tation can satisfy the correctness criteria. They investigate the correctness of
the implementation based on the periodic task model. In their work, the cor-
rectness conditions of an implementation, including boundedness, completeness,
and soundness, are obtained based on the Kahn process network semantics [13].

The work presented in [6] can be regarded as one of the most related work
to the current study. They consider a CSDF model with a set of buffer size con-
straints. The goal is to construct a set of periodic tasks reflecting the execution
of the given SDF's. The main difference of that work compared to our approach
is that we use a more expressive real-time task model, which suggests more flex-
ibility, and thus, a higher degree of schedulability. This, in turn, allows to look
for more efficient solutions.

28 M. Mohageqi et al.

7 Conclusion

In this paper, we proposed a formal translation method for converting a given
set of data flow graphs to a graph-based real-time task model. We focused on
cyclo-static data flow graphs in which an actor behavior, including its worst-case
execution time, consumption rate, and production rate, is not necessarily fixed
in different firings. We presented sufficient conditions for a correct translation
in terms of liveness and boundedness of data flow graphs. The proposed method
provides the opportunity of exploring a larger state-space for finding optimal
or near optimal solutions for the design of corresponding applications. Based on
the translated task model, one can easily perform analyses such as schedulability
tests, while taking into account the interfering of the applications running on
the same processing core.

The proposed approach can be extended by employing efficient optimization
methods for finding task set parameters such that, while the design constraints
are met, design objectives like the total buffer size or the application throughput
are optimized. In addition, when the DRT tasks exhibit a restricted structure in
which only a single cycle is contained, they can be modeled as a set of General-
ized Multiframe (GMF) Tasks [12]. In this case, one may employ more efficient
analysis methods specific to this task model for schedulability test of the trans-
lated tasks.

References

1. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235—
1245 (1987)

2. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cycle-static dataflow.
IEEE Trans. Sig. Process. 44(2), 397-408 (1981)

3. Bamakhrama, M., Stefanov, T.: Hard-real-time scheduling of data-dependent tasks
in embedded streaming applications. In: International Conference on Embedded
Software, pp. 195-204 (2011)

4. Dkhil, A., Do, X.K., Dubrulle, P., Louise, S., Rochange, C.: Self-timed periodic
scheduling for a cyclo-static dataflow model. In: International Conference on Com-
putational Science, pp. 1134-1145 (2014)

5. Lele, A., Moreira, O., Bastos, J., Almeida, R., Pedreiras, P., van Berkel, K.: Analyz-
ing preemptive fixed priority scheduling of data flow graphs. In: 12th Symposium
on Embedded Systems for Real-time Multimedia, pp. 50-59 (2014)

6. Bouakaz, A., Gautier, T.: An abstraction-refinement framework for priority-driven
scheduling of static dataflow graphs. In: 12th ACM/IEEE International Conference
on Formal Methods and Models for Codesign, pp. 2-11 (2014)

7. Do, X.K., Dkhil, A., Louise, S.: Self-timed periodic scheduling of data-dependent
tasks in embedded streaming applications. In: Wang, G., Zomaya, A., Martinez
Perez, G., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9529, pp. 458-478. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-27122-4_32

8. Ali, H.I., Akesson, B., Pinho, L.M.: Generalized extraction of real-time parameters
for homogeneous synchronous dataow graphs. In: 23rd Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, pp. 701-710
(2015)

http://dx.doi.org/10.1007/978-3-319-27122-4_32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Modeling and Analysis of Data Flow Graphs 29

Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In:
Real-Time and Embedded Technology and Applications Symposium, pp. 71-80
(2011)

Bouakaz, A., Talpin, J.P., Vitek, J.: Affine data-flow graphs for the synthesis of
hard real-time applications. In: 12th International Conference on Application of
Concurrency to System Design, pp. 183-192 (2012)

Stigge, M., Yi, W.: Combinatorial abstraction refinement for feasibility analysis.
In: 34th IEEE Real-Time Systems Symposium, pp. 340-349 (2013)

Baruah, S., Chen, D., Gorinsky, S., Mok, A.: Generalized multiframe tasks. J.
Real-Time Syst. 17(1), 5-22 (1999)

Geilen, M., Basten, T.: Requirements on the execution of Kahn process networks.
In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 319-334. Springer, Heidel-
berg (2003)

Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics - A Foundation
for Computer Science. Addison-Wesley, Reading (1989)

Ghamarian, A.H., Geilen, M.C.W., Stuikj, S., Basten, T., Theelen, B.D., Mousavi,
M.R., Moonen, A.J.M., Bekooij, M.J.G.: Throughput analysis of synchronous data
flow graphs. In: 6th International Conference on Application of Concurrency to
System Design, pp. 25-36 (2006)

Benazouz, M., Marchetti, O., Munier-Kordon, A., Michel, T.: A new method for
minimizing buffer sizes for cyclo-static dataflow graphs. In: 8th IEEE Workshop
on Embedded Systems for Real-Time Multimedia, pp. 11-20 (2010)

Fradet, P., Girault, A., Poplavko, P.: SPDF: a schedulable parametric data-flow
MoC. In: Design, Automation and Test in Europe Conference and Exhibition, pp.
769-774 (2012)

Bebelis, V., Fradet, P., Girault, A., Lavigueur, B.: BPDF': a statically analyzable
dataflow model with integer and boolean parameters. In: International Conference
on Embedded Software, pp. 3:1-3:10 (2013)

Bouakaz, A., Fradet, P., Girault, A.: Symbolic analysis of dataflow graphs
(extended version). Doctoral dissertation, Inria-Research Centre Grenoble-Alpes
(2016)

Bebelis, V., Fradet, P., Girault, A.: A framework to schedule parametric dataflow
applications on many-core platforms. In: Conference on Languages, Compilers and
Tools for Embedded Systems, pp. 125-134 (2014)

2 Springer
http://www.springer.com/978-3-319-39082-6

Reliable Software Technologies - Ada-Europe 2016
21st Ada-Europe International Conference on Reliable
Software Technologies, Pisa, Italy, June 13-17, 2016,
Proceedings

Bertogna, M.; Pinho, L.M.; Quificnes, E. (Eds.)

2016, XN, 213 p. 59 illus., Softcover

ISBM: 978-3-319-39082-6

	Modeling and Analysis of Data Flow Graphs Using the Digraph Real-Time Task Model
	1 Introduction
	2 System and Application Model
	3 Digraph Real-Time Task Model
	4 Translation Method
	4.1 Number of Released/Finished Jobs
	4.2 Underflow Analysis
	4.3 Overflow Analysis
	4.4 Design Space Exploration

	5 Evaluation
	5.1 Obtained Task Sets
	5.2 Evaluation Results

	6 Related Work
	7 Conclusion
	References

