From Actions, Transactions, and Processes to Services

Manfred Broy@)

Institut fiir Informatik, Technische Universitdt Miinchen, 80290 Munich, Germany
broy@in. tum.de
http://wwwbroy.informatik.tu-muenchen.de

1 Introduction

For the problem domain of business process engineering we introduce, model, and
formalize notions of business processes such as action, actor, event, business process,
and business transaction. In addition, for the solution domain of service-oriented archi-
tectures (SOA) we introduce, model, and formalize notions of service, service compo-
sition, service-oriented architecture, and layered SOA in a systematic way. We do that
by a rigorous mathematical system model. For that purpose, we first develop a basic
mathematical system model for formalizing fundamental concepts of processes and
services. The goal is to provide a minimal set of formal modeling concepts, nevertheless
expressive enough to formalize key notions and concepts in business process engi-
neering and service-oriented architectures capturing also their mutual relationships. This
way, the relationship between central notions in business process models is captured
formally, which provides a basis for a methodology for deriving the systematic speci-
fication and design of service-oriented architectures from business process modeling.
The purpose of the approach is manifold; one goal is a clear definition of terminology,
concepts, terms, and models in business process modeling and SOA; another goal is a
rigorous formal basis for the specification, design, and development of business
processes and, in particular, SOAs. We end up with a strictly formal concept for the
development steps from business process models to services as part of a SOA-oriented
development process.
This is an extended abstract of [Broy 15].

2 Business Process Design

When designing business processes and, in turn, developing business transaction and
workflow support software, concepts of domain modeling in terms of business processes
and software based business applications are needed. In consequence, various notions
and modeling concepts of two disciplines, namely software engineering and business
process engineering, have to be related, harmonized, integrated, and conceptually
unified. The challenge is to provide a comprehensive modeling framework expressive
enough to support the development steps in the construction of service-oriented archi-
tectures (SOA) on the basis of business process models.

In the development of a SOA for business applications, it is first to capture and work
out the goals and requirements in the application domain. Then based on these

© Springer International Publishing Switzerland 2016
F. Kordon and D. Moldt (Eds.): PETRI NETS 2016, LNCS 9698, pp. 13-19, 2016.
DOI: 10.1007/978-3-319-39086-4_2

14 M. Broy

requirements we work out the business processes. Finally, we determine which parts of
the software processes are to be supported by computer-based services to derive from
them the software requirements and specifications, further on the software service archi-
tecture, and finally service implementations. For carrying out such development tasks,
models, and modeling concepts are applied both from the field of business process
modeling and model based software and system development — more specifically from
the field of service-oriented architecture.

Our main concern is to provide formal models for processes and formal models for
service-oriented systems in terms of their interfaces to model key notions in business
process engineering. We use process models to model notions like business process and
business process transaction. We use the notion of systems and system interface
behavior to model business services. One of our goals is to relate these notions to the
concept of services as studied in service-oriented architectures.

We aim at a synergy between the problem domains of business process engineering
and that of formal system modeling. For both areas, we work out formal concepts as a
basis for engineering service-oriented architectures (SOA).

Remark: Avoiding clashes in engineering terminology.
One delicate difficulty for our approach is a terminological clash between two disci-
plines, that of “business process engineering” and that of “formal process modeling”.
This difficulty is immediately recognized when studying the general term “process” in
the field of event processing. Moreover, in the field of business processes, the term
“business process” is used differently addressing a number of different notions like the
business process of an organization, the instance of the business process during a day
of operation, or the business process of a business transaction as an instance of a specific
business case; in formal system modeling, formal models of discrete processes are
introduced as generic concepts for modeling discrete activities.

End_of _Remark

For service-oriented architecture we formalize the notion of the service layer leading to
the concept of service-layered architecture.

3 Fundamentals in Discrete Process Modeling

Modeling discrete processes is one of the challenges in the development of automation
systems — be it in business automation or in production automation.

The term process is used for many quite different notions and concepts. It is used for
behavior described by a system or by a system model, execution mechanism (a Petri-
net, for instance), or for a particular instance of behavior of a system or system execution
mechanism model (an occurrence net for a Petri-net). In addition, given such an instance
of behavior, we may consider certain sub-behaviors representing (smaller) instances of
behavior.

This shows that we deal with three forms of notions of processes and their description:

e process descriptions (by modeling concepts) with which we associate

From Actions, Transactions, and Processes to Services 15

e sets of instances (scenarios) of behavior, the members of which are
e instances (scenarios) of behaviors.

In the following, we use the word “process” strictly for an instance of behavior. So
we get the following terminology:

e asystem description (of a business system), called a process specification, describes a

o set of (business) processes where

o (business) processes are instances of system behavior (representations of system
executions).

In this terminology, a process is used to denote the run (“history”) of a system like
an occurrence net represents an instance of behavior of a Petri-net. A Petri-net is an
example of a process specification. Since we can identify in a given process several sub-
processes, a process can also be understood as describing sets of (sub-)processes. This
general approach of understanding the term process is used in the following in a more
concrete and detailed form by introducing a modeling theory for processes.

4 Process Descriptions and Instances Business
Process Engineering - Notions and Concepts

In business process engineering, the concept of a process is essential. The term “business
process” is used in business process engineering in a very generic way. It addresses the
process (in the sense of instance) of a particular business transaction as well as the
process of a particular sub-organization as well as the comprehensive set of activities
of an entire company or even a network of companies. In this section, we introduce a
taxonomy of slightly different form for capturing business processes and their specifi-
cation.

A business process consists of a set of business actions! (often called “steps”)
executed by business actors. Their actions are in some logical, causal, and temporal
relationship.

For a business process and its specification, we introduce several views and struc-
tures. We take the following fundamental viewpoint onto business processes. In a busi-
ness process, actors execute a set of actions. This way we obtain two essential notions:

e business actions (singe steps of activity in a process)
e business actors (humans or machines that carry out actions).

In addition, we might consider business objects and business data as they are used
to capture the states related to business transactions. Business actions usually have
certain effects on business objects. They may change states of business objects and they
may consume or produce events that relate to actions in terms of the exchange of
messages (or even exchange of material or energy). We do not consider business objects

1
Note that the choice of a set of actions determines also the granularity of the model of a business
process. This granularity can be changed by replacing an action by a set of sub-actions or vice
versa.

16 M. Broy

and business data, in particular, in the following; they can be added, however, in a
straightforward manner to the approach.

Actors are humans or computer systems that carry out actions. By carrying out
actions, actors provide specific services. While carrying out services actors may observe
certain actions executed by other actors. These observations may trigger actors to execu-
tions of further actions.

This leads to another key notion in business process engineering, the notion of a
service, more precisely to the notion of a

e business service.

A business service is carried out (provided) by some business actor or a set of actors
(the service provider); it consists of a business process generated by the actor in reaction
to the process and the actions the actor observes. The set of actions the actor observes
(which form a sub-process of the overall process) are called its service input, the set of
actions generated by the actor (which also form a process) are called its service output.

To illustrate our notions, we sketch the example of a web shop with the help of our
previously introduced terminology. Words referring to key concepts are put in italic.
The web shop operates by carrying out a number of actions. The ordering of a product
in the web shop by a customer is done by a set of actions by the customer and the web
shop forming a business transaction (instance). The structure of all possible business
transactions can be described by a business transaction specification. Within a given
time interval (one hour, one day, one month, one year) a set of business transactions is
carried out; they form what we call a business transaction flow (for instance, the process
of the web shop consisting of all actions and transactions carried out in one year). Note
that there may be and usually are dependencies between the individual business actions
and business transactions that occur within a business transaction flow. There are various
ways to describe such dependencies (for instance, business objects) and derive sub-
transactions (sub-processes) from a business transaction flow.

There are several ways to define the notion of a business process. It addresses the
set of transactions that serve a certain business purpose (“‘business purpose viewpoint™):

(a) We may call the set of all possible business transactions business process.
(b) We may call the set of all possible business transaction flows business process.
(c) We may call an instance of a business transaction business process.

We tend to follow position (c) where we include (b) since the business transaction
flows include the business transactions as sub-transactions (“‘sub-processes’). We call
what is addressed by (a) and (b) the business process specification. For our running
example, the business process specification describes all the business transaction flows
and also the set of all possible business transactions of the web shop.

5 From Business Processes to Service-Oriented Architectures

Services and service-oriented architectures (SOA) have received much attention in
recent years for good reasons (see [Broy 05], [Broy et al. 07]). When dealing with large

From Actions, Transactions, and Processes to Services 17

systems, it is generally recognized that we need appropriate abstractions. These abstrac-
tions have to be useful for the implementation of systems, but they are even more
urgently needed for the design and specification of domain specific aspects of informa-
tion processing systems. Service-oriented architectures aim, in particular, at structuring
software systems not so much governed by technical concepts of implementation but
rather driven by concepts of the application domain with its domain-specific terms and
conditions.

We understand service-oriented architecture as an approach that follows classical
general goals and principles of software system construction such as modularity, appli-
cation domain orientation, and strict concentration onto the user-centric functionality of
systems. These principles are in response to the growing demand of putting emphasis
on system evolution and maintenance with flexible response to changing requirements.
In addition, SOA is expected to lead to a higher quality of software systems in terms of
changeability, adaptability, interoperability, and reusability. In the following, we intro-
duce a basic formal model for services as they are used in service-oriented architectures.

A further important issue is a methodological one defining what are systematic steps
of the development of service architectures starting from high-level requirements and
use cases. In this section, we give a very short and brief preliminary description of how
such a top-down development methodology could look like.

We characterize the proceeding by the following steps:

1. We give use cases. In each use case, we describe scenarios of service use that corre-
spondent very directly to scenarios that can be formally seen as service instances.

2. From the scenarios, we derive service processes they can be described by process
diagrams or by interaction diagrams. To do these diagrams we also have to formalize
the service messages. The service messages can be directly identified from the
service use cases.

3. Inthe processes, we have steps, which are done manually and steps, which are done
by the software systems. Therefore, it is an important decision which of the steps in
the systems are done manually and which of the steps are done by the software.

4. By identifying steps that are to be done by software, we can derive from the service
processes, the service hierarchy as well as services instances for each of the services
in the hierarchy.

5. For each of the services, we define its service interface behavior. Perhaps, we decide
to introduce additional auxiliary services that provide small service provision
networks for the services to implement.

6. From this, we get on one hand service architectures and a black box descriptions of
each of the services involved.

7. The black box view of the provided services, have to be correctly represented by the
service composition, including a layered architecture in terms of a stack of internal
services.

This shows, how service architectures can be worked out in a top-down fashion. In
fact, we could also use the same approach in a bottom up development. What we finally
get is an artifact model for service-oriented architecture where all of the ingredients of

18 M. Broy

a service architecture are given that are more less as described by the notion and concept
model by the introduced mathematical techniques.

6 Conclusion

In this paper, we base the formalization of SOA concepts on the theory of processes and
process oriented service functions. We can use all concepts such as

e service separation
e service refinement
e service specification and implementation.

for the engineering of SOA systems.

An interesting question addresses the difference between object- and service-orien-
tation (OO vs. SO). For a number of practical SOA approaches the answer is not obvious,
in particular, when OO concepts are used to represent services. However, there is a
significant difference between OO and SOA that has to be understood to see the advan-
tages of SOA over OO:

e Typically, OO-concepts are sequential and method-invocation oriented,
e SOA approaches are, by nature, taking into account time, parallel and concurrent
computation and explicitly support of distribution, interaction, and time.

Of course, we may use OO-concepts to implement SOA, but these concepts are too
weak to represent SOA ideas explicitly. The strength of SOA can be fully exploited only
by a dedicated modeling framework addressing interaction and concurrency explicitly.

By the constructions introduced, we provide the following foundations:

e We describe general models for several important notions and terms in business
process modeling.

e We introduce a very compact general formal model and theory for processes and
services.

e Due to the form of models, we can define formally the relationship between these
notions and how they interact with each other.

e The main idea is to use this as a foundational framework for a methodology and
development processes for business systems.

The ultimate goal is to provide a foundation for a formalized approach to service-
oriented architectures. Service-oriented architectures claim to be the better approach to
develop main business process applications. A key issue here is the step from a descrip-
tive approach to processes where processes are described as structures of activities to
an input/output oriented view, which we call services. By our notion, we capture
formally the heart of the idea of business process modeling and the formal step from
business process modeling into SOA.

References

[Aalst, Stahl 01]
[Broy, Stglen 01]

[Broy 03]

[Broy 04]

[Broy 05]

[Broy et al. 07]

[Broy 11]

[Broy 10]

[Broy 15]

[GroBkopf et al. 09]
[Haar 00]
[Kiister-Filipe 06]
[Petri 62]

[Thurner 04]
[Torka 13]

[Winskel, Nielsen 95]

From Actions, Transactions, and Processes to Services 19

van der Aalst, W., Stahl, C.: Modeling Business Processes: A Petri Net-
Oriented Approach. MIT Press, Cambridge (2011)

Broy, M., Stglen, K.: Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Springer, New York (2001)
Broy, M.: Modeling services and layered architectures. In: Konig, H.,
Heiner, M., Wolisz, A. (eds.) Formal Techniques for Networked and
Distributed Systems. LNCS, vol. 2767, pp. 48—-61. Springer, Berlin (2003)
Broy, M.: The semantic and methodological essence of message sequence
charts. Sci. Comput. Program. SCP 54(2-3), 213-256 (2004)

Broy, M.: Service-Oriented systems engineering: specification and design
of services and layered architectures — the Janus approach. In: Broy, M.,
Griinbauer, J., Harel, D., Hoare, T. (eds.) Engineering Theories of
Software Intensive Systems, pp. 47-81. Springer, Dordrecht (2005)
Broy, M., Kriiger, 1., Meisinger, M.: A formal model of services. TOSEM
- ACM Trans. Softw. Eng. Methodol. 16, 1 (2007)

Broy, M.: Towards a theory of architectural contracts: schemes and
patterns of assumption/promise based system specification. In: Broy, M.,
Leuxner, C., Hoare, T. (eds.) Software and Systems Safety - Specification
and Verification. NATO Science for Peace and Security Series D:
Information and Communication Security, vol. 30, pp. 33—-87. IOS Press,
Amsterdam (2011)

Broy, M.: Multifunctional software systems: structured modeling and
specification of functional requirements. Sci. Comput. Program. 75, 1193—
1214 (2010)

Broy, M.: From actions, transactions, and processes to services. In:
Irlbeck, M., Peled, D., Pretschner, A. (eds.) Dependable Software Systems
Engineering. NATO Science for Peace and Security Series D: Information
and Communication Security, vol. 40, pp. 42-78. I0S Press, Amsterdam
(2015)

GroBkopf, A., Decker, G., Weske, M.: The Process: Business Process
Modeling Using BPMN. Meghan-Kiffer Press, Tampa (2009)

Haar, Stefan: Occurrence net logics. Fundam. Inf. 43(1-4), 105-127
(2000)

Kiister-Filipe, J.: Modeling concurrent interactions. Theoret. Comput. Sci.
351, 203-220 (2006)

Petri, C.A.: Kommunikation mit Automaten. Institut fiir instrumentelle
Mathematik der Universitidt Bonn (1962)

Thurner, V.: Formal fundierte Modellierung von Geschiftsprozessen.
Dissertation, TU Miinchen, Munich (2004)

Torka, P.: Dienstorientierte Architekturen: Eine konzeptuelle Herleitung
auf Basis eines formalen Prozessmodells

Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S.,
Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science.
Semantic Modeling, vol. 4, pp. 1-148. Oxford Science Publications,
Oxford (1995)

2 Springer
http://www.springer.com/978-3-319-39085-7

Application and Theory of Petri Mets and Concurrency
37th International Conference, PETRI NETS 2016,
Torun, Poland, June 19-24, 2016, Proceedings
Kordon, F.; Moldt, D. (Eds.)

2016, XV, 345 p. 114 illus., Softcover

ISBM: 878-3-319-38085-7

	From Actions, Transactions, and Processes to Services
	1 Introduction
	2 Business Process Design
	3 Fundamentals in Discrete Process Modeling
	4 Process Descriptions and Instances Business Process Engineering - Notions and Concepts
	5 From Business Processes to Service-Oriented Architectures
	6 Conclusion
	References

