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Abstract A central question in drug policy is how control efforts should be divided
among enforcement, treatment, and prevention. Of particular interest is how the mix
should vary dynamically over the course of an epidemic. Recent work considered
how various pairs of these interventions interact. This paper considers all three
simultaneously in a dynamic optimal control framework, yielding some surprising
results. Depending on epidemic parameters, one of three situations pertains. It
may be optimal to eradicate the epidemic, to “accommodate” it by letting it grow,
or to eradicate if control begins before drug use passes a DNSS threshold but
accommodate if control begins later. Relatively modest changes in parameters such
as the perceived social cost per unit of drug use can push the model from one regime
to another, perhaps explaining why opinions concerning proper policy diverge so
sharply. If eradication is pursued, then treatment and enforcement should be funded
very aggressively to reduce use as quickly as possible. If accommodation is pursued
then spending on all three controls should increase roughly linearly but less than
proportionally with the size of the epidemic. With the current parameterization,
optimal spending on prevention varies the least among the three types of control
interventions.

1 Introduction

Illicit drugs impose enormous costs on society (Harwood et al. 1998; United Nations
Office on Drugs and Crime (UNODC) 2004), and there is considerable debate over
how policy makers should respond. A central question concerns the relative roles of
three broad strategies: enforcement, treatment, and prevention.
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Drug use varies dramatically over time in ways that can fairly be described
as epidemics even though there is no literal pathogen (Golub and Johnson 1996;
Ferrence 2001; Caulkins 2001, 2005). For example, cocaine initiation in the US
increased roughly four-fold in the 1970s, then the “infectivity” (number of new
initiates recruited per current user) subsequently fell over time (Caulkins et al.
2004).

Traditionally drug control effectiveness has been evaluated in a static framework
(e.g., Rydell and Everingham 1994), but intuitively the relative roles of enforcement,
treatment, and prevention should vary over the course of an epidemic. Indeed,
this has been argued for various pairs of interventions (Behrens et al. 2000;
Caulkins et al. 2000; Tragler et al. 2001). The present paper yields substantial
new insights by simultaneously considering key elements of all three principal
classes of drug control interventions in a dynamic model parameterized for the
most problematic drug (cocaine) for the country with the most dependent users (the
US).

Enforcement, treatment, and prevention are broad classes of interventions, not
single programs, so it is important to clarify what specifically is modeled. Enforce-
ment here refers to actions taken against the drug supply chain that raise the cost of
producing and distributing drugs and thereby increase retail prices (cf., Reuter and
Kleiman 1986). Such actions account for the majority of US enforcement spending.
For enforcement within US borders the largest cost driver is incarceration. Simply
put, prison (at $25–30,000 per cell-year) costs more than arrest or adjudication
(Greenwood et al. 1994). More people are arrested for possession than sale, but
on the order of 90+ % of those imprisoned for drug-law violations in the US were
involved in drug distribution (Sevigny and Caulkins 2004).1

A smaller share of enforcement dollars are spent outside US borders on
interdiction in source countries and the “transit zone”. There is debate concerning
whether these activities are best thought of as driving up equilibrium prices or as
creating spot shortages (Rydell and Everingham 1994; Crane et al. 1997; Manski
et al. 1999; Caulkins et al. 2000). Modeling price raising enforcement is of interest
even if enforcement outside the US has no impact on equilibrium prices, but we
suspect that it does have at least some such effects.

Enforcement has been hypothesized to work through other mechanisms as well.
Moore (1973) and Kleiman (1988) suggest it might increase non-monetary “search
costs” that users incur to obtain drugs. These costs are non-negligible, even for
experienced users (Rocheleau and Boyum 1994), but since regular users often have
10–20 alternative suppliers (Riley 1997) enforcement’s effects through increasing
search time are second-order for established markets (Caulkins 1998a) such as

1Possesion arrests include “possession with intent to distribute”, which is essentially a distribution
charge, but offenders arrested for simple possession are less likely to be incarcerated and when
they are, they serve shorter sentences. Note that many of those involved in distribution also use
drugs, but generally it is not the use per se that leads to their incarceration.
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those for cocaine in the US today.2 Likewise, enforcement against suppliers of mass
market drugs does not work primarily through incapacitation; there are few barriers
to entry, so incarcerated sellers are rapidly replaced (Kleiman 1993).

Prevention is similarly multi-faceted. Unfortunately there is little scientific
evidence concerning the effectiveness of most forms of prevention other than
school-based prevention (Cuijpers 2003), so we focus on school-based programs
and adapt parameter estimates from Caulkins et al. (1999, 2002).

Caulkins et al.’s estimates are based on lifetime projections of results for “best
practice” programs evaluated in randomized control trials run through the end of
high school. This has two implications. First, since data are only available on
impacts through the end of high school, there is unavoidable uncertainty about
prevention’s effectiveness over a lifetime. Second, the estimates pertain to model
programs. Historically most school districts have not implemented research-based
programs with high fidelity (Hallfors and Godette 2002). By using Caulkins et
al.’s data, were are examining what the optimal level of spending on school-based
prevention would be if the best currently available prevention technologies were
employed.

There are many kinds of treatment, and they are of varying quality (Institute of
Medicine (IOM) 1990, 1996). Effectiveness data from randomized-controlled trials
for cocaine treatment is lacking (Manski et al. 2001). Hence, we model treatment
somewhat abstractly as simply increasing the net quit rate and ignore the possibility
that it might reduce the social damage per unit of consumption. For consistency we
use the same basecase assumptions about treatment’s average cost and effectiveness
as did Rydell and Everingham (1994), Tragler et al. (2001), but in light of Manski
et al. we do sensitivity analysis with respect to those assumptions.

Note that our goal is not to anoint any one of these classes of interventions as
the “winner” in some cost-effectiveness horse race. Rather, the goal is to understand
better how their relative roles might vary over the course of an epidemic.

2 The Model

2.1 Clarifying Some Common Misconceptions

Before proceeding it is important to dispel some common misconceptions about
drug markets. First, most new users are introduced to drugs by other users, typically
friends or siblings. This is the sense in which drug use is “contagious”. Dealers
rarely “push” drugs on unwitting innocents (Kaplan 1983). Furthermore, drug
supply is characterized by intense and atomistic competition (Reuter 1983), not
monopolistic control. Hence, drug suppliers do not act strategically. There are

2Infrequent or “light” users may have fewer alternative suppliers, but they account for a modest
share of all consumption because they use so much less, per capita, than do heavier users.
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simply too many of them; well over a million Americans sold cocaine within only 12
months (Caulkins 2004).3 Hence, one can develop sensible models of drug markets
without explicitly modeling strategic behavior by suppliers. Instead, one can simply
abstract the drug supply sector by what amounts to a supply curve (albeit one whose
position depends on enforcement).

Second, drug initiation and use are affected by prices. There was once a
lore that drug addicts “had to have their drug” regardless of the price, but a
considerable literature has clearly established that cocaine use responds to price
changes (Grossman and Chaloupka 1998; Chaloupka et al. 1999; Chaloupka and
Pacula 2000; Rhodes et al. 2001; DeSimone 2001; DeSimone and Farrelly 2003;
Dave 2004). Gallet (2014) provides a nice, new literature review and synthesis. This
should not be surprising. Merely consuming less when prices rise in no way implies
or requires perfect foresight or full rationality. What is somewhat surprising is the
magnitude of the response. Best estimates for the elasticity of demand for cocaine
are in the neighborhood of �1 (Caulkins and Reuter 1998), implying that a one
percent increase in price is associated with a one percent reduction in use. This
substantial responsiveness may stem from the fact that the vast majority of cocaine
is consumed by dependent users who spend a large share of their disposable income
on their drug of choice. All other things being equal, price elasticities tend to be
larger for things that are important budget items (e.g., housing) than for incidentals
(e.g., toothpaste).

Unfortunately, there is much less information concerning what proportion of the
overall elasticity stems from reduced per capita consumption by existing users vs.
reduced initiation or increased quitting changing the number of users. In the absence
of better information, we follow Rydell and Everingham (1994) and Tragler et al.
(2001) in assuming an equal division between these categories and likewise divide
the latter (price elasticity of prevalence) equally between effects on initiation and
quitting.

2.2 Model Structure

The present model extends that of Tragler et al. (2001). It tracks the number of users
(A.t/) over time t. Initiation is modeled as an increasing (but concave) function of the
current number of users that is modified by price, through a constant price elasticity
of initiation, and by prevention.

Primary prevention is typically modeled as reducing initiation by a certain
percentage, where the percentage depends on program intensity. Diminishing

3Market power is most concentrated at the export level in Colombia, and never more so than in the
heyday of the Medellin “cartel”. Yet this supposed “cartel” was not able to stave off a precipitous
decline in prices. In reality, the cartel was formed more for protection against kidnapping than to
strategically manipulate prices. Today there are several hundred operators even at that market level.
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returns are presumed through an exponential decay as in Behrens et al. (2000).
As mentioned, effectiveness estimates are based on Caulkins et al.’s (1999, 2002)
analysis of “model” or “best practice” programs. Note: even “model” prevention
is no panacea. As Caulkins et al. observe, prevention tends to be cost-effective
primarily because it is so cheap, not because it is extremely effective. If kids who
were going to initiate drug use in the absence of a prevention intervention are given
cutting edge school-based drug prevention, most (though not all) would still initiate
drug use. That does not necessarily mean prevention programs are poorly designed.
It may simply indicate that there is little one can possibly do in 30 or so school
contact-hours to counteract the influence of many thousands of hours of television,
peers, etc.

The background quitting rate is assumed to be a simple constant per capita rate.
(Even such simple modeling can fit historical data surprisingly well; cf., Caulkins
et al. 2004.) Like initiation, this flow is affected by price through a constant elasticity
and by an intervention, in this case treatment. As in Rydell and Everingham (1994)
and Tragler et al. (2001), treatment is assumed to exhibit diminishing returns
because some users are more likely to relapse than others, and the treatment system
has some capacity to target interventions first on those for whom the prognosis is
most favorable.

Price is a function of enforcement intensity. The underlying theoretical paradigm
is Reuter and Kleiman’s (1986) “risks and prices” model, operationalized as in
Caulkins et al. (1997). The key insight is that some component of price (the
intercept) is due to the “structural consequences of product illegality” (Reuter
1983; Caulkins and Reuter 2010) accompanied by some minimal enforcement. The
increment in price above that intercept is driven by the intensity, not the level,
of enforcement because of “enforcement swamping” (Kleiman 1993). Sellers do
not care per se about the level of enforcement, e.g., the number of arrests. They
care about their individual arrest risk, which is essentially the total number of
arrests divided by the number of sellers subject to those arrests. Hence, for any
given level of enforcement, the intensity is inversely related to the number of
sellers. Since we do not model sellers explicitly, we divide by the number of users,
implicitly assuming that the number of sellers is proportional to the number of
users.

We assume that the social planner wishes to minimize the discounted weighted
sum of drug use and of drug control spending. The cost coefficient on consumption
is simply the average social cost per unit of cocaine use. Clearly marginal costs
would be more relevant, but we have no way to estimate them.

The quantity of cocaine consumed is simply the number of users times the
baseline consumption per user, adjusted for the short-term price elasticity of
consumption per capita. Consumption per capita varies across users and the mix
of light and heavy users varies over the course of an epidemic. Our consumption
per capita is calibrated to our base year (1992), a time when roughly one-third of all
users were heavy users (weekly or more often).
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2.3 Mathematical Formulation

If we let u.t/, v.t/, and w.t/ denote treatment, enforcement, and prevention spend-
ing, respectively, then the discussion above suggests the following formulation:

min
fu.t/;v.t/;w.t/g

J D
Z 1

0

e�rt .��A.t/p.A.t/; v.t//�! C u.t/ C v.t/ C w.t// dt

subject to

PA.t/ D kA.t/˛p.A.t/; v.t//�a‰.w.t// � cˇ.A.t/; u.t//A.t/�
��p.A.t/; v.t//bA.t/

and the non-negativity constraints

u.t/ � 0; v.t/ � 0; w.t/ � 0;

where

J D discounted weighted sum of the costs of drug use and control,
r D time discount rate,
� D social cost per unit of consumption,
� D per capita rate of consumption at baseline prices,
A.t/ D number of users at time t,
p.A.t/; v.t// D retail price,
! D absolute value of the short-run price elasticity of demand,
k D constant governing the rate of initiation,
˛ D exponent governing concavity of contagious aspect of initiation,
a D absolute value of the elasticity of initiation with respect to price,
‰.w.t// D proportion of initiation remaining after prevention,
c D treatment efficiency proportionality constant,
ˇ.A.t/; u.t// D outflow rate due to treatment,
� D baseline per capita rate at which users quit without treatment, and
b D elasticity of desistance with respect to price.

As in Tragler et al. (2001), treatment’s increment to the per capita outflow rate is
assumed to be proportional to treatment spending per capita raised to an exponent
(z) that reflects diminishing returns, with a small constant in the denominator (ı) to
prevent division by zero:

ˇ.A.t/; u.t// D
�

u.t/

A.t/ C ı

�z

:
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We model enforcement’s effect on price as in Caulkins et al. (1997) and Tragler
et al. (2001):

p.A.t/; v.t// D d C e
v.t/

A.t/ C �
;

where d describes the price with minimal enforcement, e is the enforcement
efficiency proportionality constant, and � is an arbitrarily small constant that avoids
division by zero.

Following Behrens et al. (2000), we model prevention as reducing initiation by
a certain proportion. That proportion increases with prevention spending but at a
decreasing rate because of diminishing returns. Specifically, we model

‰.w.t// D h C .1 � h/e�mw.t/

for positive constants h and m.

2.4 Parameters

Tragler et al. (1997) describe in detail how parameters are derived from the
literature. Briefly, the price elasticity parameters (a, b, and !) collectively generate
a long term price elasticity of demand of �1 (Caulkins et al. 1997; Caulkins and
Reuter 1998), half coming from reduced consumption by current users (!) and half
from changes in the number of users, with the latter divided equally between impacts
on initiation (a) and quitting (b).

For consistency with Rydell and Everingham (1994) and Tragler et al. (2001),
we take the baseline price to be $106.73 per pure gram and choose as initiation
parameters ˛ D 0:3 and k D 5167 to make initiation 1;000;000 per year
when the number of users A D 6;500;000 in base conditions. They estimate
total baseline consumption as 291 (pure) metric tons, so we set � D 14:6259

(since 14:6259 � 0:10673�0:5 D 291;000;000=6;500;000 and price is expressed
in thousands of dollars).

Rydell and Everingham (1994, p. 38) report cocaine-related health and productiv-
ity costs of $19.68B for cocaine in 1992, dividing by 291 metric tons of consumption
implies an average social cost per gram of $67.6/g (in 1992 dollars). These figures
do not include crime-related costs, so in light of Miller et al. (1996), we take $100/g
as our base value (� D 0:1 since dollars are measured in thousands). In view of
Caulkins et al. (2002) we also consider larger values in the sensitivity analysis.

The price function parameters (d D 0:06792 and e D 0:02655) reflect a price of
$106.73 per gram under base case enforcement spending and an elasticity of price
with respect to enforcement spending of 0:3636 as in Caulkins et al. (1997).

As in Tragler et al. (2001) we assume c D 0:04323 and z D 0:6. These
values reflect Rydell and Everingham’s (1994) estimates that spending an average
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of $1700–$2000 per admission to treatment provides a 13 % chance of ending heavy
use, over and above baseline exit rates.

We adopt Behrens et al.’s (2000) value of h D 0:84, but modify their value of m
slightly (1:93 � 10�6 vs. 2:37 � 10�6) to reflect better the size of the birth cohorts
on whom prevention is targetted.

The outflow parameter � D 0:18841 was selected to make the outflow be
700;000 users per year at base case prices, which reflects the observed population
change (Office of National Drug Control Policy (ONDCP) 1996) net of initiation
and treatment during the recent years of relative stability. The discount rate is set at
r D 0:04 as in Rydell et al. (1996) and Caulkins et al. (1997).

These values are summarized in Table 1. Two values are given for parameters d,
e, k, �, �, and � . The values in brackets are the ones just described. For analytical
convenience, we adjust d, e, k, and � so that � D 1 and � D 1, yielding the second
set of values for those parameters.

Table 1 Base case parameter values

Parameter Value Description

a 0:25 Absolute value of the elasticity of initiation

with respect to price

˛ 0:3 Exponent reflecting contagiousness of initiation

b 0:25 Elasticity of desistance with respect to price

c 0:04323 Treatment efficiency proportionality constant

d 0:03175 Price with minimal enforcement (in thousands of $)

Œ0:06792�

ı 0:001 Constant to avoid division by zero

e 0:01241 Enforcement efficiency proportionality constant

Œ0:02655�

� 0:001 Constant to avoid division by zero

h 0:84 One minus maximum proportion of baseline

initiation prevention can avert with

full implementation

k 4; 272 Initiation constant

Œ5; 167�

� 1 Social cost per gram consumed (in thousands of $)

Œ0:1�

m 1:93 � 10�6 Prevention efficiency proportionality constant

� 0:22786 Natural outflow rate from use

Œ0:18841�

! 0:5 Absolute value of the short run elasticity of demand

� 1 Per capita consumption constant

Œ14:6259�

r 0:04 Annual discount rate (time preference rate)

z 0:6 1 � z reflects treatment’s diminishing returns
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3 Base Case Analysis

Note that for simplicity, the time argument t will mostly be omitted from now
on. The model cannot be solved analytically, but the Appendix describes the
derivation of the necessary optimality conditions according to Pontryagin’s max-
imum principle (cf. Feichtinger and Hartl 1986; Grass et al. 2008; Léonard and
Long 1992). Due to the concavity of the Hamiltonian with respect to all three
controls (u, v, w), setting the first-order partial derivatives equal to zero leads to the
unrestricted extremum. These equations allow one to describe u and w as functions
of v and A, so the solutions are described in terms of phase portraits in the A-v
plane.

Steady state values are given by intersections of the isoclines obtained by
setting to zero the derivatives of the state (A) and control (v) variables (dark gray
and black curves, respectively, in Fig. 1). With parameter values from Table 1,

there are two intersections, a left-hand (lower A) intersection
� OA.l/ D 0:2 � 106 ,

Ov.l/ D 1:04 � 107
�

that is an unstable focus and a right-hand (larger A) intersection

that is a saddle point
� OA.h/ D 3:24 � 106 , Ov.h/ D 1:14 � 107

�
. Every saddle point

equilibrium in a two-dimensional phase portrait has a stable manifold which
consists of two branches. Locally, these branches are determined by the eigenvector
associated with the negative eigenvalue of the Jacobian evaluated at the steady
state. This is used to numerically compute the complete stable manifolds (light gray
curves in Fig. 1) which, in optimal control theory, are known to be candidates for
the optimal trajectories.

Fig. 1 Phase portrait with base case parameter values. The intersections of the isoclines PA D 0

and Pv D 0 give the two steady-state solutions. The light gray curves represent the stable manifolds
of the saddle point
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The stable manifold from the right describes directly what trajectory one should
follow to drive the number of users down to the saddle point equilibrium if the
initial conditions have A.0/ > OA.h/. The stable manifold from the left emanates
from the unstable focus, so it is not immediately obvious what the optimal policy
should be when starting to the left of that focus. If control begins when the number
of users is below its steady state value but still above a certain threshold ADNSS

to be described shortly, then the optimal treatment, prevention, and enforcement
rates gradually increase while A.t/ converges to the equilibrium OA.h/. (The opposite
holds for initial states above the steady state value, but we presume that control
begins with A.0/ < OA.h/.) Note this means that even if the optimal policy is
pursued, the number of users will increase over time toward the equilibrium
( OA.h/).

Figure 2 shows the optimal amounts of treatment, prevention, and enforcement
spending as functions of the number of users. When A.0/ > ADNSS, the optimal
levels of control spending (u, v, and w) are each approximately linear in the size of
the epidemic (A). The treatment (u) and enforcement (v) lines are almost parallel,
implying that as time goes by, increments in the treatment and enforcement budgets
should be approximately equal. Since with these parameter values the enforcement
spending trajectory has a higher “intercept”, for A.0/ > ADNSS it is always optimal
to spend more on enforcement than on treatment, but enforcement’s share of the
total control budget shrinks as time goes on.

According to Fig. 2, spending on prevention should also increase as the epidemic
grows but not by much for the simple reason that prevention should already be

Fig. 2 Treatment (dark gray), enforcement (light gray), and prevention (black) as functions of A
along the optimal paths. The left and right vertical lines represent the DNSS threshold and the
saddle point at OA.h/, respectively
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almost “maximally funded” even when the epidemic is small. “Maximally funded”
is in quotes because there is no literal bound on prevention spending, but the least it
is ever optimal to spend on prevention is about $1B per year. A cutting edge junior-
high school-based prevention program costs about $150 per youth, even including
“booster sessions” in the two subsequent years (Caulkins et al. 2002), so $1B per
year would be enough to give six million youth per year an excellent prevention
program. Since there are only about four million children in a birth cohort in the
US, that $1B would be enough to cover every seventh grader and also half of all
fourth graders with a curriculum designed for younger children.

The great advantage of prevention is that it is so inexpensive compared to
treatment or incarceration. It is not extremely powerful, at least with current
technology, but it is powerful enough to make it optimal to “fully fund” prevention
for almost any level of the epidemic. Still, even when fully funded, prevention does
not absorb a large proportion (< 10 %) of drug control spending.

The total optimal level of spending in equilibrium, summing across the three
programs, is about $20B per year. That is probably roughly comparable to what the
US has spent historically. More precise statements are difficult to make because data
are not available for national drug control spending by drug. Figures are published
annually for federal spending to control all drugs. Rydell and Everingham (1994)
estimated that in the early 1990s, national cocaine control spending was roughly
equal to federal spending on all drugs, and the federal drug control budget was
$18.8B for FY2002 (Office of National Drug Control Policy (ONDCP) 2002), which
is quite close to the prescribed $20B per year.4

Returning to Fig. 1, in addition to the “high volume” saddle point equilibrium,
there is a second “low volume” equilibrium that is an unstable focus, so the
optimal policy is more complicated when control starts when the epidemic is
still small. For initial numbers of users below some critical level the solution
is qualitatively different than a slow approach to the high volume saddle point
equilibrium.

In particular, for smaller initial numbers of users (A.0/) it is not possible to
jump onto the stable manifold that leads to the saddle point equilibrium. If we
assume there is some lower limit, A, on the number of users (e.g., A D 10;000)
below which control efforts cannot drive the problem (e.g., because these residual
users cannot be detected), then the point .A; v/ becomes another equilibrium,
where v is given by the intersection of A D A and the isocline PA D 0. This
steady state is approached along a trajectory which spirals out of the low volume
equilibrium.

For low enough initial numbers of users it is only possible to jump on the stable
manifold that approaches the lower limit equilibrium. For high enough values, it is
clear one should approach the high volume equilibrium. For intermediate values,

4National budgets after 2003 have reported in a substantially different and non-comparable format.
Walsh (2004) gives a quick, readable account of some of the changes in budgeting procedures and
definitions.
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there is a so-called Dechert-Nishimura-Sethi-Skiba (DNSS) point (Dechert and
Nishimura 1983; Sethi 1977, 1979; Skiba 1978; cf. Grass et al. 2008) that defines
two basins of attraction according to whether the optimal policy is to effectively
eradicate drug use (push it to the lower limit equilibrium) or to just moderate its
approach to the high volume saddle point equilibrium, as above. For the base case
parameter values, that point is ADNSS D 344;339 users.

Figure 2 shows that if the initial number of users is to the left of the DNSS point,
treatment and enforcement spending are very high in absolute terms and, thus, truly
enormous per user. Prevention spending is also higher than it is immediately to the
right of the DNSS point, but less dramatically so. If it is optimal to eradicate the
drug epidemic, then apparently it is optimal to do so aggressively and quickly (cf.
Baveja et al. 1997). By spending enormous amounts on control in the early years,
one avoids getting stuck at the high volume equilibrium.

Price is approximately a linear function of enforcement spending relative to
market size (i.e., linear in v=A). It turns out to be a decreasing function of A for all
A, with a sharp downward discontinuity at the DNSS point (since v� is much higher
just to the left of ADNSS then it is just to the right of ADNSS) (Fig. 3). Since when one
starts to the right of ADNSS one moves to the right (still assuming A.0/ < OA.h/),
and when one starts to the left of ADNSS one moves to the left, that means that
the optimal price trajectory is very different depending on whether the optimal
strategy is to eradicate or accommodate the epidemic. In particular, if the optimal

Fig. 3 The DNSS threshold ADNSS. The two gray curves represent the optimal policy. On the
left side of the DNSS threshold, the optimal policy leads to

�
A; v

�
, on the right side optimal

convergence is towards
� OA.h/; Ov.h/

�
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strategy is to accommodate, then it is optimal to allow the price to decline over
time. Enforcement spending increases, but less than proportionally in A, so v=A and,
hence, p� decreases as one approaches the high-volume saddle point equilibrium.
Conversely, if the optimal strategy is to eradicate the market, then it is optimal to
start with a high price and keep driving it higher and higher until A reaches its lower
limit. Even though enforcement spending declines over time with the eradication
strategy, A declines faster so v=A and, hence, p� increase over time when one opts
for eradication.

To summarize, at the strategic level the policy prescription is simple. When
control starts, one must judge whether the current epidemic size (A.0/) is greater
or less than the critical DNSS threshold (ADNSS). If it is greater than the threshold,
then the optimal strategy is to grudgingly “accommodate” the epidemic, allowing
it to grow to its high-volume equilibrium ( OA.h/). Spending on all controls should
increase, but less than proportionately in A so control levels increase, but control
intensity decreases. If, on the other hand, the initial epidemic size is below that
critical threshold, then it is optimal to “eradicate” the epidemic in the sense of
pursuing all controls extremely aggressively, quickly driving the epidemic down
to its minimum size (A).

Note: if spending were constrained to be proportional to the current size of
the problem for some sufficiently small proportionality constant, e.g., because it
is hard for politicians to muster support for massive spending on a problem that is
currently small, then eradication might not be feasible and approaching the high-
volume saddle point equilibrium might be the only alternative (cf. Tragler et al.
2001).

One final observation. The total discounted cost of the epidemic under optimal
control, counting both the social costs of use and the costs of control, are
monotonically increasing in the initial number of users. That is not surprising.
What is surprising, is that the relationship is almost linear with a kink at the DNSS
threshold. (Figure not shown.) Roughly speaking, for initial numbers of users below
1;000;000, total discounted costs increase by about $200,000 per person increase
in A.0/ for A.0/ < ADNSS, and by about $80,000 per person for A.0/ > ADNSS.
Those are astoundingly large numbers with a dramatic policy implication. In the
absence of controls, for A near ADNSS, modeled initiation is on the order of 1000

people per day, so the cost of delaying onset of control by even a day is very
large. The actual values per day of delay are not simply 1000 times the figures
above because one must account for what happens during the day of waiting.
Doing so, it turns out that when the number of users is near the DNSS threshold
(ADNSS=2 < A.0/ < 2ADNSS), a one-day delay (or interruption) in control costs
approximately $240 million per day to the left of the DNSS threshold and $60
million per day to its right. A corollary is that very significant investments in data
collection systems may be justified if those systems can help detect future epidemics
in their nascent stages.
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4 Sensitivity Analysis

4.1 Sensitivity Analysis Concerning the Strength of Prevention

There is a reasonably strong basis for believing that current, model primary
prevention technologies can reduce initiation by about 1 � h D 16 %, but sensitivity
analysis with respect to parameter h is still of interest for three reasons. First,
many programs that are actually being used are not model programs, so the
effectiveness of prevention today may be smaller (higher h). Second, better pre-
vention technologies may be available in the future. For example, immunotherapies
being developed to treat cocaine addiction might conceivably be used for primary
prevention (Harwood and Myers 2004). There are plausible circumstances under
which such vaccinations could be highly cost-ineffective for prophylactic purposes,
but the very existence of such research suggests that prevention technology is not
static. Finally, a fundamental contribution of this paper is adding prevention to the
mix of interventions considered, so sensitivity with respect to its performance is of
particular interest.

It turns out that if more effective types of prevention were available, that could
quite dramatically affect what is the optimal policy and the resulting magnitude of
drug problems. Figure 4 illustrates this with regard to optimal spending on the three
types of control at the lower limit (quantities with an under-bar) and the right-hand
saddle equilibrium (quantities with a hat).

Moving from right to left corresponds to prevention becoming more powerful
(reducing h). Not surprisingly, spending on prevention increases as it becomes more
effective (until the far left when it becomes so effective that slightly reduced levels
of spending are sufficient). What is striking is the extent to which spending on

Fig. 4 The levels of optimal control spending as functions of h at OA.h/ (continuous) and at A
(dashed)
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enforcement and treatment decline as prevention becomes more effective. Better
prevention substitutes for these costly interventions. Furthermore, since prevention
spending saturates at between $1B and $2B per year, total drug control spending
declines as that particular drug control technology improves. Despite the declines
in total control spending, with more effective prevention the right-hand saddle
moves steadily to the left, roughly linearly in h, indicating fewer users in the steady
state reached when accommodating the epidemic. Reduced control spending and
reduced use both translate into lower social costs. Indeed, the present value of
all social costs declines almost linearly by over 50 % as prevention effectiveness
increases enough to reduce h from 1:0 to about 0:6. That potential may justify
continued investment in prevention research even though the progress to date has
been more incremental than dramatic. One initially counter-intuitive result is that as
prevention’s effectiveness increases, the DNSS point shifts to the left, not the right.
One might have expected that as the tools of drug control improved, it would be
not only feasible but also desirable to eradicate epidemics even if the initial number
of users were somewhat larger. However, recall that a given level of prevention
spending reduces initiation by a given percentage, regardless of what that level
of initiation would have been, and that initiation is increasing in the number of
users. Hence, increments in prevention’s effectiveness are relatively more valuable
when the number of users A is large, not when it is small. Hence, while increased
prevention effectiveness reduces the cost of eradicating the epidemic, it reduces
the social cost from accommodating that epidemic even more, shifting to the left
the DNSS point, where one is indifferent between the strategies of eradication and
accommodation.

4.2 Sensitivity Analysis with Respect to Treatment
Effectiveness

As mentioned, a parameter about whose value there is considerable uncertainty
is the treatment effectiveness coefficient c. Our basecase value is derived from
Rydell and Everingham’s (1994) analysis of data from the Treatment Outcomes
Prospective Study, and treatment experts generally believe a 13 % probability of
quitting per episode of treatment is conservative. Indeed, at several points in Rydell
and Everingham’s analysis, they erred on the side of conservativism. Nevertheless,
Manski et al. (2001) note that selection effects could have introduced an upward bias
and, more generally, there is next to no definitive data from randomized controlled
trials concerning the effectiveness of cocaine treatment. Hence, this parameter is an
appropriate object of sensitivity analysis.

Varying this parameter affects the saddle-point equilibrium in predictable ways.
The more effective treatment is, the greater its share of control spending in steady
state, and the fewer users there are in steady state. In particular, if treatment were
1 % more effective, it would be optimal in steady state to spend about 1 % more on
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treatment and almost 1 % less on enforcement (C0:97 % and �0:86 %, respectively,
to be precise). Even though enforcement spending declines, enforcement intensity
increases because the decline in the number of users is even greater (�1:65 %),
inflating the ratio of v over A. Prevention spending also declines but less dramati-
cally (by 0.22 %), which is consistent with the general finding that the optimal level
of prevention spending is stable in multiple respects. Overall, improved treatment
technology acts as a substitute for enforcement and prevention. Indeed, because with
base case parameter values more is spent on enforcement ($11.4B) than treatment
($7.8B), the increase in treatment effectiveness actually leads to a reduction in total
steady-state control spending.

4.3 Sensitivity Analysis with Respect to Initiation Exponent ˛

It is generally presumed that initiation is an increasing but concave function of the
current number of users, modeled here as initiation being proportional to the current
number of users A raised to an exponent ˛, with ˛ D 0:3 in the base case. Sensitivity
analysis with respect to ˛ is of interest because prevention is related to initiation and
because it turns out that the location of the DNSS point is greatly affected by the
value of ˛.

When ˛ is varied, we vary k as well to keep the rate of initiation under base
case conditions constant at 1;000;000 per year. That means that as ˛ is reduced,
the leading coefficient k is increased, and rather dramatically. By definition the
reduction in ˛ exactly offsets the increase in k when the number of users is
6:5 million, but for smaller numbers of users typical of earlier stages of the
epidemic, the increase in k dominates. So in these sensitivity analyses, reducing
˛ implies increasing rather substantially the force or “power” of initiation early in
the epidemic.

Predictably, then, reducing ˛ moves the DNSS point to the left, implying that
eradication is the optimal strategy only under narrower circumstances. That makes
sense. The appeal of eradication is that one drives use down to such a low level
that initiation is also modest. When ˛ is smaller, initiation with small A is much
greater, so the benefit from reduced initiation achieved by driving A down to A is
much smaller.

Still, the extent to which this turns out to be the case is striking. If ˛ drops
merely to 0:28, the DNSS point disappears and accommodation is always optimal.
On the other hand, if ˛ increases to 0:3415, the DNSS point moves so far to the right
that it reaches the high-value saddle equilibrium (which also has been moving left),
implying that eradication is always the optimal strategy.
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4.4 Sensitivity Analysis Concerning the Social Cost per Gram
Consumed

We observed that the optimal total level of spending at the saddle point equilibrium
may be roughly comparable to what the US has spent historically on cocaine control.
However, what level is optimal depends substantially on the presumed social cost
per gram of cocaine consumed, and there is considerable uncertainty as to whether
the base case value (� D $100=g) is “correct”, both because of data limitations
and because there can be genuine disagreement concerning what categories of costs
should be included as social costs.5 Generally, the greater the perceived social
cost per unit of consumption, the more it is optimal to spend at the saddle point
equilibrium and, hence, the lower the level of use in that equilibrium. In particular,
if the social cost per gram were believed to be 20 % higher, then the optimal
level of drug control spending at the saddle equilibrium would be 11 % higher.
Likewise, if � were 20 % lower, the optimal steady state spending would be 17 %
lower, with the changes being most dramatic for treatment and least dramatic for
prevention.

In contrast, the level of control spending at the lower limit A is almost unaffected
by �, presumably because the value of that spending is whatever it takes to prevent
an epidemic from exploding, not an amount that is determined by balancing current
control costs with current social costs of use.

Sensitivity of the optimal policy to variation in the assumed social cost per
gram of use is even more pronounced for larger variations from the base case. In
particular, reducing � affects the DNSS threshold in qualitatively the same way as
reducing ˛ does, as is illustrated in Fig. 5, albeit for quite different reasons. As �

declines, the DNSS threshold shifts to the left, disappearing when � drops to 0:7.
Similarly, the DNSS threshold shifts to the right as � increases, merging with the
saddle point equilibrium when � D 1:474.

Hence, someone who thinks the social costs per gram of cocaine use are less
than $70 per gram ought always to favor accommodation, whereas someone who
thinks they are over $147 per gram ought always to strive for eradication, even if the
epidemic is already established. That is striking sensitivity inasmuch as it is easy
for two reasonable people to disagree by a factor of 2 or more concerning the social
cost per gram of cocaine.

An obvious implication is a plausible explanation for the persistent heated
disagreements between drug policy “hawks” who favor having the goal be a “drug-
free America” and “doves” who think the social costs of eradication exceed its
benefits.

5Notable examples include social costs borne by family members, any benefits of use of an illicit
substance, valuation of a human life beyond that person’s labor market earnings, and valuation of
pain and suffering associated with crime and with addiction itself.



28 J.P. Caulkins and G. Tragler

Fig. 5 The influence of � on the equilibrium values and the DNSS threshold. The relation between
� and the high equilibrium OA.h/ is displayed in the upper gray branch, while the black lower branch
shows the relation between � and the unstable focus at OA.l/. The black curve between �1 and �2

bending upwards represents the level of the DNSS threshold, and the horizontal gray line at the
very bottom stands for the lower limit at A

A more subtle point emerges from the observation that the social cost per gram
consumed is not an immutable physical constant like � or the speed of light.
There are a whole set of policies not modeled here but popular in countries such
as Australia and the Netherlands that go under the banner of “harm reduction”.
That term is highly controversial and widely misused and misunderstood. For the
moment, let it mean simply and literally programs that reduce the social harm
per unit of drug used, i.e., that reduce �. The paradigmatic harm reduction policy,
distributing clean syringes to injection drug users, is largely irrelevant for cocaine
in the US, which is not primarily injected. Another favorite of harm reduction
advocates is increasing treatment availability, which is already included in the model
and is not actually likely to have as its primary outcome reductions in �. Still, one
can imagine other harm reduction tactics that would be relevant for cocaine in the
US, including offering various forms of social support to the families of cocaine
abusers, particularly their children; developing immunotherapies that treat cocaine
overdose more effectively (Harwood and Myers 2004); and pursuing different
types of law enforcement that push street markets into forms of distribution that
generate less violence per kilogram sold and used, rather than seeking to reduce
use by driving up prices.6 Whatever the specifics, according to this model there
can be a strong interaction between the presence of effective harm reduction and

6One partial explanation for why homicides have fallen so dramatically in New York City may
be that much retail drug distribution has shifted from anonymous street markets where controlling
“turf” produces profits to instances in which seller-user dyads arrange private meetings in covert
locations, often using cell phones.
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whether the optimal policy is eradication or accommodation. If one can design
harm reduction strategies that reduce the average social cost per gram consumed,
then accommodation might be the better alternative, even if eradication would be
preferred in their absence.

4.5 Sensitivity Analysis Concerning the Lower Limit
on the Number of Users

The larger the lower limit, A, below which control cannot drive the number of users,
the smaller the DNSS point. For example, doubling A from 10,000 to 20,000 roughly
reduces the DNSS point by two thirds (reduces it from 334,339 to 128,268). This
seemingly counter-intuitive result has a simple explanation. The smaller the lower
limit on A, the more appealing that low-volume steady state is and, hence, the more
the decision maker would be willing to invest in order to drive the epidemic to that
lower steady state. Willingness to invest more means being willing to pursue the
“eradication” strategy even if the initial number of users is somewhat larger.

If the minimum number of users is interpreted as the number below which users
are essentially invisible, this has an interesting implication. Policy makers would
like to push that lower limit down as far as possible. Doing so raises the DNSS
point and, thus, increases the time it takes an epidemic to reach the “point of no
return”, beyond which the best that policy can do is moderate expansion to the high
volume equilibrium.

As noted above, similar logic explains the otherwise surprising result that the
more effective prevention is (i.e., the lower h is) the lower is the DNSS threshold.

5 Discussion

The analysis here confirms the observation of Behrens et al. (2000) and Tragler
et al. (2001) that it can be misleading to discuss the merits of different drug
control interventions in static terms (e.g., asserting that prevention is better than
enforcement or vice versa without reference to the stage of the epidemic). Even this
simple model of drug use and drug control can yield optimal solutions that involve
substantially varying the mix of interventions over time.

Furthermore, the broad outlines of the policy recommendations are similar to
those in Tragler et al. (2001). When a new drug problem emerges, policy makers
must choose whether to essentially eradicate use or to accommodate the drug by
grudgingly allowing it to grow toward a high-volume equilibrium. If the decision is
to eradicate, then control should be very aggressive, using truly massive levels of
both enforcement and treatment relative to the number of users to drive prevalence
down as quickly as possible. If accommodation is pursued, levels of spending
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on price-raising enforcement, treatment, and primary prevention should increase
linearly but less than proportionally with the number of users (i.e., linearly with a
positive intercept). So the total level of drug control spending should grow as the
epidemic matures, but spending per user would decline.

Of all the interventions, optimal spending on primary prevention is least depen-
dent on the stage of the epidemic. To a first-order approximation, prevention
spending should be about the same throughout. With our particular parameter-
ization, that level is roughly enough to offer a good school-based program to
every child in a birth cohort, but not dramatically more than that. That relative
independence on the state of the epidemic is fortuitous inasmuch as there are built
in lags to primary prevention, at least for school-based programs. Such programs
are usually run with youth in junior high, but the median age of cocaine initiation in
the US is 21 (Caulkins 1998b).

However, these observations do not in any way imply that adding prevention
to this dynamic model does not alter the results. Prevention is a strong substitute
for price-raising enforcement and treatment. The more effective prevention is, the
less that should be spent on those other interventions. Furthermore, a truly effective
prevention program would be such a strong substitute that both the amount of drug
use and the combined optimal levels of drug control spending would decline, leading
of course to a substantial reduction in the total social costs associated with the drug
epidemic.

The catch is that to date even the better primary prevention programs seem to be
only moderately effective (Caulkins et al. 1999, 2002), and the programs actually
implemented are often not the best available (Hallfors and Godette 2002). Hence,
with respect to the wisdom of further investments in improving the “technology” of
primary prevention, one can see the glass as half full or half empty. The pessimists
would point to limited progress to date and suggest focusing elsewhere. The
optimists would see the tremendous benefits that a truly effective primary prevention
program would bring and redouble their efforts.

The second broad policy contribution of this paper relative to the prior literature
is the sensitivity analysis with respect to the location of the DNSS threshold and,
hence, of when each broad strategy (eradication or accommodation) is preferred. In
short, the finding is that the location of the DNSS threshold is highly sensitive to
three quantities that are difficult to pin down for various reasons: the social cost per
gram of cocaine consumed, the exponent in the initiation function governing how
contagious the spread of drug use is, and the lower limit on prevalence below which
it is assumed that control cannot drive the epidemic.

A depressing implication is that it will generally be exceedingly difficult to make
an informed decision concerning the strategic direction for policy concerning a
newly emergent drug. More is known and more data are available about the current
cocaine epidemic in the US than about any other epidemic of illicit drug use, yet
these parameters still cannot be pinned down even for cocaine in the US. It is hard
to imagine that when a new drug epidemic emerges, we will have better information
about it, at least at that early stage, and one of the results above was a startlingly
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high increase in social cost for each day that initiation of control is delayed. So a
“wait and study” option may not be constructive.

Another depressing implication concerns the result for the lower limit on
prevalence and its interpretation in a world of polydrug use. The model considered
explicitly just one drug, cocaine. If there were just one illicit drug entering a “virgin”
population, it might be somewhat plausible to drive use of that drug down to very
low levels. However, the US already has several million dependent drug users
who tend to use a wide variety of drugs, including new ones that come along.
So if the US now faced a new epidemic, it might be that the only way it could
drive use of that drug down to levels such as the lower limit considered here,
would be to also eliminate use of the existing established drugs such as cocaine,
heroin, and methamphetamine. That may be impossible or at least, according to
this model, likely not optimal. Inasmuch as higher lower limits on prevalence make
eradication strategies less appealing, accommodation may be the best option for
future epidemics, even if eradication would have been the better course if we could
turn back the clock to 1965.

The one positive observation, though, is that there exist, at least in theory,
another set of drug control interventions, not modeled here, that would target not
drug use but the objective function coefficient associated with that use. Introducing
interventions of that sort into this framework would be one of many productive
avenues for further research.
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Appendix: Optimality Conditions

The current value Hamiltonian H is given by

H D �.��Ap�! C u C v C w/ C �.kA˛p�a‰ � cˇA � �pbA/;

where � describes the current-value costate variable.
Note that it is not necessary to formulate the maximum principle for the

Lagrangian, which incorporates the non-negativity constraints for the controls, since
u, v, and w all turn out to be positive in the analysis described in this paper.

According to Pontryagin’s maximum principle we have the following three
necessary optimality conditions:

u D arg max
u

H;

v D arg max
v

H;
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and

w D arg max
w

H:

Due to the concavity of the Hamiltonian H with respect to .u; v; w/, setting the first
order partial derivatives equal to zero leads to the unrestricted extremum, and we
get the following expressions for the costate �:

Hu D 0 ) � D �1
cˇuA ; (1)

Hw D 0 ) � D 1
kp�aA˛‰w

; (2)

Hv D 0 ) � D 1���!p�!�1pvA
�akp�a�1pvA˛‰��bpb�1pvA

; (3)

where subscripts denote derivatives w.r.t. the corresponding variables.
The concavity of the maximized Hamiltonian with respect to the state variable,

however, cannot be guaranteed, so the usual sufficiency conditions are not satisfied.
With Eqs. (1)–(3) we can describe u, w, and � as functions of A and v as follows:

�.A; v/ WD
pv

p

�
a
m C ��!p�!A

� � 1

ahkp�a�1pvA˛ C �bpb�1pvA
; (4)

u.A; v/ WD
� �.A C ı/z

czA�.A; v/

� 1
z�1

;

w.A; v/ WD 1

m
ln ..h � 1/kmp�aA˛�.A; v// :

Due to this simplification we can concentrate on the two variables A and v.
To gain an equation for Pv we differentiate �.A; v/ with respect to time:

P� D �A PA C �v Pv: (5)

Setting (5) equal to the costate equation

P� D r� � HA;

yields:

Pv D r� � HA � �A PA
�v

;
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where we insert �.A; v/ from (4) and the corresponding derivatives �A and �v as
well as HA given by

HA D ���p�!�1.p � !pAA/ C �Œkp�a�1‰.˛A˛�1p � aA˛pA/ �
�c.ˇAA C ˇ/ � �pb�1.bpAA C p/�:
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