Chapter 2
Contact-State (CS) Modeling

2.1 Problem Statement

Consider the robot systems shown in Figs.2.1 and 2.2. The system of Fig.2.1 is
composed of a KUKA LWR manipulating a rigid cube object that interacts with an
environment of three orthogonal planes. This process is called a robotic cube-in-
corner assembly of rigid objects. Figure2.1a shows a human operator programming
the KUKA LWR for doing the given task through using a gravitational compensation
mode (see [96] for more details about the gravitational compensation mode and other
modes of operation of the KUKA LWR). For other versions of robots that do not
have the feature of the gravitational compensation mode, the robot needs to be guided
through the teach pendant for the positions of the considered task. The gravitational
compensation mode is used in guiding the robot to the required positions that have
different CS’s between the manipulated object and the surrounding environment. As
soon as these positions are taught, then the robot is changed into position control
mode in order to execute the taught positions and in this stage the considered signals
are captured for the taught CS’s. For instance when the robot moves to v-f CS position
(that was already taught in the gravitational compensation mode), then the considered
signals corresponding to this CS are captured in order to develop the v-f CS model
and the same is done for all other CS’s. Figure 2.2 shows a similar robotic cube-in-
corner assembly process but for a flexible rubber object. For both cases of the rigid
and flexible objects, one can see that as soon as the robot is programmed to assemble
the cube in the corner, different possible CS’s would be generated as the task is
executed in a position control mode in which the robot moves to the programmed
positions without any intervention from the human operator. Therefore, the signals
captured during the task execution are not influenced by the human operator. In order
to model these CS’s, the overall motion is segmented according to the corresponding
CS’s. For each segment, the wrench signals of the manipulated object are collected
and the models, that realize the desired input—output mapping, are developed. For
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Fig. 2.1 Cube-in-corner assembly task: a a human operator programs the robot, b free space (fs)
CS, c vertex-face (v-f) CS, d edge-face (e-f) CS, e face—face (f~f) CS, f edge face—2faces (ef~2f)
CS, g 2faces—2faces (2f-2f) CS, h 3faces—3faces (3f-3f) CS

(a) (b) (c) (d)

Fig. 2.2 Flexible rubber object cube-in-corner assembly task: a the manipulated object deformation
when grasped, b free space (fs) CS, ¢ vertex-face (v-f) CS, d edge-face (e-f) CS, e face—face (f~f)
CS, f edge face—2faces (ef~2f) CS, g 2faces—2faces (2f-2f) CS, h 3faces—3faces (3/~3f) CS

the manipulated object, one can describe the wrench signals W to be

W =1[fe, fys for T Tys T2 2.1

where fy, fy, and f; are the forces along the x, y, and z axes respectively. 1., 7,
and T, are the torques around the x, y, and z axes, respectively.

Hence, we have 6 input signals for the classifier, say x; = [xx.1, Xk.2, - - - Xk.6]
with k to be the sample index. The CS classification problem can be formulated as

2.2)

_J 1 if (xx € current CS)
e = 0  Otherwise
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i is the output of the CS classifier. It can be seen that (2.2) represents a nonlinear
mapping between x; and y; and the goal of almost all modeling and classifica-
tion researches is to approximate or realize this mapping as accurate as possible.
Even though excellent performance was reported in the literature to model (2.2),
the signals non-stationarity (non-normal distribution) was not considered resulting
in modeling performance degradation. For instance, Fig.2.6a illustrates the distri-
bution of the torque signal around the x axis and its non-stationary distribution is
clear. If one models the signal shown in Fig.2.6a using a normal Gaussian distribu-
tion, then a significant modeling error is expected resulted from the poor modeling.
Furthermore, the object flexibility, for the case of Fig.2.2, would even bring about
higher non-stationarity to the captured signals that makes their modeling process
to be more difficult. Moreover, the available CS modeling schemes consider either
the rigid or the flexible object manipulation and till now there is no CS modeling
scheme that is efficiently applicable to model (2.2) for both rigid and flexible objects.
Thus, the objective of the CS modeling part is to propose a task sequence-free CS
modeling scheme that accommodates the signals non-stationarity and applicable
to rigid/flexible objects. The next sections explain the methodology proposed for
realizing (2.2).

2.2 Gravitational Search-Fuzzy Clustering Algorithm
(GS-FCA)

In this section, a CS recognition system is proposed that relies on building a Takagi—
Sugeno (T-S) fuzzy model with multiple if-then rules for each CS. A T-S fuzzy
model is composed of two main blocks; the antecedent part (or called the If part) and
the consequent part (or called the Then part). In the antecedent part, the membership
functions of the input variables are specified. Hence, the parameters of the member-
ship functions are called the antecedent part parameters. In the consequent part of
T=S fuzzy models, linear blending of the antecedent part outputs is employed and the
parameters of the linear blending are called consequent part parameters (see [3, 43,
135] for more details about the antecedent and consequent parts of the fuzzy systems).
The antecedent part parameters for each model are computed by the Gravitational
Search—Fuzzy Clustering Algorithm GS—-FCA approach [59, 104]. The Least Mean
Square (LMS) is used in tuning the consequent part parameters for each if-then rule
of each CS model. The main contribution of this strategy is to have a CS recognition
system with the following features:

1. The suggested approach does not require knowing the CS’s sequence or graph.
2. Enhanced input—output mapping through using:

i. GS-FCA and LMS in tuning the T-S fuzzy models.
ii. Multiple rules are used for each CS model.
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2.2.1 T-S Fuzzy Modeling

Suppose that we are given a data set x; = [Xx.1, Xx.2, - - ., Xk.p], D is the width of
the data and consider that X = (x, X3, ..., Xy). Since it is required to approximate
(2.2), then one can consider it as an unknown nonlinear equation that is described
as:

e = fxx) (2.3)

(2.3) maps the available input—output data, say x; and y;. The nonlinear equation
(2.3) can be efficiently modeled using a T-S fuzzy system that breaks the nonlinear
system into sum of linear models each one of them is described by the following
if-then rules [165]:

R,' If Xk, 1 is A,-l(xk,l) and Xk,2 is Aiz(xqu) and...and Xk,D is A,-D(xk,D)
Then § = ag,x +bg:  (2.4)
A;j(xg, ;) is a membership function that quantifies for the input x; ;. ag; and bg; are

the parameters of the ith local linear model. Equation (2.4) can be aggregated using
the fuzzy mean approach and the output can be computed as:

5 = > B @Lxx + bei))

. 2.5
>l Bai(x) @)

where:
Bri(xx) = IT_ Aij (e, ;) (2.6)

cr is the number of rules for each model. If we use Gaussian membership functions
for the antecedent part of (2.4), then we have

L 8.)2
Aij(x)) = exp (—%) 2.7)
ij

d;; and pl.zj are the membership function center and variance respectively. For the
robot system under consideration, it is required to classify the CS’s according to the
available wrench readings given in (2.1). In the framework of function approximation,
T-S fuzzy system is proposed to approximate (2.2) from the given input—output data
and relying on (2.3)—(2.7). However, the approximation accuracy would highly rely
on the choice of the antecedent and consequent parts parameters for each if-then
rule. The following subsection describes how one can choose those parameters for
an optimal classification process.
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2.2.2 T-S Fuzzy Models Parameters Estimation

The estimation of the T-S fuzzy models involves the estimation of the antecedent
part and the consequent part of the if-then rules of the system. Hence in the following
subsections, the estimation of both of the antecedent and consequent part parameters
are detailed.

2.2.3 Antecedent Part Parameters Estimation

The Gravitational Search—Fuzzy Clustering Algorithm (GS-FCA) is used in com-
puting the antecedent part parameters, say the membership functions parameters.
Using the clustering process, the data set x can be grouped into clusters in which the
data group of each cluster share a certain attribute, i.e., grouping the data set X into
c € {2,..., N — 1} clusters. Fuzzy clustering performs the function of data clus-
tering using the concept of fuzzy sets theory. Each element of the set X is assigned
with a membership function that quantifies the degree of its affiliation to one of the
given clusters. Consider that j¢;; represents the membership function that quanti-
fies the strength in which the ith data vector of X belongs to the jth cluster, then
mgij €10,1],G =1,2,...,N; j=1,...,c). Extending pg;; for all data vectors
and over all clusters, a partition matrix, denoted as U € M, is obtained which can
be described by:

M ={U:U €0, 11"*} (2.8)

However, the following constraints are necessary to be satisfied for the selection of
the partition matrix:

D nej=Lli=12..N (2.9)
j=1

N

ZILGUZO;]:L---,C (2.10)
i=1

The fuzzy clustering problem can be solved by finding the clusters centers and
the partition matrix. Fuzzy c-means (FCM) clustering is a widely used approach in
which both the clusters centers and the partition matrix are found through solving
the following constrained optimization problem:

c N
minimize J; = > > uiIv; — xill2 (2.11)
j=1 i=1

subject to (2.9) and (2.10).
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With m > 1, v; is the jth cluster center, and |.||, represents a norm on R,
frequently Euclidean norm is utilized. It is worth noting that x; could be a vector of
signals (which is the case of our application) and the clustering is then performed in
a vector wise for the clusters centers, that is each cluster center would be a vector of
dimension equal to the number of columns of the vector x;. Alternating Optimization
(AO) was successfully used to solve the constrained optimization above and the
following solution was obtained [123]:

1
ik = 2 (2.12)

ZC lve=2xilla | =1
=1 \lvj—xil2

and v
m
i KgijXi
N m
s HGij

However, it was found that such a solution can be easily trapped in local minima
because they depend on derivatives in their optimization process [145]. Using a more
powerful stochastic optimization algorithm can highly improve the fuzzy clustering
algorithm above. Gravitational Search Algorithm (GSA) is a recently developed
efficient stochastic optimization algorithm that depends on the concept of Newton
laws of gravity and motion. It is assumed that all agents within a certain population
have certain gravitational forces between them, and the agent with higher mass exerts
higher force and becomes more optimal (see [140] for more details about the GSA
and its performance). Suppose that we have n agents and the pth agent is described
by:

v, = (2.13)

=G 2))ip=12,....n (2.14)

z’;, is the position of the pth agent in the kth dimension. Lets define the gravitational
force between the pth and the gth agents to be:

M, (1) x My (1)

Fl =
& ”Zp - Zq”

(zd —z9) (2.15)

where M,(t) and M, () are the masses, zi and zg are the positions of the pth and gth
agents respectively, and G () is the gravitational constant. The gravitational constant
can be described by the following expression:

G(t) = Gexp (— d ) (2.16)

max;

G, is the initial value of the gravitational constant, « is a constant, 7 is the current
iteration, and max, is the maximum iteration. The inertial mass for the pth agent can
be computed as:
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m, (1)
M,(t) = ——— (2.17)
! Z;\;l my (1)
m, can be found as:
m () = It = worst (2.18)

best — worst

fit, is the value of the fitness function (objective function) for the pth agent, best
and worst have different expressions depending on the nature of the optimization
problem in hand, i.e., minimization or maximization optimization problems. For
minimization problems best = min (fit,) and worst = max (fit,), and for maxi-
mization problems best = max (fit,) and worst = min (fit,). The force exerted
on the pth agent can be computed as a random weighted sum of all attraction forces
from other agents, i.e.,

Fl(t) =" rand, - Fi (1) (2.19)

pP#q

rand, is a random number. Using the Newton’s law of motion, we can find the
acceleration of the pth agent movement as:

Fi()
M, (1)

“Z ) = (2.20)

The new velocities and positions can be computed according to the following equa-
tions:
vi(t + 1) = rand,, - v (1) + (1) (2.21)

@ +1) =250 + v+ 1) (2.22)

The GSA optimization above has proved to be efficient in solving the clustering
problems [59, 104]. Furthermore, the GSA is a random search method that does not
depend on the computations of derivatives and consequently the problem of trapping
in local minima can be avoided. Moreover, the GSA can be used to solve optimization
problems in which the objective function is non-differentiable, and this opens the door
to its applicability to discontinuous functions identification. However, the dimension
of the data to be clustered may restrict the usability of the GSA algorithm for finding
only the clusters centers since using the GSA in finding the partition matrix would
be tedious for high dimensional data. Therefore, in order to minimize the objective
function given in (2.11), we will use (2.12) for computing the partition matrix, but for
clusters centers, instead of using (2.13), we will utilize the GSA in minimizing the
objective function (2.11). The algorithm below details the GS—FCA through which
the centers of clusters are computed using the GSA optimization:
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GS-FCA Algorithm

Step 1: Set [ = 1, initialize the centers and code them into positions of agents.
Initialize the tolerance €. Initialize U'.

Step 2: Compute the objective function for each agent using (2.11). Update [ as
I=1+1.

Step 3: Update G using (2.16) and find the best and worst of the agents.

Step 4: Compute the mass M, and then calculate the gravitational force for each
agent F, using (2.19).

Step 5: Compute the acceleration for each agent using (2.20).

Step 6: Update the velocity and position for each agent according to (2.21) and (2.22)
respectively.

Step 7: Compute the partition matrix U U= ug 7 17¢ using (2.12).

Step 8: If |U' — U'~!| < € then stop. Otherwise repeat Steps 2—8.

As per accomplishing the algorithm above, the center and variance for each mem-
bership function can be computed as [123]:

L
5y = k=t i (2.23)

L
Dot M

L
D ey M (X — 8ij)
i3
D it Mk

pij = (2.24)
2.2.4 Consequent Part Parameters

The consequent parts parameters, say ag; and bg;, are tuned using the Least Mean
Square (LMS) algorithm. Suppose that 6;; = [ag;bgi], then the value of 6, can be
computed as [2]:

1
6¢,; = arg min,_ N(y — X06) T @i (y — X0g1) (2.25)

where X = [x1] and @&; is a diagonal matrix with the membership grades are the
elements of the main diagonal:

wiir 0 ... 0
0 pi2... 0

o= . .. . (2.26)
00...0 wil

@; is obtained from the GS-FCA algorithm explained above. Using the LMS, the
parameters can be updated as:
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(a) = T T T T T T
ik

08+

086 |-

0.4

GS-FCA Model

-0.02

T
X

Fig. 2.3 a The shape of the GS—-FCA model for modeling the 7, signal; b The distribution of the
T, signal

Ogi = XTI, X) 'oX @y (2.27)

Therefore, the models are tuned to be fitted more to their desired input—output map-
pings. Despite the excellent recognition performance reported when using the GS—
FCA for the CS recognition process [74], there are two drawbacks noted during the
implementation of the experiments. The first drawback is the high computational
cost required for developing the models and the second one is the fixed fuzzy sets
amplitude of 1 as a maximum value that makes it not reflecting the precise signals
distribution. As an example let’s contemplate the GS—FCA model of the t, signal
shown in Fig.2.3a. One can see that the constant peaks of the fuzzy sets makes it
significantly dissimilar to the real distribution shown in Fig. 2.3b. In the next section
both drawbacks are overcome by proposing a more efficient modeling strategy with
enhanced performance and reduced computational cost.

2.3 Expectation Maximization-Based Gaussian Mixtures
Model (EM-GMM)

The main motivation behind employing the EM-GMM in modeling the captured
wrench signals, of the force-guided robotic assembly processes, is the ability in cap-
turing the non-stationarity in the signals distribution that would give more accurate
modeling process. For instance, if one examines Fig. 2.4 that shows the distribution
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Frequency

B

Fig. 2.4 The distribution of the 7, signal (in blue) and the Gaussian Mixtures Model of 7, (in red)

of the 7, signal and its GMM model, then one can see that the GMM is more precise
in capturing the different peaks of the distribution of the 7, signal that would enhance
the given data modeling process. Before explaining the details of the EM-GMM CS
modeling scheme, the principles of the Bayesian modeling (or classification) are
clarified.

2.3.1 Bayesian Classification

Suppose that one is given the data vector x; = [xx 1, Xx.2, - . ., Xx. p] Where D is the
width of the vector (for the CS recognition problem addressed in this book, it is clear
that D = 6 and each model has 6 inputs). Suppose that the vector x; belongs to one
of the classes [c, ¢3, . . ., cc]. In the framework of the Bayesian classification, one
can say that the vector x; belongs to a class ¢; implies that [14]:

plcilxy) = pcjlxr) (2.28)

fori # j. p(cilxy) is called the posterior probability of class ¢; given the vector xy
and can be computed using the Bayes rule as:

p(cilxy) = pleples) (2.29)

p(xe)

where p(xi|c;) is the Probability Density Function (PDF) of class ¢; in the vector
space of xy, p(c;) is the priori probability that represents the probability of class ¢;,
and p(x;) is the probability of the vector space x; that can be expressed as:

C
px) =D prilen) plei) (2.30)

i=l1
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From (2.30), one can notice that for equal class priori p(c;), the term p(x;) of (2.29)
would be merely a scaling factor. Therefore, it can be deduced that the vector x;
belongs to a class ¢; implies that:

pxklc) p(ci) = p(xklc;)p(c)) (2.31)

for i # j. Hence, the best approximation of the term p(xy|c;) results in the best
classification for the pattern x;. In the conventional Bayesian classifier, a Gaussian
distribution is used in approximating the term p(x;|c;), that is:

1
p(xilci) = p (_E(xk - E - M)) (2.32)

—_—€éX
Qn)Pl2| 2|2

where € RP is the mean, ¥ € RP*P is the covariance matrix, and | X| € R is
the determinant of X. It was shown that the approximation (2.32) performs well for
cases of normal signals distribution. However, in many cases, one may face situations
in which the vector space signals, or several signals of the vector space, have non-
normal distribution and consequently the use of (2.32) results in significant modeling
erTors.

2.3.2 Gaussian Mixtures Model (GMM)

In order to accommodate the possible non-normal distribution of the signals,
Gaussian mixtures is employed in modeling the features (input signals), i.e., assign-
ing more than a Gaussian component for each feature. Suppose that a single Gaussian
distribution is represented as

1
N(xg, p, ) P (_E(xk - W' E - M)) (2.33)

= —FeX
27|22 2|2

Then, a Gaussian Mixtures Model (GMM) can be described as:

M
pler) = D Ny (i, g, Zy) (2.34)
g=1

M is the total number of the GMM components, @, (4, and X, are the weight, mean,
and covariance of the gth Gaussian component. Suppose that 8, = (g, g, X,;) and
consider the parameter vector 6 = [0y, 0,, ..., Oy 17 . Ttis clear that finding the values
of the parameters is very important in having a precise modeling of the given features.
Therefore, one can write the model of (2.34) in terms of the parameters 6 as:
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E-Step M-Step
Expectation ¥ L, Update

Fig. 2.5 The main two steps of the Expectation Maximization (EM) algorithm

M

Pl 0) = D wyNy (@i, g, ) (2.35)
q=1

Finding the parameter vector 6 that optimizes the models from the available mea-
surements would enhance the performance of the classification process.

2.3.3 Expectation Maximization (EM)

One of the most efficient approaches in finding these parameters is the Expectation
Maximization (EM) algorithm. The EM algorithm is composed of two steps; the
E-step in which the log-likelihood is estimated for the current parameters, and the M-
step in which the parameter 6 is updated such that a maximized log-likelihood would
result. Figure 2.5 shows the block diagram of the phases of the EM algorithm. In order
to explain the EM algorithm, let’s consider the overall data X = [x}, x5, ... ,xn]’.
The likelihood function of the data X given the parameter 6 can be defined as:

N
0x;0) =[] pau: ) (2.36)
n=1

Define the logarithm of £(X; 0) to be L(X; 6) which is called the log-likelihood.
Taking the logarithm for both sides of (2.36), then the log-likelihood can be expressed
as:

N
L(X:6) = > In(p(x,: ) 2.37)

n=1
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The parameter 6 that maximizes (2.37) can be described as:

0(t) = arg rngax L(X;60(t)) (2.38)

subject to:

M
qu =1
g=1

(2.38) is a constrained optimization problem and the analytical solutions can be
intractable. Therefore, iterative solutions, like the EM algorithm, were suggested
to solve such a problem. An important quantity that plays a vital role in the EM
algorithm is the conditional probability of y; given x; and let’s denote p(c; = 1|xx)
as y (cix). The value of y (c;;) can be computed using Bayes rule as:

plci = Dpxilei = 1)
S plej = Dplirle; = 1)

y(cix) = (2.39)

that leads to:

w; N; (g, i, Xp)

y(cin) = (2.40)

y (cix) is called the responsibility that the ith component takes for explaining x; [14].
Suppose that the parameter 6 at a certain iteration is 6 and that of the next iteration
is 0", One can say that the convergence of 6 is achieved if:

0" — 0] < & (2.41)
Likewise to the log-likelihood, its convergence is achieved if:
IIn p(X;6"") —In p(X; 0)] < €n (2.42)

where ¢, and €, are small positive constants that quantify for the convergence of 6
and In p(X; 0) respectively. The steps below summarize the EM algorithm:

Step 1: Initialize the parameter vector 6; = (w;, i, X;). Initialize the convergence
parameters &, and €,,.

Step 2: (E-Step) For the current parameter vector 6; compute the responsibilities
using (2.40).

Step 3: (M-Step) Re-estimate the parameters using the current responsibilities:

1

N
e = I ; Y (€in)Xn (2.43)
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N
1
e ; v (€in) e — ") Gy — pie)’ (2.44)
N,
new __ 'L 2.45
! N (2.45)
with:
N

N; = Z v (Cin) (2.46)

n=1

Step 4: Compute the log-likelihood:

N M
Inp(X;6) = > In [Za),N(x,,, 9)] (2.47)
n=1 i=1

Step 5: Check for the convergence:

If (2.41) or (2.42) are satisfied then stop. Otherwise, go to Step 2.

See ([14]: Chap. 9) for more details on the EM-GMM algorithm and the derivations
of the equations above. The EM-GMM is used in building the likelihood of each
signal for all CS’s, and a classifier is developed for each CS in the framework of the
Bayesian classification. The nonstationary behavior of the captured force and torque
signals is accommodated that enhances the recognition performance.

In spite of the fact that the EM-GMM scheme accommodates the signals non-
stationary behavior, an issue remains open which is the determination of the optimal
number of GMM components for each CS model. One of the vital and simple meth-
ods, to determine the optimal number of the GMM components, is to find a similarity
measure between the developed models and the distribution of the captured signals
along with invoking to the fact that the optimal number of GMM components results
in the highest similarity measure. For instance, if one considers the histogram shown
in Fig. 2.6a which is taken for the torque signal around the x-axis of one of the exper-
iments. Then, the best choice of the number of GMM components is realized by
finding the number of GMM components resulting in highest similarity compared
with the signal distribution shown in Fig. 2.6a. Different approaches were developed
in quantifying the similarity between the two distributions, however, Probabilistic
Similarity Measure (PSM) is considered one of the most effective similarity mea-
sure schemes. The PSM is summarized by using the CSR performance as an index
for the similarity measure between the distribution of the signals and the developed
model [23]. The best CSR results from the highest similarity between the developed
model and the distribution of the signals. Thus, for the example of Fig. 2.6a, the best
CSR results with 3 GMM components. Figure 2.6b shows the GMM that can opti-
mally model the given histogram. If one increases or decreases the number of GMM
components (from the optimal number of GMM components), then the similarity
between the histogram of the signal and the developed model is decreased causing
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Fig. 2.6 a 7, histogram; b 7, optimal GMM model

CSR degradation. Hence, for any assembly task, the optimal number of GMM com-
ponents is found by increasing the number of GMM components and continuously
observing the CSR values. The number of GMM components resulting in the high-
est CSR value is considered as the optimal number of GMM components. So, for
the assembly processes of flexible rubber objects, one can accommodate the signals
extra non-stationarity by finding the optimal number of GMM components resulting
with the highest CSR value.
Thus, the EM-GMM CS modeling scheme results in models that are:

1. Independent of the task sequence.
2. Accommodating signals non-stationarity.
3. Applicable to both rigid and flexible objects.

The other improvements brought about by the EM-GMM CS modeling scheme, like
high CSR performance and enhanced computational time, will be shown experimen-
tally in Chap. 5.
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