Expanding the Ns-2 Emulation Environment
with the Use of Flexible Mapping

Robert R. Chodorek!®™) and Agnieszka Chodorek?

! Department of Telecommunications, The AGH University of Science
and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
chodorek@agh.edu.pl
2 Department of Information Technology, Kielce University of Technology,
Al Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
a.chodorek@tu.kielce.pl

Abstract. The Berkeley’s ns-2 simulator was, for a long time, one of the
most popular open-source simulation tools. Although the new tool in the
ns family, the ns-3, replaced it in the above ranking, the simplicity of the
ns-2, with its flexibility and ability to operate at higher levels of abstrac-
tion caused the simulator to remain in use. This paper presents our
enhancements to the mapping of incoming and outgoing traffic in the ns-2
simulator when it works in emulation mode. Our enhancements expand
the build-in 1-to-1 MAC address mapping to 1-to-many address/port
mapping, which allows the emulator to connect to more end-systems or
subnetworks than the number of interfaces of the emulation server.

Keywords: ns-2 simulator - Performance evaluation + Emulation of
computer networks * Elastic traffic - Streaming

1 Introduction

The name ns is an acronym for “network simulator” and refers to the family of
open-source simulation tools, beginning with the discrete event LBNL' Network
Simulator (later known as ns-1). Now the ns family consists of two versions, ns-2
[1] and ns-3 [2]. Both are discrete event-driven environments for the simulation
of computer networks, and both are publicly available for research, education
and development under the GNU license [3].

The ns-2 simulator is focused mainly on simulations of computer networks
with relatively weak possibilities of network emulation. The simulator is a flex-
ible tool for computer network analysis, able to provide large numbers of net-
work types, topologies, technologies and protocols. It allows the user to carry
out simulation experiments at different levels of abstraction. From low levels,
demanding detailed description and exact simulation models (e.g. simulation

! LBNL stands for Lawrence Berkeley National Laboratory, the ns-1 place of develop-
ment.

© Springer International Publishing Switzerland 2016
P. Gaj et al. (Eds.): CN 2016, CCIS 608, pp. 22-31, 2016.
DOI: 10.1007/978-3-319-39207-3_2

Expanding the Ns-2 Emulation Environment 23

of TCP transmission with full protocol processing and functionality, or simula-
tion of Wi-Fi LAN [4] with RT'S/CTS frame exchange process) to high levels,
demanding only a rough description of the problem and general network situation
(ftp applications modelled as an infinitive source of data packets, long-distance
links modelled as twin simplex links with defined throughput and propagation
delay, etc.).

The ns-3 has a reputation of being more emulator than simulator. This pro-
gramming tool achieves high functionality and high accuracy by using Linux
mechanisms as accurate models of network functions. Full code and full process-
ing of base network functions (e.g. protocols: TCP, UDP, IP and base routing) in
the ns-3 simulator is mainly borrowed from the Linux operating system. Such an
approach to network modelling allows the simulator to obtain a natural ability
to network emulation at the level of protocol processing.

In the lower layers of the OSI/ISO Reference Model, the ns-3 simulator imple-
ments detailed models of many network solutions (including detailed and accu-
rate propagation models for Wi-Fi [5], LTE [6], etc.). It also allows the running
of user’s code in applications and services. Both those advantages improves accu-
racy of simulations and supports network emulation. However, in event-driven
environments, this accuracy and support is done at the cost of performance.

Generally, execution of certain operations of the ns-3 simulator requires
more processor time than the execution of the corresponding operations of the
ns-2. Simulations in the ns-3 are carried out using more precise models and the
obtained results are more accurate, but the experiment lasts longer. In the con-
text of real-time emulation, it means that on the same machine we’ll be able to
emulate a less complicated network environment than if the ns-2 is used. More-
over, for detail-oriented approaches to simulation based on very precise models,
the testing of new ideas at early stages of deployment where higher levels of
abstraction are usually needed is inhibited. Last but not least, there is no possi-
bility of an easy transfer between these tools because of different programming
user interfaces?) and lack of backward compatibility between ns-3 and ns-2 [7].
As a result, after initial enthusiasm with ns-3 which caused users to desert the
ns-2, ns-2 has come back into favor. Nowadays, both simulation tools are under
development and active maintenance. A new development version of the ns-2
tool (version 2.36) is planned for release in February 2016.

The aim of the paper is to present our proposition for extensions to the ns-2
simulator, which enable the ns-2 emulation platform to flexibly map incoming
and outgoing traffic. The paper is organized as follows. Section 2 describes emu-
lation possibilities of the ns-2. Section 3 presents proposed extensions. Section 4
summarizes the paper.

2 The Network Emulator Embedded in the Ns-2

A network emulator is a device, program or software-hardware environment
that imitates network behavior to deceive real-world networks or real-world

2 TCL-based user interface in the ns-2 and the Python-based interface in the ns-3.

24 R.R. Chodorek and A. Chodorek

end-systems connected to the emulator into behaving as if they are connected to
areal (usually novel or very complex) network. The ns-2 simulation environment
has several mechanisms to support network emulation. Moreover, although pro-
tocol agents included in the ns-2 simulation platform operate at rather higher
levels of abstraction (for example, the TCP protocol is modelled as two sepa-
rate parts, a sending one and a receiving one — Agent/TCP and Agent/TCPSink,
respectively), some of them (for example, Agent/TCP/FullTCP) are a close
enough match to their real-world equivalents to be used for emulation purposes.

2.1 Operating Modes

The assumption is that the cooperation of the ns-2 simulation platform with
the real-world network environment allows one to build more or less complex
network environments inside the simulation platform shared with the real-world
networks or network equipment. Connecting real and virtual environments facil-
itates the implementation of new algorithms defining the work of network nodes
(for instance, new queuing), as well as the implementation of new protocols or
protocol mechanisms, and tests of selected elements of a system.

Depending on the interpretation of live data, introduced from a real network
to the emulated one, designers of the ns-2 emulator have defined two operating
modes of the designed platform [1]:

— opaque mode, where live data are treated as opaque data packets,
— protocol mode, where live data may be interpreted, processed and even gen-
erated by the simulator.

In the first, opaque operating mode, packets from real fragments of the net-
work are captured and then introduced into the ns-2 simulator while the content
of captured packets (headers, data segments) will not be processed. Thus, cap-
tured packets can be transmitted inside the ns-2 with a given delay. They can be
buffered, dropped in network nodes (due to congestions, or according to estab-
lished order or assumed error rate) and transmitted out of sequence. Then, if the
captured packet is not dropped or damaged, such packet will leave the simulator
and will be injected back into the real fragment of the network.

The opaque mode shows partial real-virtual interference, so both intermedi-
ate and end systems do not have to be fully implemented. The second, protocol
operating mode, is a mode of full real-virtual interference. The ns-2 emulation
platform (emulated network devices, especially endpoints) interferes with the
content of captured packets and, also generates its own packets which interfere
with captured ones. Interference with captured packets can be seen when head-
ers and if necessary data segments are processed and modified. Such interference
takes place mainly in intermediate nodes. Generation of new packets typically
takes place in endpoints (e.g. the TCP endpoints send packets according to set-
tings of the connected traffic generator). In practice, in the ns-2 emulation plat-
form, implementation of the protocol operating mode is very limited. So limited
that the manual reports that only the opaque mode was implemented. Existing
functionality of the protocol mode can be the basis for further development.

Expanding the Ns-2 Emulation Environment 25

In both operating modes, input and output modules® and the real-time sched-
uler are used to enable the ns-2 to work as an emulator and, as a result, to
cooperate with real-world networks.

2.2 Real-Time Scheduler

The ns-2 is an event-driven simulator. Events are stored in the event calendar
(the calendar queue), where they are queued in non-descending time order. The
process of the extraction of events from the calendar, according to their chronol-
ogy of execution, is served by a scheduler. During simulation, events in the ns-2
platform are executed in real-time, and order of execution is set according to the
simulator’s virtual time. It means that in reality, events are executed as soon as
possible, and usually much faster than the virtual passage of time. Only in the
case of simulations of very complex networks is it possible that simulated time
will be longer than simulation time (time that has passed in the real world).

Cooperation of simulated networks with real-world networks demands that
all events in the simulation platform must be executed in real-time. Because of
this demand, in the ns-2 emulator the default system scheduler was replaced with
a real-time scheduler able to execute events in real-time. If the testbed computer,
on which the ns-2 emulator is running, is too inefficient (CPU “horsepower” is
insufficient), there is a danger that delays in the execution of some events might
happen. If such delay exceeds the threshold value, stored in the slop factor
parameter, the ns-2 will produce a warning.

The default value of the slop factor is 10ms, and it is only three or four
times less than the video frame period (frame display time). In the case of the
analysis of video streams, transmitted in real-time, such and even smaller delays
will cause substantial falsification of research results. An answer to this problem
were extensions to the ns-2 simulator, developed at the University of Magdeburg
(Germany) [8,9]. Extensions included improvements to the real-time scheduler
module, modification to modules enabling the emulator to cooperate with the
real-world network (network objects and tap agents) and trace extensions.

Improvements reported in [8,9] were intended for the emulation of mobile
networks. In the case of the emulation of video transmission in a wired net-
work, despite the usage of all above mentioned extensions, limitations to the
emulated execution of real-time transmission still significantly falsified the test
results. Therefore, further enhancements to the ns-2 emulator were needed. The
first attempt at these enhancements was briefly mentioned in the paper [10]. In
the second attempt, current extensions to the ns-2 simulator working in emula-
tion mode were developed. Full extensions included network interface handling,
address/port mapping, initial and final packet processing, improvements to the
real-time scheduler and extensions for the emulator’s protocol operating mode.
The first two will be described in the next section.

3 Input and output modules, respectively, captures traffic and (after processing) inject
it into a real-world network.

26 R.R. Chodorek and A. Chodorek

3 Flexible Mapping of Incoming and Outgoing Traffic

When creating the ns-2 network emulator, it was assumed that it must cooperate
not only with directly connected computers (which entails the usage of a homo-
geneous network, made with the use of one technology), but also with many
computer systems connected via a complex, heterogeneous IP network. This
assumption makes it possible to test the cooperation of applications executed
on computer systems geographically located in different places and in different
fragments of the Internet (for instance, in Kielce and Cracow). It also allows one
to apply emulation only in chosen fragments of the end-to-end network path and
only there, where we want to introduce test modifications. In other fragments
of the end-to-end path, packet routing and processing will be carried out using
existing, real-world network infrastructure, and test traffic will be subjected to
a natural interaction with the real-world Internet traffic.

Practical implementation of the above assumption requires the development
of new programming modules to serve the network interface, which allows the
ns-2 emulator to flexibly capture packets received from the real network, and
inject packets into the real-world network after processing. Improvements to
modules capable of cooperation with the internal routing of the emulator also
are needed. All modification and improvements are supposed to be able to serve
all (unicast, broadcast and multicast) IPv4 addressing, and unicast and multicast
IPv6 addressing (anycast addressing is omitted).

In order to achieve the assumptions, two programming modules were imple-
mented: Network/newIP and Agent/Tap/newIP. They are derived classes of,
respectively, Network and Agent/Tap superclasses. The Network/newIP mod-
ule* realizes cooperation with real-world IP networks. The Agent/Tap/newIP
module is associated with a given network node and performs the conversion of
packets derived from the real-world network of packets used by the ns-2 emula-
tor. The Agent/Tap/newIP module also performs the reverse conversion, where
ns-2 packets are mapped as packets that will be injected into the real network.
This module assures proper cooperation between the Network/newIP module
and the given node of the emulated network.

The relationship between elements of the ns-2 emulator are illustrated with
an example of a simple, five-node emulated network, shown in the Fig. 1. Nodes of
the emulated network — R1, R4 and R5 — receive (or send) live data (to) the real-
world network. This live traffic is transmitted through Tap agents (al, a2, and
a3), connected to emulated nodes R1, R4 and R5. The Tap agents are instances
of class Agent/Tap/newIP. Agents which cooperate with real-world networks are
seen by emulated nodes as typical agents of protocols or services (i.e. as other
instances of the Agent base class).

The Tap agents also cooperate with instances of the Network/newIP class —
netl and net2. As we can see from the Fig.1, both 1-to-1 and 1-to-many

* The identifier of the module (newIP) denotes, that the newIP is a newly written mod-
ule for cooperation with the IP protocol. This name was given, because Network/IP
class already exists in the ns-2.

Expanding the Ns-2 Emulation Environment 27

R1 Emulated network

Tap agent Tap agent . Tap agent

al | a2 | a3
Network Network
‘module module
netl et
Interface Interface
ethl eth?

Fig. 1. Emulation system

cooperation is possible. In the picture, one Network/newIP module cooperates
with one Agent/Tap/newIP agent (a2 and net2), and one Network/newIP mod-
ule (netl) cooperates with many (precisely, two: al and a3) instances of the
Agent/Tap/newIP class.

It’s worth remarking that the original ns-2 mapping, available for emula-
tion, permits only 1-to-1 mapping. In this typical solution, traffic introduced via
a given interface from a real network to the emulated one is sending to a node of
the emulated network using the typical ns-2 flat addressation (unlike hierarchical
IP addressation), obtained by the agent. For example, IP address: 2, port: 3. If
a packet is injected from the emulated network to the real one, it is injected via
the output interface “as is” — it’s just copied from the input buffer without any
changes (including content of the TTL field).

In the case of the described extensions, the Network/newIP network module
classifies packets according to rules defined by the user and sends the packet to
a corresponding agent or agents. The module also retrieves parameters from the
agent(s). If traffic is injected from the emulator to the real-world network, Tap

28 R.R. Chodorek and A. Chodorek

agents send packets to the Network/newIP network module, which, according
to stored rules, makes the necessary changes in content to the packet, includ-
ing address mapping. Address mapping refers to MAC addresses (in link layer’s
frames), IP addresses (in IP datagrams), and port numbers (in transport proto-
col’s packets).

In the case of the mapping of IP addresses and/or port numbers, checksum
processing is needed. Checksum processing is performed for transport protocols
(TCP, UDP) and the IP protocol, version 4 (in IPv4 only headers are protected
by checksum). Such operations are performed by Network/newIP modules.

Mapping of traffic introduced to the ns-2 emulator can be done on the basis
of typical IP flow identifiers:

— quintuple (IPv4 and IPv6): source IP address, destination IP address, source
port, destination port and type of transport protocol,
— triple (IPv6 only): flow label, source IP address, destination IP address.

Flow identification allows for the implementation more sophisticated traffic
engineering. For instance, traffic introduced via interface ethl (Fig.1) can be
transmitted through the emulated network to the eth2 interface according to
assumed rules. For example, the TCP traffic is transmitted via routers R1, R3
and R4 and the UDP traffic is transmitted via routers R5, R2 and R4.

1-to-many mapping plays a crucial role in the emulator, because of hardware
limitations. If we want to carry out emulation experiments in which we want
to perform empirical analysis of interactions between different traffic sources
(applications) executed on many servers, then we would connect N computers
(application servers) to N interfaces with high performance emulation servers.
However, in the case of laboratory tests, we usually have at our disposal many
PC computers, each equipped with only one network card. Those computers are
ideal to work as end systems and live traffic generators, but if we try to use one
of them as an emulation server, in the case of 1-to-1 mapping we will only be
able to connect one generator of live data to the ns-2 emulator. And we have no
possibility of connecting separate, physical receivers of the transmitted data. In
the case of tests of video transmission, where visual quality check (analysis of
quality of experience) is important, the possibilities offered by 1-to-1 mapping
are woefully inadequate.

Server computers are usually equipped with two, or four, different communi-
cation interfaces. However, further expansion to more interfaces can be difficult
(for example, in the case of the smallest rack-mount servers, sized 1U). Addition-
ally, a large number of interfaces can complicate the organization of experiments
and time-consuming patching.

The proposed solution allows us to skip this problem. It assumes that the
end system computers can create a group of machines connected through an effi-
cient network to a physical switch, and the switch is, in turn, connected to the
server interface. Such topology of the test network was used during experiments
described in [11], where 1 server interface was able to serve a group of multicast
receivers. A situation where a group of senders was connected to one interface
of emulation servers also were investigated.

Expanding the Ns-2 Emulation Environment

Multimedia server

Multimedia client

RI Emulated network
& :
R3 R4 <
Multimedi M
uftimedia Berver Tan hoent Tap agent
al a?
Network Network
module module
netl net2
| |
Interface Interface
ethl eth2

Emulation server

(b)

Itimedia client

RI Emulated network

S

R3 R4

R2

Multimedia client

Tap agent
al

Network
module

netl

Tnterface
ethl

Emulation server

Tap agent
a?

()

29

Fig. 2. Network topologies: (a) schematic diagram, (b) wiring diagram (emulation
server equipped with two interfaces), (c¢) wiring diagram (emulation server equipped

with one interface)

30 R.R. Chodorek and A. Chodorek

To validate the solution, performance tests were carried out. These tests were
to transmit the TCP and UDP traffic between two endpoints (the endpoints were
real computers outside an emulation environment). The proposed extension was
verified by a long-term video traffic transmission in the presence of foreign traffic.
It was checked to see whether the Ethernet frame loss reached zero and the
emulated bandwidth was equal to the predetermined one.

On the basis of the results of a broad range of performance tests (conducted
by the Authors during their experiments on SD and HD video transmission [11])
it can be stated that for many experiments 2 or 4 interfaces of an emulation
server should be enough, if a 1-to-many mapping will be used. In the case of
simple networks, with a small number of end-systems, 2 interfaces are enough.
In the case of more complex systems, which need a partition, e.g. according
to traffic sources, 4 interfaces should be used. It is possible that if the testbed
network will be complex enough 4 is too small number of interfaces.

It should be remembered that during the experiments the critical infrastruc-
ture must be controlled. At a minimum, an Ethernet frame loss measurement
at the switch must be performed. If the experiment is well prepared, Ethernet
frame loss should be zero or, at the very least, negligible.

A simple emulation experiment, where the testbed network was partly real-
ized in reality and partly emulated, is shown in Fig. 2. The network consists of
one sender (multimedia server), one receiver (multimedia client) and four routers
(R1...R4). A schematic diagram of the testbed network is depicted in Fig. 2a.
Traffic, generated by the sender, enters the interface of router R1. Then, via
router R2 or R3 (according to internal routing rules), it is directed to router R4,
which sends the traffic to the receiver.

Figure 2b shows a diagram of cable connections in the case of an emulation
server equipped with two network interfaces. The R1 and the R4 are boundary
routers of the emulated network. Because the number of available server inter-
faces is greater than or equal to the number of connected real-world end systems,
senders and receivers can be connected to separate physical interfaces.

Packets are captured and mapped to virtual ns-2 data structures in the
network modules (instances of Network/newIP class). One network module is
associated with one network interface of the emulation server. ns-2 packets are
transferred to Tap agents (instances of Agent/Tap/newIP class). Tap agents are
associated with data streams or flows and are attached to nodes of the emulated
network. The 1-to-1 relation between network module and Tap agents is created.

The emulation server, presented in Fig. 2c, has only one network interface. As
is shown in the wiring diagram, an auxiliary equipment (switch) was introduced
to the real-world network to enable sharing of the interface. Because of the
coexistence of input and output data streams in the same server’s interface, the
1-to-many relation between network module and Tap agents is created.

4 Conclusions

In the paper our enhancements to the network simulator ns-2, working as an emu-
lator, were presented. Improvements refer to the mapping of incoming and

Expanding the Ns-2 Emulation Environment 31

outgoing live packets onto internal ns-2 packets. Improvements were designed
to exceed a hardware limitation that restricts the number of end-systems con-
nected to the emulator to the number of network interfaces of the emulation
server.

The idea of the enhancement is that a high-speed switch, connected to the
interface via a high-speed network, serves as a hardware expander, and the pro-
posed flexible 1-to-many mapping (instead of the build-in 1-to-1 one) based
on both MAC and IP addresses, as well as port numbers, serves as a multi-
plexer/demultiplexer of live traffic.

The proposed solution was successfully tested for HD video transmission.

Acknowledgment. The work was supported by the contract 11.11.230.018.

References

1. Fall, K., Varadhan, K.: The ns Manual (2014). http://ftp.isi.edu/nsnam/dist/
release/rcl/doc/

2. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Wehrle, K., Giines,
M., Gross, J. (eds.) Modeling and Tools for Network Simulation, pp. 15-34.
Springer, Berlin (2010)

3. Henderson, T.R., et al.: Network simulations with the ns-3 simulator. SIGCOMM
demonstration (2008)

4. Bhaskar, D., Mallick, B.: Performance Evaluation Of MAC Protocol For IEEE
802.11, 802.11Ext. WLAN And IEEE 802.15. 4 WPAN Using NS-2. International
Journal of Computer Applications 119.16 (2015)

5. Pei, G., Henderson, T.: Validation of ns-3 802.11b PHY model (2009). http://www.
nsnam.org/~pei/80211b.pdf

6. Piro, G., Baldo, N., Miozzo, M.: An LTE module for the NS-3 network simulator.
In: Proceedings of the 4th International ICST Conference on Simulation Tools
and Techniques. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) (2011)

7. Rene, S., et al.: Vespa: Emulating infotainment applications in vehicular networks.
IEEE Pervasive Comput. 13(3), 5866 (2014)

8. Mahrenholz, D., Svilen, I.: Real-time network emulation with NS-2. In: Proceedings
of the 8-th IEEE International Symposium on Distributed Simulation and Real
Time Applications. Budapest Hungary (2004)

9. Mahrenholz, D., Svilen, I.: Adjusting the ns-2 Emulation Mode to a Live Network.
In: Proceedings of KiVS’05. Kaiserslautern, Germany (2005)

10. Chodorek, R., Chodorek, A.: An analysis of QoS provisioning for high definition
video distribution in heterogeneous network. In: Proceedings of the 14th Interna-
tional Symposium on Consumer Electronics (ISCE 2010), Braunschweig, Germany
(2010)

11. Chodorek, R.R., Chodorek, A.: Providing QoS for high definition video trans-
mission using IP Traffic Flow Description option. In: Proceedings of the IEEE
Conference on Human System Interaction, pp. 102-107, Warsaw, Poland (2015)

http://ftp.isi.edu/nsnam/dist/release/rc1/doc/
http://ftp.isi.edu/nsnam/dist/release/rc1/doc/
http://www.nsnam.org/~pei/80211b.pdf
http://www.nsnam.org/~pei/80211b.pdf

2 Springer
http://www.springer.com/978-3-319-39206-6

Computer Networks

23rd International Conference, CHN 2016, Brunow,
Poland, June 14-17, 2016, Proceedings

Gaj, P.; Kwiecien, A.; Stera, P. (Eds.)

2016, XV, 436 p. 174 illus., Softcover

[SBM: 878-3-319-38206-6

	Expanding the Ns-2 Emulation Environment with the Use of Flexible Mapping
	1 Introduction
	2 The Network Emulator Embedded in the Ns-2
	2.1 Operating Modes
	2.2 Real-Time Scheduler

	3 Flexible Mapping of Incoming and Outgoing Traffic
	4 Conclusions
	References

