Integrability in Action: Solitons, Instability
and Rogue Waves

Antonio Degasperis and Sara Lombardo

Abstract Integrable nonlinear equations modeling wave phenomena play an
important role in understanding and predicting experimental observations. Indeed,
even if approximate, they can capture important nonlinear effects because they
can be derived, as amplitude modulation equations, by multiscale perturbation
methods from various kind of wave equations, not necessarily integrable, under
the assumption of weak dispersion and nonlinearity. Thanks to the mathematical
property of being integrable, a number of powerful computational techniques is
available to analytically construct special interesting solutions, describing coherent
structures such as solitons and rogue waves, or to investigate patterns as those
due to shock waves or behaviors caused by instability. This chapter illustrates a
selection of these techniques, using first the ubiquitous Nonlinear Schrédinger
(NLS) equation as a prototype integrable model, and moving then to the Vector
Nonlinear Schrédinger (VNLS) equation as a natural extension to wave coupling.

1 Introduction to Integrability and Solitons

Many nonlinear partial differential equations which model dispersive wave prop-
agation possess solitary wave solutions. In most physical contexts these special
solutions describe the motion in one, two or three-dimensional space of a bump,
possibly modulating a carrier plane-wave, whose profile depends on the particular
nonlinear terms which appear in the wave equation itself. Among the nonlinear
wave equations which have been derived in many physical applications, we consider
here those special ones which prove to be integrable and model wave motion in 1-
dimensional space. The solitary wave solutions of integrable equations, because of
their exceptional mathematical properties, have been termed solitons [1]. The first

A. Degasperis
Dipartimento di Fisica, “Sapienza” Universita degli Studi di Roma, Roma, Italy
e-mail: antonio.degasperis @uniromal it

S. Lombardo (<))

Department of Mathematics and Information Sciences, Northumbria University, Newcastle upon
Tyne, UK

e-mail: sara.lombardo @northumbria.ac.uk

© Springer International Publishing Switzerland 2016 23
M. Onorato et al. (eds.), Rogue and Shock Waves in Nonlinear Dispersive Media,
Lecture Notes in Physics 926, DOI 10.1007/978-3-319-39214-1_2



24 A. Degasperis and S. Lombardo

observation of a soliton dates back to 1834 (John Scott Russell’s wave of translation
[2]). Among the peculiar properties which are distinctive of integrability, we point
out the following (see also Sect. 2):

» existence and explicit construction of infinitely many independent conservation
laws;

» existence and explicit construction of N-soliton solutions, for any N;

» existence of a nonlinear generalization of the Fourier transform, the Spectral
transform, which provides a tool to investigate the solution of special initial-
boundary value problems.

Because of these properties, integrable nonlinear wave equations may be understood
as the limit to infinitely many degrees of freedom of classical Liouville-integrable
dynamical systems. Some of these integrable wave equations are relevant as
approximate models in various physical contexts. In these cases one may say
that Nature and Mathematics go well hand in hand as the powerful methods of
integrability allow for analytical description/prediction of wave behaviors.

The reader who is not familiar with the theory of integrable systems, and, in
particular, with the theory of solitons, may find it of interest to have a preliminary
look at the following rather long, and yet partial, list of model equations of physical
interest which have been proven to be integrable ( is the evolution variable and x is
the space coordinate, while partial differentiation is indicated by a subscript)

* Korteweg-de Vries (KdV) equation:
Uy — Uxxx = 6uux (1)
* Benjamin-Ono (BO) equation:

u, — Huye = uuy (2)

where the Hilbert operator H is defined as Hf (x) = %ﬁ o dyi%)c
» complex modified Korteweg de Vries (cmKdV) equation:

Up — Uy = 6s|u|2ux , s==+l1 3)
* Sine-Gordon (SG) equation:
Uy — Uy = —SiN U “4)
* Nonlinear Schrodinger (NLS) equation:
WUy + Uy = 2s|u|2u , §s==+1 5)

(continued)
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* Long Wave-Short Wave (LWSW) equation:
ity + e Fou=0, v = (luf), (6)
* Derivative Nonlinear Schrodinger (DNLS) equation:
iUy + Uy = is(|u|2u)x , s==+1 (7)
* Massive Thirring Model (MTM):

iy + iy — Uy = |un|u ®)

iu2t — iu2x —uy = |u1 |2u2

* Vector Nonlinear Schrodinger (VNLS) equation:

N
iujt+ujxx=2(zsn|un|2) wj , j=1,---,N ©)

n=1

where s, = £1. For N = 2, 51 = s, = —1 this is the Manakov model.
e Three Wave Resonant Interaction (3WRI) equations:

k%
uy + Viuie = uyug
* %
uy + Vattox = —uj u3 10)
gk ok
uz; + Vauz, = uj u,

where the asterisk denotes complex conjugation and where V;, V, and V3
are real constants.

All these nonlinear integrable equations have the common property of being the
condition that two linear first order homogeneous ordinary differential equations,
one with respect to the variable x and the other with respect to the variable 7, be
compatible with each other. This pair of linear equations is commonly referred to as
Lax pair. In order to clarify and detail this scheme, we give here few examples,
which may serve as well as guidelines for further computational exercises. In
general a linear homogeneous ordinary differential equation with respect to the
variable y takes the form

Uy =MyY. ¥v=v0), 1D
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where M is a N x N matrix whose entries are functions of the independent variable
y, and ¥ (y) is a N-dimensional vector solution. Thus in this notation a Lax pair
reads as

Ve=Xy, Yi=Ty. ¢¥=9x0, (12)

where X and T are N x N matrices and the vector v is required to solve both
equations. It is plain that, for a generic choice of X(x, f) and T'(x, 7), only the trivial
solution ¢ = 0 solves the pair of Eqs. (12), whereas a non vanishing solution ¥
exists if the compatibility condition ¥, = v, holds true, namely, as implied by
(12), if the matrices X, T satisfy the equation

X +XT=T,+TX, or X,—T.+[X,T] =0, (13)

where [A, B] = AB — BA and O stands for the zero matrix. It is moreover crucial
for the integrability that the matrices X, T depend also on a complex variable A, the
so-called spectral variable, say X = X(x,t,A), T = T(x,t, 1), with the additional
strong requirement that the compatibility condition (13) holds for any value of A.
The following few explicit examples illustrate how indeed some of the integrable
equations in the list above follow from compatibility conditions of the form (13). To
this aim let X be the 2 x 2 traceless matrix

X = idoy + 0(c. 1), ogz((l)_ol), Q(x,t)=(u(3t)v()(c)’t)). (14)

This is the simplest choice since X(x,#, A) is polynomial of first degree in the
spectral variable A while its dependence on x and 7 comes through the functions
u(x,r) and v(x, ) which will eventually play the role of wave fields. As for the
second equation of the Lax pair (12), the matrix T'(x,#, A) may be taken as a third
degree polynomial

T=MTs+ AT + AT, + Ty . (15)

In this case both sides of the compatibility equation (13) are fourth degree
polynomials in A so that Eq. (13) yields five matrix algebraic/differential equations
which can be easily solved (this step being left to the diligent reader). The solution
of these equations can be conveniently given as the following expression of the four
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matrix coefficients 7; [see (15)]:

T3 = —4iC3C73
Tz = —4C3Q + 2iC2CT3
. 5 (16)
T = 2ic303(0x — Q7) + 220
To = c3([Q, Ou] + Qu — 2Q3) —ic203(0x — QZ)
while the additional fifth equation
01 = 3(Quee — 60°Q,) — ic203(Qrx — 20%) (17)

yields the dispersive nonlinear wave equation for the matrix Q(x, f), namely for its
two entries u(x, f), v(x, t). The two parameters c3 and ¢, are arbitrary. It is now left
to the reader to verify that the KdV equation, the cmKdV equation and the NLS
equation which appear in the list of integrable wave equations given above are just
special cases of the evolution equation (17). Precisely, the choice c; = 1, ¢, = 0
and the reduction condition v = —1 yields the KdV equation (1), while setting again
¢z = 1, c, = 0 but with the condition v = —su*, s = =*1, leads to the cmKdV
equation (3), and finally the NLS equation (5) corresponds to the choice ¢z = 0,
¢ = 1 together with the reduction v = su*, s = £1.

Different choices of the two matrices X, T which appear in the Lax pair (12)
generate, by the same scheme based on the compatibility equation (13), different
integrable nonlinear (systems of) partial differential equations. For instance, if X
and T are still 2 x 2 but their dependence on the spectral variable A is rational rather
than polynomial, one may obtain the SG equation (4) and the MTM (8). If instead
X and T are higher rank R > 2, the 3WRI system (10), the LWSW (6) equations as
well as the Manakov model [(9) for N = 2], are obtained for R = 3, while the rank
R = N + 1 is required to derive the system of N coupled NLS equations (9).

Once a nonlinear wave equation has been associated to a Lax pair according to
the method we have sketched here, what is this association good for?

The answer to this question is contained in the huge collection of research results
which accumulated during the last half-century. Thus we conclude this section
with a list of works on the subject which is neither exhaustive nor complete, but
which may guide the interested reader in the vast land of integrability and its
applications. A starting point for a reader with no previous exposure to integrability
are the books [3, 4] which present an overview of solitons in applications. These
are complemented by more classical (and at times more detailed) textbooks such
as [5-13]. An overview on the origin of soliton theory and a fairly complete set of
references of its origins can be found in [14]. A more mathematical introduction
to the theory of integrable systems is presented in [15]. This text complements
collections such as [16, 17] and classical textbooks such as [18, 19]. In [20] the
universality of integrable systems is well explained, whereas the link with multiple
scale analysis is given in [21] and reference therein. An introduction to the theory of
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nonlinear waves can be found in the monographs [22-25]. As the NLS equation
plays a central role in our exposition, we draw the reader’s attention to a few
monographs on this fundamental model [19, 26-28].

2 Integrability in Action: The NLS Equation as Study Case

The Nonlinear Schrodinger (NLS) equation
ity + e = 2s|lu’u, s=+1, (18)

has been first derived [29] in optics in the self-focusing case s = —1. However it
arose again and again in different physical contexts, and it has been then recognized
as a universal equation that models amplitude modulation of a quasi-monochromatic
wave due to weak nonlinearities. Its universality stems from its derivation by
multiscale perturbation theory [20, 21, 30, 31] from very large families of nonlinear
dispersive wave equations (the nonlinear terms being treated as perturbation of the
linear ones) which includes for instance Maxwell equations in Kerr and y, media,
Euler equations in ocean physics and Einstein gravitational field equations, among
many others. In particular it can be derived by multiscale perturbation also from
integrable equations, e.g. from the SG, KdV and cmKdV equations (see Sect. 1).
Though its integrability has been discovered independently [32], from this very last
fact one can predict that indeed the NLS equation should be integrable itself [20].
The aim of this section is to shortly illustrate a number of important consequences
of the Lax pair associated to the NLS equation. In particular, we first show how
to derive infinitely many local conservation laws. It is also shown here that the
technique of transforming the Lax pair by a Darboux transformation leads to the
algebraic construction, from a known solution, of a novel solution of the NLS
equation.

2.1 Conservation Laws from the Lax Pair

Let us first consider how to obtain from the Lax pair an infinite sequence of local
conservation laws,

B =0, n= 12 19

where the functions p™ (x, ) and f" (x, ) are the conserved densities and, respec-
tively, the corresponding currents. The method we follow here is applicable to
solutions of the NLS equation (18) which vanish sufficiently fast as the variable
|x| goes to infinity, namely u(x,7) — 0 as x — =£oo. The extension to different
boundary conditions is possible with some extra technical efforts. The Lax pair
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associated to the NLS equation is given by (12) where the matrices X and T are
respectively given by (14), where v = su*, and by (15) and (16) with ¢3 = 0,
¢, = 1. Since it is convenient to proceed by performing our computation in the
algebra of matrices, we consider now the 2 x 2 matrix ¥ (x,, A) whose column
vectors are two linearly independent solutions of the Lax pair, namely

V=XV, ¥ =TV. (20)
When x — 00 the matrix Q vanishes and the matrix solution ¥ goes to a solution
¥® of the Lax pair with Q = 0. Just for mere sake of convenience, we choose the
solution ¥ which satisfies the boundary condition

¥ — ¢ = expliloz(x + 2A1)], x — —o0. 21

It is also convenient to introduce the matrix @(x, 7, 1) = ¥ (¥ 7)~! which satisfies
the pair of equations

&, = iMooz, D]+ 0P, @, =2i)’[o3, P]+ (A0 +i030% —i030,)P. (22)
More conveniently to our purposes, we rewrite these equations in the following form

(03P)x = iM(P — 03P03) + 030D

2
(03D), = 2iA%(® — 03D 03) + (21030 + iQ? — iQ,) D (23)
which shows that the two functions
R(x.t,}) = tr(030P) ., F(x,1,A) = —tr[2h03Q + iQ* — iQ.) D] . (24)

where tr(M) stands for the trace of the matrix M, satisfy, by cross-differentiating the
two Eqgs. (23), the conservation equation

R +F,=0. (25)

Note that this continuity equation is direct consequence of the Lax pair (20) and that
it depends on the spectral variable A through the matrix @ [see the definition (24)].
It now remains to extract from this last Eq. (25) conserved densities and currents
whose expression contains only the solution u(x, t) of the NLS equation (18). This
step is done via the following theorem:

Theorem 1 The matrix @ (x, t, ) which solves the system (22), with the boundary
value @ — 1 as x — —o0, has the following asymptotic expansion as |A| becomes
very large, say around the point at infinity of the A-plane,

1 1 1
-+ = F

D=1 (0] D3+ ... 26
+/X 2 h + 3+ (26)

where the matrix coefficients @, depend only on x and t.
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The computation of these coefficients @, can be done recursively by inserting
the expansion (26) into the first of the differential equations (22), and by splitting
the matrix @ into its diagonal part @@ and its off-diagonal part @), namely & =
@@ 4 @) By taking into account the boundary condition @ — 1 as x — —oo [see
(21)], the upshot of these computations is summarized by the following formulae (in
self evident notation)

=1, o =0, & =[_dy0r.0® (1), n=>1
27
?) = Loy@ — 00"y, n=>o0.

Note that this recursion equations generate the expression of all coefficients q),ﬁ"’ and
@,(lo) in a way that is well suitable to symbolic computation. Equation (25) clearly
yields infinitely many local conservation laws via the expansions

1 1 1 1 1 1
R=—-R —R —R ey, F=-F+=FNh+—=FHK+..., 28
TRt Rt SR st gt it (28)

namely
Ry+Fin=0, n>1. (29)

Here we give the first three conserved quantities and leave the computation of the
currents to the interested reader. It is convenient to define the conserved densities as

on = is2" 'R, = is2" 'tr(03Q ), n>1, (30)

and the time-independent quantities, i.e. the constants of the motion, as

+o0
Cn=/ dx pu(x,1), n>1, 3D
—00
to arrive at the well known expressions
+o0 +o00 1
Ci :/ dxlul*>, G :/ dxIm(uu®), C3=H--C;, (32)

o0 o0 6

where the functional

+o0
H:/ dx(|ug|?® + s|ul, (33)
—00
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is the standard Hamiltonian which yields the NLS equation (18) via the Hamilton
equation

S§H
U = —i .
! Su*

(34)

2.2 The Initial Value Problem and Particular Solutions

Before proceeding further we shortly comment on the way the Lax pair (20) gives
the method of investigating the initial value problem u(x, 0) — u(x, 7) for the NLS
equation (18). This method generalizes the well known Fourier analysis as applied
to a linear equation with constant coefficients, for instance the linear Schrodinger
equation iu; +u,, = 0. In the linear case, one introduces the Fourier Transform (F7T)
of the solution

+o00 }
ik, t) = / dx e®u(x, 1) (35)
—00
together with its simple time dependence fi(k,7) = ii(k,0)e~*"" and then one

performs the chain of steps
u(x,0) — ak,0) — uk,t) — ul(x,1).

Note that in the last step it is essential that the Fourier map u(x, 1) — u(k, 1) (35) be
invertible. Note also that we are dealing here with the class of solutions u(x, ) which
vanish as |x| — oo sufficiently fast so that their Fourier integral is well defined. The
initial value problem for the NLS equation (18) can be investigated in a similar way.
In this case the Fourier transform has to be replaced by a new transform known as
the spectral transform (or scattering transform) (S7). The map u(x, #) — ST which
takes the solution u(x, r) into its spectral transform ST is computed by considering
the first equation of the Lax pair (20) as the eigenvalue problem [see (14)]

LY =AW, L= —ioyd, +i030, (36)

for the differential operator L. While we refer the reader to textbooks, e.g. [6, 12],
for details, we limit ourself to pinpoint here differences and similarities between the
ST and the FT. In the FT (35) the spectral variable k takes its values on the real line,
which is also the continuum spectrum of the differential operator L. In contrast, the
ST is defined not only on the continuum spectrum of L but also, if it exists, on its
discrete spectrum which consists of a finite number of complex values of k. The
solutions of the NLS equation which correspond to these discrete eigenvalues are
the soliton solutions. Like the FT, also the ST has the similarly simple and explicit
exponential dependence on the time variable ¢, namely the nonlinear mapping



32 A. Degasperis and S. Lombardo

u(x, t) — ST(¢) transforms the nonlinear dynamics of the NLS equation into a trivial
linear dynamics. It is moreover easy to show that the approximate expression of the
ST obtained by linearizing the nonlinear transformation u(x, ) — ST (¢) reduces, on
the continuum spectrum, to the F7. Similarly to the linear case, also for the NLS
equation the solution of the initial value problem goes via the steps

u(x,0) — STO) — ST@®) — u(x,1),

the last one requiring the (hard) task of reconstructing u from its ST. The problem of
inverting the nonlinear map u(x) — ST is very important in many applications, e.g.
in medical imaging techniques and earth’s crust geophysics, and it is a research field
on its own known as inverse problem. The application of the mathematical methods
of the inverse problem to the solution of nonlinear integrable wave equations is a
well established technique known as IST, namely Inverse Spectral Transform, see
e.g. [12], or Inverse Scattering Transform, see e.g. [6, 13].

The physical significance of the solutions corresponding to the continuum
spectrum is of dispersive wave packets in contrast with the solutions corresponding
to the discrete spectrum which are instead multi-soliton solutions. In this respect
we notice that in the defocusing case s = 1, the operator L [see (36)] is formally
Hermitian, LT = L, with the implication that all eigenvalues are real; in this case
therefore no discrete spectrum is possible and the defocusing NLS equation has no
soliton solutions. This is not the case for the focusing NLS with s = —1 which
possesses bright soliton solutions since L' # L. These conclusions drastically
change if the solutions of the NLS equation do not vanish as |x| goes to infinity.
In the class of solutions which are required to behave as plane waves (see e.g. (47))
with |u(x, t)|] — a = constant amplitude as |x| — oo, the ST of u has been as well
defined and the method of solving the initial value problem has been extended to
cover this class of solutions in both the defocusing case s = 1 [19, 33-35] and in
the focusing case s = —1 [36]. In the defocusing case the NLS equation possesses
soliton solutions which behave as plane waves at the boundary. These solutions
are known as dark (grey or black) solitons. This occurs because the continuum
spectrum is the real axis with the finite gap —a < A < a within which real discrete
eigenvalues may exist (see e.g. Fig. 1, where a = 1). On the other hand, in the
focusing case, in addition to the continuum spectrum, a complex discrete spectrum
exists (see Sect. 3).

The spectral transform approach is able not only to deal with the initial value
problem but also to explicitly construct those solutions which correspond to a purely
discrete spectrum, namely the N-soliton solutions for any N. These special, yet
important, solutions can be obtained also by a simpler direct algebraic technique
which is known as the Darboux transformation (e.g. [37-40]), or Dressing method
(e.g. [10, 41, 42]).

We conclude this section by shortly illustrating this method, and by providing
the expression of the one soliton solution for solitons traveling in vacuum as well as
over a continuous wave background.
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Fig. 1 Defocusing NLS: S, = x-part spectrum/S, = t-part spectrum of u® = exp(—2ir)

Before doing this we point out that, as a general rule which applies to many
other wave models, the analytic expression of any explicitly known wave solution
depends not only on the variables x, ¢ but also on a number of parameters which may
be related to physically relevant properties and features. In the following however,
we omit to show in the expression of the soliton solutions those arbitrary parameters
which can be inserted by taking into account the symmetries of the wave equation. In
the present case the following five symmetries, or transformations u(x, t) — u'(x, )
that leave the NLS equation unchanged, can serve this purpose:

. x-translation u'(x,1) = u(x + £,1)

. t-translation u'(x,1) = u(x,t + 1)

. phase factor /(x,t) = ¢u(x, 1)

. rescaling u'(x, 1) = pu(px, p*t)

. Galilei change of frame ' (x, ) = /20720y (x — vt,1)

W AW N =

The initial step of the Darboux approach consists in linearly transforming the
matrix solution of the Lax pair (20). Precisely, if ¥ is a solution of the Lax pair
(20) with X, T replaced by X©, 7O and consequently Q replaced by O, the
Darboux transformation ¥ — W, reads

w(x,t, 1) = D(x, t, VO (x,1, 1), (37)

where D is a 2 x 2 matrix. We first observe that this linear transformation implies
that also the new matrix ¥ satisfies a compatible Lax pair of equations, namely
(20), where X = DXOD™! 4+ D.D™' and T = DTYD~! 4+ D,D™'. Thus the new
matrices X, T satisfy themselves the compatibility equation (13) as a consequence
of the compatibility equation X\” + XOT© = 7 4 TOXO of the original
Lax equations. Next one looks for a Darboux matrix D(x,t, A) which satisfies the
following (strong) conditions: (1) the new matrices X, T and the original ones X(©,
T© have the same structure (14) and (15) with (16); (2) the Darboux matrix has
a polynomial dependence on the spectral variable A. To our present purpose we
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assume that this polynomial be first degree,
D(x,t,A) = A1 —M(x,1), (38)

where the matrix M(x,t) has still to be found. To find it we use the symmetry
condition

YD (x, t, A”") XD (x,t, 1) = dy(M)1, (39)

where ¥ = 1ifs = —1 and ¥ = o3 if s = 1, and d;(A) is a scalar x, t-independent
second degree polynomial. This condition follows from the property Q" = sQ [or,
equivalently, v = su*, see (14)], and the pair of differential equations

D, +DX© =XxD, D,+DT% =1D, (40)

which are implied by the Lax equations (20) together with the Darboux trans-
formation (37). Once the matrix M has been computed, inserting the Darboux
matrix expression (38) into the first of the two Eqs. (40) yields the expression
Q = 0 + i[o3, M], or more explicitly and in self-evident notation,

u=u® — 2iM> , 41)

of the new solution u(x, 7) of the NLS equation. This expression can be given an
alternative form of more practical use by involving the constant eigenvalues o
and o™ of M(x, 1), together with their corresponding eigenvectors. While we skip
detailing this computation, we limit our consideration here only to the focusing case
s = —1. Thus, for the focusing NLS equation the Darboux matrix is

Dx,t, ) =AM —-a*1—(a —a*)P=A1—aP—a*(1-P), 42)

where P(x, 1) is the projection matrix

Pr.1) = I (|Z1|2 leﬁ) ’ 43)

2112 + 222 \ 2} 22 |22

which projects on the eigenvector z(x,#) of the matrix M (corresponding to the
eigenvalue o) with components z; (x, f) and z, (x, ). It turns out that this eigenvector
z is a vector solution of the original Lax pair with A = «, namely

=X ta)z, z=TO%xr1na)z. (44)
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The expression (41) takes now the more explicit and standard form

22

_ ,,0) ; *
u=u" -2 —a*)—"1— |
|z1 % + |z2|?

(45)

Note that here the complex number « has to be strictly complex Ima # 0) and
that it is going to be an arbitrary parameter in the new solution u(x, 7). It should be
also noticed that the applicability of the Darboux method obviously requires that the
solution u(” of the NLS equation, as well as the solution ¥ of the corresponding
Lax pair, be known. Before going into applications of the Darboux technique, let
us summarize the computational scheme in the following steps: (1) fix the known
solution u@(x,7) and ¥©(x,1, 1), (2) give an arbitrary complex value & to the
spectral variable, and fix an arbitrary constant vector y, (3) compute the vector
2(x, 1) = ¥ O(x,t,a)y, (4) apply the explicit formula (45). We also note that the
constant vector y in step (3) introduces an arbitrary complex parameter.

The simplest exercise now is the construction of the bright soliton solution. The
starting known solution is the vacuum #® = 0 and the solution obtained via the
Darboux method is

u = ésech(x) (46)

fora = i/2and y = (1, 1). Moreover, the corresponding operator L (36) possesses
two discrete eigenvalues, A; = o = i/2, A, = a* = —i/2 that are the roots of
the polynomial detD = (A — @)(A — ™), see (42). Consider now the Darboux
construction of soliton solutions obtained when u(?) is the continuous wave solution
of the focusing NLS equation:

u®(x, 1) = & (47)

In this case the general formula (45) leads to the expression

i 2 cosh _ ontigny _ ,—(n+igr)
U= eer [1 + COSh(?]) Ccos (px) e e }

cos(gt) — cosh(n) cosh(px) (48)

where p = 2sinh(7), ¢ = 2sinh(27). This is a one-parameter family of solutions,
the parameter 7, taking both real values 0 < n < 400 and imaginary values

n = in,0 < pu < 4o0o. As in the previous case the discrete eigenvalues of
the Lax equation (36) are on the imaginary axis of the A-plane, A; = icosh(n),
Ay = —icosh(n), and are again the roots of detD. Further observations on this

solution will be reported in the next section. We finally note that the Darboux
technique can be applied in a similar way (with some extra care [43—45]) to the
defocusing case. As already mentioned above, in the defocusing regime no bounded
solutions are found if u® = 0, while if u = exp(—2it) the zeros of det D are
required to be real. The Darboux method can be extended to polynomial Darboux
matrices D(x,t,A) of higher degree in A so as to construct solutions of the NLS
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equation which describe the interaction of N solitons (e.g. [46, 47]). Moreover, this
method applies as well to other Lax pairs and therefore to other integrable equations,
f.i. to the VNLS equation (see Sect. 4) (e.g. [37, 40, 4345, 48]).

3 NLS Equation: Linear Instability and Rogue Waves

Investigating the linear stability of a given solution u(®)(x, f) of a nonlinear partial
differential equation goes via the following standard computational steps: (1)
linearizing the given nonlinear equation in the neighborhood of the given solution,
(2) finding a complete set of solutions of this linear equation which are everywhere
bounded in the space variables, (3) checking the boundedness of all these solutions
over the entire time evolution. It is sufficient that some of this complete set of
solutions of the linearized equation grow in time with no bound to declare that
given solution 1 (x, ) of the nonlinear equation is linearly unstable. In particular,
if the linearized equation is, or may be mapped into, an equation with constant
coefficients, then the complete set of its solutions is the set of Fourier (continuous
wave) exponentials of the type exp[i(kx — w?)]. In such simple case the solution
of the nonlinear equation is unstable if there exist real values of k such that the
corresponding frequency w(k) has a non vanishing and positive imaginary part.

Here we show how the linear stability analysis can be alternatively handled if the
nonlinear partial differential equation is integrable. Consistently with the previous
section, we consider the integrability properties of the NLS equation (18), in both
the defocusing (s = 1) and focusing (s = —1) regimes. Again the basic tool is the
Lax pair (20) with (14). Let u® (x, ) be the given solution of the NLS equation (18)
whose stability we aim to investigate. Then the linearized NLS equation around this
solution reads

i(8u); + (Su)e — 25u P2 (Bu)* — 4s|u @ (Su) = 0, (49)

where the function Su(x, ) is the small deviation from the given solution u©®,
namely u = u® 4 §u. Assume now that not only the solution ¥ (x, 7) is known,
but that it is also known the explicit expression of an invertible matrix solution

g © (x,t, 1),
o_ (v v
el g0 ) C0

of the Lax pair (20) (with u replaced by u(?)). Then the following result provides the
link between the linearized equation (49) and the Lax pair.

Theorem 2 For any value of the variable A, the function (wég) (x,1,X))? satisfies
the linearized equation (49).
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Note that, for the vanishing solution u® = 0, (w;g))z = exp[—2iA(x + 2A1)]
coincides with the Fourier mode expli(kx — wt)], with w(k) = k* and k = —2A, of
the linear Schrodinger equation [see (49)]. If u®) # 0, in analogy with the previous
case, we learn that the solutions (1#2(2) (x, 1, 1))? of the linearized equation (49) play
the role of generalized Fourier modes. In this generic case the spectral variable A
runs over the entire spectrum, both continuum and discrete (if any), of the x-part
differential equation of the Lax pair [see (36)]. If the solution u© is such that its
corresponding functions (wég) (x,1,1))?, for some value of A in the spectrum, grows
with time with no bound, then this solution #(? is linearly unstable. In general the
computations required by this procedure may not be explicitly doable. However
for u® = 0 and u® = exp(—2is?), i.e. for the vacuum and the continuous wave
solution, the method can be carried out in explicit form. The linear stability of
the vanishing solution is easily established for s = =1. As for the continuous
wave solution, in both the defocusing s = 1 and focusing s = —1 regimes, the
discrete spectrum is empty and so it remains to compute the continuum spectrum.
For the purpose of establishing the stability, it is convenient to compute the spectrum
associated to both equations of the Lax pair (20). The x-part spectrum S, is defined
as the set of values of the spectral variable A such that the corresponding solution
(O of the Lax equation lI/)go) = XO@© js bounded on the entire x-axis at any fixed
time, and the #-part spectrum S, is defined via the Lax equation lI/,(O) = TOgO jp
just the similar way. More explicitly, the Lax pair of equations for the matrix solution
(50) reads

w0 — (i)k su(o)*) PO

u®  —i) 51
' 2iA% + is|u@)? 2AsuO* — isul* 0 1)
o ©) 4 5, @ A2 o (0))2 )

2Au'”) + iuy 2iA= — is|u'®|

The solution of these equations with u®© = exp(—2isf) can be conveniently
written as
ist i
WO, 1,2) = (eo _Om) V=) (52)
o

where the two matrices

A —is —2)2 2isA
W_(—i—)k) , F—( 20 2/\2)——2)&W (53)

depend only on A. Next we compute the eigenvalues +w and £f of the matrices W
and F, respectively. If g4+ are their corresponding common eigenvectors, it follows
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that Wg+ = £wgs , Fg+ = £fg+ with

w=+vVA—s5, f=-2AvA2-—5. (54)
The implication is that the Fourier modes take the vector expression
0 T eisr 0
O 1, 1)gs = e 0 oiv ) 8% (55)
e

which clearly show the spectra S, and S;. Indeed, in the defocusing case s = 1,
the “wave number” w is real if and only if A is real but off the forbidden gap
-1<A<l

So the spectrum S, = {—00 < A < =1} @& {1 < A < 400} . On the t-side, f is
real if and only if A € S, where S, = S, & {A = iv,—00 < v < 400}, see Fig. 1.
Since whenever w is real also f is real, we conclude that in this case the continuum
wave solution u(®) = exp(—2ir) is linearly stable.

Considering now the focusing case s = —1; by reasoning in a similar way one
derives from the expression (55), with (54), the x-spectrum, S, = {—oc0 < A <
400} @ {A = iv,—1 < v < 41} while the f-spectrum is §; = {—00 < A <
oo} d{A =iv,—oc0o<v <—1}®{A =iv,+1 <v < +o0}, see Fig. 2.

In this case the imaginary values of A in the interval —1 < ImA < 41 belong to
S, but not to S;, and therefore the solution u® = exp(2if) is linearly unstable.
This result is known for water waves as Benjamin-Feir instability [49], and as
modulational instability in optics [50] (see also [51]). It is common and convenient
to characterize these wave phenomena by plotting the imaginary part of the wave
frequency versus the wave number. To this purpose we consider again the Fourier-
like mode (see above) (1//&?)2 = %" expli(kx — wt)] with

k=—-2w=-2V2241, ok =-kVki—4. (56)

K Ugm Uym
Sx i St u i

Up
U, XK Uy

Fig. 2 Focusing NLS: S, = x-part spectrum/S, = t-part spectrum of u(®) = exp(2it); the crosses
indicate examples of solutions in the one parameter family (48)
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Fig. 3 NLS instability of u® = exp(2ir): imaginary part of frequency w(k) versus wave number
k, see (56)

The resulting instability plot is shown in Fig. 3.

The linear stability analysis can tell that a solution is unstable by showing an
exponential (or, in marginal cases, polynomial, see below) growth of that solution as
time goes by. However, it is not able to tell the long time evolution. Depending on the
perturbing deviation du(x, t), it may well happen that the growing perturbation even-
tually develop into a finite, likely soliton, solution of the NLS equation. Candidates
to playing such role are indeed solutions with a simple spectral characterization such
as those corresponding to discrete eigenvalues. One example of this type of solutions
of the focusing NLS equation can be computed by means of one of the tool provided
by its integrability, namely by the Darboux transformation. This construction has
been done in the previous section, the outcome being the family of solutions (48).
This is a one-parameter family, the parameter 1 being real if the corresponding pair

of discrete eigenvalues, A; = icosh(n), A2 = A} = —icosh() lie off the spectrum
Sy, while 7 has to be imaginary, i.e. n = i6, 0 < 6 < 7/2, if on the contrary the
discrete eigenvalues A = icos(f), A = A} = —icos(f), are required to be in the

spectrum Sy, see Fig. 2. The corresponding solutions of the NLS equation, ug (x, )
if 1 is real, and uy4 (x, t) if instead 7 is imaginary, have been separately found in
[52, 53] and, respectively, in [54]. Here the subscript gy, indicates the Kuznetsov-
Ma solution ugys [52, 53] while the subscript 4 indicates the Akhmediev solution
us [54]. The x and ¢ dependence of these two different types of solutions may be
understood by looking at the position of their corresponding eigenvalues in the A-
plane. Indeed, ugp(x, ¢) is localized in x and periodic in ¢ since its corresponding
eigenvalues are in S, and off S, while the opposite occurs for u4 (x, t) which is instead
periodic in x. In order to show that indeed this last solution u4 (x, ) describes the fate
of a small perturbation of the unstable continuum wave ) = exp(2ir), we first give
this solution the more convenient expression

2i(—0) 0 ei0+iq) _ ,—i(0+igr) , ;
= Wi— 1 . . _ 2 ' _ 2 ' 2
u=e [1+4isin( )cosh(qt) ~cos(0) cos(px)]’ P sin(0), g sin(26)

(57)

and then we note that its asymptotic behavior

u(x, 1) = e*'[1 + Su(x, 1) + 0(*M)], (58)
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as t — —oo, is that of the background continuum wave perturbed by the small
exponential tail

Su(x, 1) = isin(20)e " ¥ cos(px)e?" (59)

which satisfies the linearized equation (49).

Let us finally consider the marginal case of the solution family (48) which
corresponds to the parameter value n = 0, or equivalently, to the border value
A = =i of the corresponding eigenvalue, see Fig. 2. By performing this limit, the
final expression has no more exponential functions in it since it features only a
rational dependence on the variables x, ¢, which reads

(60)

upt) — [1 4(1 + 4ir) }

1442 1 1622

In this solution the subscript p stands for Peregrine and this is indeed the well known
Peregrine soliton [55]; it gained relevance as model of water rogue waves [5S6-61],
and later in other physical contexts [62—66]. Its peculiarity is that of appearing and
disappearing over an unstable background while its amplitude reaches a maximum
value which is three times that of the surrounding periodic wave. The suggestion
that rogue waves, as they appear in nature, may be described by rational solutions
has given a strong impulse in this direction, particularly to the mathematical side
of this subject. Various extensions [45, 67-78] of the Peregrine soliton to other
integrable wave models have soon been available and investigated, and still are to a
considerable extent. Some of these developments are discussed in the next section.

4 Wave Coupling: Integrability and Rogue Waves

The dynamics of waves frequently requires that more than just one field prop-
agates. For instance dealing with polarized light beams in a nonlinear (Kerr)
medium naturally leads to consider both self interaction, as in the NLS equation,
and cross interaction among the two different polarization fields. As a different
mechanism causing similar wave-wave coupling, one may consider two different
quasi-monochromatic waves with wave-numbers k;, k, propagating in the same
medium with cubic nonlinearity. Then a multiscale analysis shows that, if the weak
resonance condition v, (k1) = v,(ks) is satisfied, v, (k) being the group velocity, the
two waves interact with each other. In both these examples the resulting system of
equations reads

iy + yie + (@1 + grofua*)uy =0

. (61)
ity + Vattons + (g2|ua|* + o1 |ur|H)ur = 0



Integrability in Action 41

where the constant coefficients y’s and g’s depend on the particular physical process.
Integrable methods apply also to this system of equations provided the coefficients
satisfy the conditions y; = y», g1 = g21, &2 = gi2- Indeed, if these relations do
not hold true, the system (61) is not integrable, and no Lax pair is associated to it.
Thus there exist only three different integrable cases which, by appropriate cosmetic
rescaling, see Sect. 2, take the form

. _ 2 2y, —
l."ilr + Uiy 2(S1|M1|2 + s2|u2|2)ul 0 i S% — S% =1. (62)
iy + taxe — 2(s1|ur|” + s2|uz|Juz = 0

Depending on the two signs s;, s, we have the focusing case (Manakov model
[79]), si1 = s» = —1, the defocusing case s; = s, = 1 and the mixed case
s1 = —s» = 1 which models self-defocusing for the wave amplitude u; and
self-focusing for u,. All of these cases have applications in fluid dynamics [80—
82], optics [83—-87] and Bose-Einstein condensates [88]. The system (62) clearly
generalizes the NLS equation (18) and it is known as Vector Nonlinear Schrodinger
(VNLS) equation since the two-component vector (1) , uy) can be easily generalized
to a N-component vector for any N, see (9). As expected, it shares with the NLS
equation several properties but it also differs under various aspects. Its Lax pair
formally looks like (20) but now the matrices X and T are 3 x 3 with

10 0 0 siuf syus
X=iAX+0x1, YX=|lo-10]., 0=|wu 0 0 |, (63)
00 —1 w 0 0
and
T =2iA>Y + 200 + iX (0% — Q). (64)

Starting from these expressions, and similarly to what has been done for the NLS
equation, one can find an infinite number of local conservation laws of the form (29)
[89], and can construct soliton solutions by means of the Darboux transformation
(e.g. [43, 44]). Also the inverse spectral method can be extended to solve the initial
value problem when the boundary values, as x — =00, vanish, say u;(x, f) and
uz(x, 1) — 0 (see e.g. [79]), and also when u; (x, ) and u,(x, f) go, in the same limit
of x, to a continuous wave solution (see e.g. [90]).

Here our discussion focuses on the construction of bounded rational solutions
of (62) whose interest is well motivated by their application as rogue wave
models. In analogy with the NLS equation, and according to a general common
understanding of this phenomenon, the existence of rogue waves requires that
they are superimposed to an unstable continuous background. However we do not
address here the problem of determining the stability of the background solution,
as done in the previous section for the NLS equation. We rather limit ourselves to
point out that, quite differently from the NLS equation, instability occurs not only
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in the focusing regime s; = s, = —1, but also in the defocusing and mixed cases
(e.g. [45, 91, 92]). In the previous section we obtained the rational (alias Peregrine)
solution (60) by taking the limit n — 0 of the n-dependent family (48). The analytic
construction of rational solutions of multicomponent wave equations, as the VNLS
system (62), by taking such limit is no longer convenient, if at all doable. In the
following we show a direct way to solve this problem with no need to take this limit
operation. We begin by observing that the solution (48) of the NLS equation is made
out of exponential functions which come in, through the Darboux formula (45), from
the exponential solution (52) of the Lax pair (with s = —1). Thus, to our purpose,
the main task is to change the exponential matrix function exp[i(xW — tF)], see (52),
into a polynomial function. This is not possible if the matrix W(A) (and therefore
F(1)) is diagonalizable. It is instead possible if, for a special value of the spectral
variable A, the matrices W, F are not diagonalizable. If such value of A exists, it
is called critical and denoted A.. The expressions (53) and (54) clearly show that
only if the eigenvalues coincide with each other, say if w(l) = A2+ 1 = 0,
the matrices W, F are not diagonalizable. Indeed, in this case there are two critical
values A, = =i, and in fact, f. i. for A, = i, the matrix W takes the value

W(i):i(l 1) , 65)

which is nilpotent, namely W(i)> = 0. This property similarly holds for F(i) and for
W (—i) and F(—i). The implication is that the exponential exp [i(xW(A.) — tF(A.))]
is in fact the polynomial 1+ i[xW(A.) — tF(A.)], as implied by the Taylor expansion
of the exponential function. It is now a simple exercise to obtain again the Peregrine
solution (60) by this method.

The extension of this technique to the VNLS equation first requires the compu-
tation of the critical values A.. This can be done in a systematic way so as to find all
such critical values which eventually lead to the construction of bounded rational
solutions. The starting point is the expression

0) i(gx—vt)
u; (x,1) ae 2 2 2
= ) , = 2 66
(u(zo)(x, t)) (aze_’(q””)) V=42 na) (©0)

of the continuous wave solution of the VNLS equation (62) and of the corresponding
matrix solution

1 0 0
W(O)(x, LA =10 eilax—vo) 0 £ W) —1F (L)) (67)
0 0 e—i(qx+vt)

of the Lax pair (20). The 3 x 3 constant matrices W, F depend only on A and
on the background solution parameters a;, a,, . In this respect we note that the
parameter g has no counterpart in the single wave NLS equation (18). Indeed it
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represents the wave number mismatch of the two background components u(lo) and

ugo) as 2q equals the difference of these wave numbers. Its novel important feature
is to have a crucial effect on the stability of the solution (66). Again the Darboux
transformation method, as applied to the seed solution (66), is the convenient tool to
obtain the explicit expression of new solutions of the VNLS equation (see Sect. 2).
As we are interested here in obtaining rational solution, our main concern is to
find the critical values of A, namely those values for which the matrix exponential
e/ CWA—FR)) yields a polynomial dependence on x, 7. In analogy with what we have
shown above for the NLS equation, the main task is finding the eigenvalues of the
matrices W(4) and F(A) together with their A-dependence. Equivalently, and by
dealing for instance with W, which is

A —isia; —isran
WQA)=| —iay -A—q 0 , (68)
—iay 0 —A+ q

one has to investigate the A-dependence of the three roots wy(A), wy (1), ws(4) of
the characteristic polynomial P(w) =det[wl — W(A)] in the entire A-plane. This
task requires numerical computations in order to find in addition the dependence
of the critical values A. on the continuous wave parameters ¢, a;, a,. We refer the
reader to [45] for the way of classifying all critical values A. in the parameter space
and we limit ourselves to make few comments and to show few plots. Because of
the complicate Cardano expression for the roots of a third degree polynomial, only
the solutions with ¢ = 0 can be found in simple explicit form. This particular case
(g = 0) yields the expression of the vector analog of the NLS Peregrine solution,
and, as expected, this solution exists only in the focusing case s; = s, = —1. In

fact this solution corresponds to two critical values, A, = :ti,/a% + a%. However
its expression, which reads

X x+ip?
R (P2 + [h*e™™) (a " hP P i) a 69)
) (M + |h]?e?) \az )~ (M + |h]?e?*) \ —a)
has the novel feature of showing a mixture of exponential and polynomial depen-
dence on x, t since P,, M, are polynomials of degree 2, while P, is a polynomial

of first degree. Here p = /a} + a3 while h is an additional arbitrary complex
parameter. Thus, if say a, = 0, this solution describes a dark soliton in the first
component and a bright one in the second component which at the time of their
interaction generate a Peregrine-type bump, see Fig. 4. Only if 4 = 0 this solution
features a Peregrine rogue wave in both components.

If the mismatch parameter ¢ is different from zero, rogue wave type solutions
exist in all regimes but not for all values of the parameters a, a,, g. To the purpose of
classifying all these solutions, it is convenient to separately consider the multiplicity
of the three eigenvalues of the matrix W(A) (68). It is plain that no critical values A,
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[ur (x,0 Jua(x,0)|

Fig.4 sy, =5, =—1,g=0,a,=1,a0=0,A. =i, f=0.1

Jur(x,0l
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2

Fig.5 ssi =, =—l,g=lL, a1 =a=2,A =i

exist if all the eigenvalues are simple since in this case W and F are diagonalizable
and the exponential exp[i(xW(X) — tF(4))] cannot be a polynomial. In the case in
which there is just one eigenvalue with multiplicity 3, only two critical values of A,

Ao = =i @, exist and only in the focusing case s; = s, = —1 with the restriction
to the subset a; = a; = 2q. Figure 5 shows such a rogue wave.

If instead the matrix W(A) has an eigenvalue with multiplicity 2 there may
exist several critical values A.. In this respect it is convenient to consider first the
parameter subset s; = s, aj = dz, ¢ 7 0 because in this particular case the
critical value A, can be explicitly computed. It turns out that in the focusing case
s1 = sp = —1 four critical values exist for any value of ¢ and a; = a», for one such
solution see Fig. 6.

In the defocusing case s; = s, = 1 threshold phenomena appear as no critical
value A, (alias no rogue wave) exists if g*> > 2a% while (only) two critical values
existif ¢> < 2a?, see Fig.7.

In order to explore the generic case a; # a, and ¢ # 0 one may conveniently
proceed by numerically computing the critical value A, see the examples of rogue
wave solutions shown in Figs. 8, 9, and 10, in, respectively, focusing, defocusing
and mixed cases. Still it is explicitly found that the existence of rogue waves in the
defocusing regime is conditioned by the inequality (a? + a3)® — 12(a} — 7a}a3 +
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a3)q* + 48(a? + a3)q* — 64¢° > 0 for the amplitudes a;,a, and the mismatch
parameter g.

A detailed discussion of the existence of rogue waves as related to base-band
modulational instability of the continuous wave background in the defocusing
regime is reported in [93, 94], (see also [92]).
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Fig.9 si=s,=1,q=1,a, =2,a, =5, A, = —5.600 + 4.655i

[u (x,0)]

Fig. 10 si=—1. s =1,g=1,a, =1, a =2, A, = —1.242 4+ 0.636i

5 Integrability in Action: Beyond the NLS Model

Integrable nonlinear equations modeling wave phenomena, even if approximate,
as they generally are, yet play an important role in understanding and predicting
experimental observations. Thanks to the mathematical property of being integrable,
a number of powerful computational technique are available to investigate patterns
as those due to shock waves, and even to analytically construct special interesting
solutions such as multi-soliton and multi-rogue waves. To the purpose of illustrating
how some of these methods work, in the previous sections we have considered the
ubiquitous NLS equation as prototype integrable model, together with its extension
to a system of two coupled NLS equations. All problems raised have been solved
by starting from the Lax pair. Indeed, because of their dependence on the spectral
variable, these two equations contain all the valuable information. Since the Lax pair
plays such an essential role, it should be pointed out that finding which integrable
partial differential equation is associated to a given Lax pair (as its compatibility
condition) is rather easy. However the other way around is far from being a simple
task, as no general method exists to prove, or disprove, the existence of a Lax
pair associated with a given nonlinear partial differential equation. Attempts in this
direction make use of a weaker definition of integrability, which can be tested by
multi-scale expansion [21], or by recursively constructing symmetries [95, 96] of
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the given nonlinear wave equation. Attempts to solve this problem by classifying
Lax pairs also exist (see [97] and references therein).

Searching for new integrable wave equations naturally leads to change the
matrices X(A) and T(A) of the Lax pair (20). This has been done in many ways,
according to various purposes, during the last 45 years, and it is still common
practice. In this respect we believe that the following examples may well give a
good perspective of applications of integrability not only in the general context of
nonlinear science but also in the more specific one of modeling wave phenomena.
Let us consider first the two main features of the Lax pair of Egs. (20), namely
(1) the A-dependence of the matrices X(4) and T(A), and (2) their dimension. In
fact searching for the Lax pair associated with the KdV and the cmKdV equations,
(1) and (3), requires that the matrix T'(A) be a third degree polynomial of A (e.g.
[6]), while the matrix dimension is 2 x 2 as for the NLS equation. Keeping this
same matrix dimension but asking that the A-dependence be rational rather than
polynomial is required to obtain the SG equation (4) [98-100] and the MTM
equation (8) [101, 102]. Increasing the matrix dimension is standard strategy to
extend one scalar wave equation to a system of equations to model wave-wave
interactions. This is the case for instance of the VNLS (62) which requires matrices
of dimension 3 x 3. This same dimension is required to arrive at the system (10)
which models the resonant interaction of three waves [103] (see also [104] and
references therein), the A-dependence of both X(A) and T'(1) being polynomial of
first degree. This system can be generalized to the so-called N-wave interaction
equations (e.g. [105, 106] and references therein) which again model resonant
interaction of N wave fields with quadratic nonlinearity. In this case the matrix
dimension has to be n x n with N = n(n — 1)/2. Also the Lax pair matrices
associated with the LWSW equation (6), which models the resonant interaction of
long waves with short waves [107, 108], are 3 x 3 [107, 109, 110]. A further, and
more substantial, way of changing the Lax pair is asking that this pair of equations
be partial, rather than ordinary, differential equations by introducing more space
variables. Examples of integrable equations in 2-space and 1-time dimensions are
the Kadomtsev-Petviashvili [111] and Davey-Stewartson [112] equations which find
their application in fluid dynamics. Other nonlinear wave equations can be added
to those we have mentioned here which are integrable and also valuable in some
applicative context.

As part of our discussion has been devoted to those solutions which model rogue
waves, we conclude with the following collection of integrable equations which
share the property of having rogue wave solutions. We observe that in fact not all
integrable wave equations possess such type of solutions. In addition to the focusing
NLS equation (5) with s = —1 [55, 113] and VNLS equation (62) [45, 68, 93],
whose rogue wave solutions have been discussed above, rogue wave solutions have
been identified also for the cmKdV equation (3) [114], the DNLS equation (7) [115],
the MTM (8) [116], the LWSW (6) [73, 117] and the 3WRI equation (10) [45,
71, 78]. Also the following integrable equations, among others, have been recently
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reported to possess rogue wave solutions

Hirota-Maxwell-Bloch (H-MB) equation [118]:

iy + afuge + 2{ulu] + ibluce + 6lul*u] = 2p
Dr = 2iwp + 2nu (70)
Ny = —(up™ + u*p)

where a, b are arbitrary real constants.
Sasa-Satsuma (SS) equation [119-121]:

W + Uy + 2|u|2u + o[ty + 3(|u|2)xu + 6|u|2ux] =0 (71)

the real constant coefficient & being arbitrary.
Kadomtsev-Petviashvili I (KP-I) equation [122, 123]:

(ty — Uyxx — OULy), + Uyy = 0 (72)
Davey-Stewartson II (DS-II) equation [124]:

iU+ U — Uy + 2s|ul’u = 2¢u , Pu + Oy = 25(Ju)?)ee, s==+1
(73)
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