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Abstract. Concurrent programming puts demands on software debug-
ging and testing, as concurrent software may exhibit problems not
present in sequential software, e.g., deadlocks and race conditions. In
aiming to increase efficiency and effectiveness of debugging and bug-
fixing for concurrent software, a deep understanding of concurrency bugs,
their frequency and fixing-times would be helpful. Similarly, to design
effective tools and techniques for testing and debugging concurrent soft-
ware understanding the differences between non-concurrency and concur-
rency bugs in real-word software would be useful. This paper presents an
empirical study focusing on understanding the differences and similari-
ties between concurrency bugs and other bugs, as well as the differences
among various concurrency bug types in terms of their severity and their
fixing time. Our basis is a comprehensive analysis of bug reports cover-
ing several generations of an open source software system. The analysis
involves a total of 4872 bug reports from the last decade, including 221
reports related to concurrency bugs. We found that concurrency bugs are
different from other bugs in terms of their fixing time and their severity.
Our findings shed light on concurrency bugs and could thereby influence
future design and development of concurrent software, their debugging
and testing, as well as related tools.

Keywords: Concurrency bugs - Bug severity : Fixing time - Open
source software

1 Introduction

With the introduction of multicore and other parallel architectures, there is an
increased need for efficient and effective handling of software executing on such
architectures. An important aspect in this context is to understand the bugs
that occur due to parallel and concurrent execution of software. In this paper
we look into how the increase of such executions have impacted a number of
issues, including the occurrence of related bugs and the difficulty to fix these
bugs compared to fixing non-concurrent ones.
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Testing and debugging concurrent software are faced with a variety of chal-
lenges [1]. These challenges concern different aspects of software testing and
debugging, such as parallel programming [2], performance testing, error detec-
tion [3] and more. Since concurrent software exhibit more non-deterministic
behavior and non-deterministic bugs are generally viewed to be more challenging
than other types of bugs [4-6], testing and debugging concurrent software are
also considered to be more challenging compared to testing and debugging of
sequential software.

Developing concurrent software requires developers to keep track of all the
possible communication patterns that evolve from the large number of possi-
ble interleavings or concurrently overlapping executions that can occur between
different execution threads through utilizing the shared memory.

Handling the many execution scenarios that this results in is a notoriously
difficult task in debugging and makes it equally hard to create test cases [7].

In the study presented in this paper we are particularly interested in isolating
concurrency bugs from other types of bugs (non-concurrency bugs) and analyzing
the distinguishing features in their respective fixing processes. Hence, the main
emphasis of this research is on concurrency bugs, and to explore the nature and
extent of concurrency bugs in real-world software. This exploration of bugs can
be helpful to understand how we should address concurrency bugs, estimate the
most time-consuming ones, and prioritize them to speed up the debugging and
bug-fixing processes. Also it could be helpful for designers to avoid the errors
that are more likely to occur during the early phases of the software lifecycle.

In our study we address the following research questions:

— RQ1: How common are different types of concurrency bugs, compared to
non-concurrency bugs?

— RQ2: How much time is required to fix concurrency bugs, compared to fixing
non-concurrency bugs?

- RQ3: Are concurrency bugs more severe than non-concurrency bugs?

In this study we investigate the bug reports from an open source software
project. We classify bugs into two distinct groups, i.e., concurrency bugs and non-
concurrency bugs. We classify the concurrency bugs based on bug type, sever-
ity and fixing time. We compare the non-concurrency and concurrency bug in
terms of their reporting frequency, severity and fixing time. Our results indicate
that a relatively small share of bugs is related to concurrency issues, while the
vast majority are non-concurrency bugs. Fixing time for concurrency and non-
concurrency bugs is different but this difference is not big. In addition, concur-
rency bugs are considered to be slightly more severe than non-concurrency bugs.

2 Methodology

In this study first we start with Bug-source software selection in order to select a
proper open source software for our study. Second, we identify the set of concur-
rency bug reports in the issue tracking database of the selected project through a
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keyword search in Bug report selection. Then we manually analyze the full set of
identified bug reports in order to exclude those that are not concurrency-related.
Finally, in bug reports classification process, we collect data for the concurrency
bugs, and classify the bug reports based using the classification scheme described
in Sect.3. The following subsections describe the steps of this research process
in further detail.

2.1 Bug-Source Software Selection

We were interested in an open source application that coordinates distributed
processes with significant number of releases and an issue management plat-
form for managing, configuring and testing. We selected the Apache Hadoop
project! as the open source project for our study. The full justification for select-
ing Hadoop as our study object is provided in the list below.

(1) Hadoop has changed constantly and considerably in 59 releases over six
years of development. (2) Due to Hadoop’s key concept of parallel and distributed
abstraction it is recently adopted by several big companies (i.e., Facebook, Ebay,
Yahoo, Amazon and more). (3) Detailed information on bugs and bug fixes
are openly available. (4) The Hadoop framework has been widely adopted by
both the industry and research communities [8]. (5) It has a web interface for
managing, configuring and testing its services and components.

Hadoop tracks both enhancement requests and bugs using JIRA?. JIRA is an
issue management platform, which allows users to manage their issues through-
out their entire lifecycle. It is mainly used in software development and allows
users to track any kind of unit of work, such as project task, issue, story and
bug to manage and track development efforts.

2.2 Bug Reports Selection

In this stage we selected the concurrency bugs from the bug report database
including bugs from different versions of Apache Hadoop, including bug reports
from the period 20062015, i.e., the last decade. In total, the Hadoop bug report
database contains 4872 issues in this period that are tagged as “Bug”?.

We automatically filtered reports that are not likely to be relevant by per-
forming a search query on the bug report database. Our search query filtered
bugs based on (1) “Bug” as report type, (2) the status of the report, and (3)
keywords relevant to concurrency. Figure 1 summarizes the bug report selection
process.

In filtering based on “Bug” as report type step, we practically searched in the
Apache Hadoop report database for the reports with issue type “Bug” according
to our main objective and bug definition.

! https://issues.apache.org/jira/browse/hadoop.
2 https://www.atlassian.com/software/jira.
3 Bug is “a problem which impairs or prevents the functions of the product” [9].
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Fig. 1. Bug report selection workflow

In filtering based on the status of the report step, we searched for bugs with
“Closed” (i.e., this report considered finished, the resolution is correct) and
“Fixed” resolution status (i.e., fix for this issue has been implemented). We
only selected “Fixed” and “Closed” reports since unfixed and open bug reports
might be invalid and root causes described in the reports could be incorrect. It
would then be impossible for us to completely understand the details on these
bugs and determine their types.

In filtering based on the keywords relevant to concurrency step, we decided to
use the keywords that could help us to include the bug reports were compatible
with the scope of this study. In identifying such keywords, we reviewed the
keywords utilized in similar previous studies [1,10]. The keywords included in
the search, i.e. the terms, are as follows. After filtering we obtained a final set
with 411 reports.

thread, blocked, locked, race, dead-lock, deadlock, concurrent, concur-
rency, atomic, synchronize, synchronous, synchronization, starvation, suspen-
ston, “order wiolation”, “atomicity violation”, “single wvariable atomicity vio-
lation”, “multi variable atomicity violation”, livelock, live-lock, multi-threaded,
multithreading, and multi-thread.

Table 1 shows the bug count across the different stages of the bug report
selection process. Note that this selection process may have some limitations,
discussed in more detail in Subsect. 5.1.

Table 1. Report counts from different stage of bug report selection process

Filter Selected reports # of reports

2006-2015 & Bug & Fixed & Closed | Total Hadoop bug reports 3591
Keywords match related bug reports 411
Concurrency bug reports analyzed 221

2006-2015 & Bug & Fixed & Closed | Sample of non-concurrency bug reports | 221

2.3 Manual Exclusion of Bug Reports and Sampling
of Non-concurrency Bugs

In this stage we manually analyzed the 411 bug reports obtained in the previous
step?. The manual inspection revealed that some of the bugs that matched the

4 We provide the raw data of this study at https://goo.gl/sr6iDQ.
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search query were not concurrency bugs. Thus, we excluded them. More specif-
ically, we determined the relevance of the bugs by checking (1) if they describe
a concurrency bug, and if they do, (2) what type of concurrency bug is it. The
latter is done, by comparing their descriptions (or explanations) with our con-
currency bug classification (Sect.3.1). If we could not map a report with any
class we excluded that report from our set. We also excluded reports with very
little information, since we could not analyze them properly. After filtering we
obtained a final set with 221 concurrency bugs.

As explained in Sect. 1, our main objective is understanding the differences
between non-concurrency and concurrency bugs. For comparison purposes, we
randomly sampled an equally sized subset of non-concurrency bugs that were
reported during 2006-2015 and were “Fixed” and “Closed”. These bugs were
used for comparative analysis between the concurrency and non-concurrency
bug sets. In this study, we use the term non-concurrency bugs instead of sample
of non-concurrency bugs for all comparative analysis.

2.4 Bug Reports Classification

We analyzed the issues and information contained in the reports using them to
map to the concurrency bug classification manually. Each bug report contains
several types of information, which were valuable in recognizing and filtering the
concurrency bugs with other types of bugs to aids us understand the character-
istics of bugs. The bug reports contained for example the description of the bug
with some discussions among the developers on how to detect, where to detect
(bug localization) and how to fix the bugs. Typically most of the reports include
a description of the correction of the bug, and a link to the the version of the
software where the bug has been corrected, and even the scenario of reproducing
the reported bug. The reports also contain additional fields such as perceived
priority, created date, resolved date, version affected and more.

We used different types of fields in order to explore the concurrency bug
issues in the Hadoop project. We used the priority field to estimate the severity
of the bug. The interval between the Created date and Resolved date fields was
used to calculate the amount of (calendar) time required to fix the bug (fixing
time).

3 Study Classification Schemes

In order to perform the bug classification process we defined three main classifiers
and grouped the reports based on these classifiers. The classifiers were Type
of concurrency bug, fixing time and severity. These three classification
schemes are described in detail below.

3.1 Concurrency Bug Classification

In [10], our main contribution is a better understanding of the different types of
concurrency bugs. We classified and mapped the relevant bug reports related to
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the types of concurrency bugs using a classification of concurrency bug types.
It categorizes concurrency bugs into seven disjoint classes (i.e., Deadlock, Live-
lock, Starvation, Suspension, Data race, Order violation and Atomicity
violation).

3.2 Fixing Time Calculation

This class shows the time duration (days) which developer (or debugger) spend
to fix a reported bug. Fixing time, calculated by subtracting the Created date
and Resolved date fields of the bug.

3.3 Bug Report Severity Classification

In order to define priority for each issue based on developers’ perspective we
used a classification scheme similar to the classification defined in [9]. Blocker
shows the highest priority. It indicates that this issue takes precedence over
all others. Critical indicates that this issue is causing a problem and requires
urgent attention. Magjor shows that this issue has a significant impact. Minor
indicates that this issue has a relatively minor impact. Trivial is the lowest
priority.

4 Results and Quantitative Analysis

This section provides the analysis of the data collected for bugs obtained from
the Hadoop project bug database. We used 442 bugs (i.e., 221 are concurrency
bugs while the rest are non-concurrency bugs sampled for our analysis) reported
between 2006 and 2015. The bug selection process is described in Sect. 2.

RQ1: How common are different types of concurrency bugs,
compared to non-concurrency bugs?

As seen in Fig. 2(a), out of the 3591 bugs reported in the Hadoop database, 221
(i.e., 6.15%) bugs are related to concurrency issues and are causing a certain
type of concurrency bugs, while the rest (i.e., 93.85%) are identified as non-
concurrency bugs.

The 221 concurrency bugs were further categorized according to the concur-
rency bug classification in [10]. As mentioned already in Sect. 3.1, this taxonomy
defines seven types of concurrency bugs. For the sake of this study, we have
added Not clear category to the taxonomy. The Not clear category includes
reports that cover bugs related to concurrency and parallelism, but are not clas-
sified according to the concurrency bugs taxonomy. For these bugs, the summary
and description of the report shows it is a concurrency bug, but further clas-
sification of bug type is prohibited by a very project implementation-specific
explanation of the bug details and solution.
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Fig. 2. Distribution of bugs

In addition, we investigated the frequency with which each type of concur-
rency bug appears, with the aim of getting insights into bug prioritization.
In Fig.2(b) we show the number of concurrency bugs according to their cat-
egory and how often they are reported in the data we collected. From a total
of 221 bug reports, almost half of them (i.e., 44 %) concern data races (or race
conditions), a well-known and common concurrent bug [11]. In addition, about
15 % of the reports reported the Suspension bug type and only two bug reports
were categorized as Livelock bugs.

Answer RQ1: Only 6.15 % of the total set of bugs are related to concurrency
issues, while the majority of bugs (i.e., 95.85%) are of non-concurrency

type.

RQ2: How much time is required to fix concurrency bugs, compared
to fixing non-concurrency bugs?

In order to gain better understanding on how difficult is to fix concurrency bugs
in comparison with non-concurrency bugs, we conducted a quantitative analysis
of the effort required to fix both concurrency and non-concurrency bugs. This
effort was measured as explained in Sect. 3.2. We used this time as an indicator
for the complexity involved in fixing these bugs.

Table 2(a) lists the detailed statistics on the obtained results for fixing time
of concurrency and non-concurrency bugs. These results are also summarized in
Fig. 3(a) in the form of box-plots (the vertical axis scale of the plot is logarith-
mic). Interestingly, the fixing time for concurrency and non-concurrency bugs is
very similar, with an average of 58 days and 54 days for fixing concurrency and
non-concurrency bugs, respectively.
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Table 2. Descriptive statistics results for concurrency and non-concurrency bug sets
in terms of fixing time.

(a) Fixing time comparison

Kixing time Average | Minimum [Maximum | Median Stal}d?rd
Bug Deviation
Concurrency 58.3 0.1 1221.0 13.1 143.4
Non-concurrency 54.2 0.1 998.1 7.9 1333

(b) Fixing time comparison for concurrency bugs

W Average| Minimum | Maximum| Median ]S)t;::;;:
Concurrency bug

Deadlock 43.1 0.1 943.2 4.3 171.5
Data race 80.0 0.1 1221.0 17.0 181.4
Order violation 54.9 0.1 471.3 20.4 100.6
Atomicity violation 39.1 0.2 253.7 19.7 72.3
Livelock 16.9 15.0 18.9 16.9 2.7
Starvation 24.4 1.0 89.2 12.8 29.6
Suspension 38.5 0.5 197.2 17.9 46.9

To evaluate if there is any statistical difference between concurrency and
non-concurrency bugs fixing time we use a Wilcoxon Signed Rank test, a non-
parametric hypothesis test for determining if there is any statistical difference
among two data sets, with the assumption that the data is drawn from an
unknown distribution. We use 0.05 as the significance level.

In addition, we calculate the Vargha-Delaney A-statistic as a measure of
effect size [12] for analyzing significance. This statistic is independent of the
sample size and has a range between 0 and 1. The choice of what constitutes a
significant effect size can depend on context. Vargha and Delaney [12] suggest
that A-statistic of greater than 0.64 (or less than 0.36) is indicative of “medium”
effect size, and of greater than 0.71 (or less than 0.29) can be indicative of a
“large” effect size.

We are interested in determining if the fixing time for concurrency bugs
is similar to the one for non-concurrency bugs. We begin by formulating the
statistical hypotheses as follows: the null hypothesis is that fixing time of the
concurrency and non-concurrency bugs sets have identical distributions (Hp) and
the alternative hypothesis is that the distributions are different (H;). Based on
the p-value of 0.027, which is less than 0.05, we reject the null hypothesis. That
is, the fixing time of concurrency bugs and non-concurrency bugs are statistically
different. When calculating the Vargha-Delaney A-statistic we obtained a value
of 0.560 which indicates a “small” standardized effect size [12]. From our results,
we can see that the fixing time for concurrency bugs is different from the fixing
time for non-concurrency bugs, but that this difference corresponds to a “small”
standardized effect size.
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Fig. 3. Fixing time analysis; boxes span from 1% to 3™ quartile, black middle lines are
marking the median and the whiskers extend up to 1.5x the inter-quartile range while
the circles represent the outliers.

We were also interested in understanding the differences between fixing time
for each type of concurrency bugs. Figure3(b) summarize our results in the
form of box plots. It is obvious that Data races took the longest time to fix (i.e.,
80 days on average). Order violation and Deadlock type of bugs took less time
(55 and 43 on average, respectively) while Livelock and Starvation type of bugs
took shorter fixing time (17 and 24 days on average, respectively). Table 2(b) lists
the detailed statistics on the obtained results for each type of concurrency bugs.
To evaluate if there is any significant statistical difference between the different
types of concurrency bugs, we use a Wilcoron Signed Rank test and calculate the
A-statistic effect size. To this end, we report in Table 3 the p-values and the effect
size for each type of concurrency bugs. The tested hypotheses are formulated as
follows: the null hypothesis is that fixing time results between two different bug
types are drawn from the same distribution and the alternative hypothesis is that
the fixing time results are drawn from different distributions. We use a traditional
statistical significance limit of 0.05 and Vargha and Delaney’s suggestion [12]
for statistical significance. Examining Table3, we can conclude that the null
hypothesis is accepted with p-values above the traditional statistical significance
limit of 0.05 for the majority of bug types except for “Deadlock-Data race” and

“Deadlock-Suspension” pairs where the null hypothesis is rejected. This shows
that the bug fixing time is not different except between “Deadlock-Data race”
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Table 3. Wilcoxon test for concurrency bugs fixing time comparison

H, H, Hypothesis Deadlock | Data race .Ord‘er Afoml.ﬂty Livelock |Starvation |Suspension
test result violation | violation
Deadlock P-value - 0.007389|  0.03635|  0.06946 0.1476 0.128] 0.001921
A-statistic - 0.7951961 | 0.2046976| 0.0892762 | 0.0154108 | 0.0735466 | 0.2636306
Data race P-value 0.007389 - 0.9368 0.9595 0.9702 0.646 0.5778
A-statistic | 0.2048039 - 0.1302476] 0.0572856| 0.0100967 | 0.0507493| 0.1589967
Order  |P-value 0.03635 0.9368 - 0.9452 0.8894 0.6391 0.6888
violation |A-statistic | 0.2826018| 0.8697524 - 0.0990541] 0.0181741] 0.0821554| 0.2936019
Atomicity [P-value 0.06946 0.9595 0.9452 - 0.9231 0.7902 0.6644
violation |A-statistic | 0.2983314] 0.9427144| 0.2428526 - 0.0195557| 0.0879477| 0.3191625
Livelock P-value 0.1476 0.9702 0.8894 0.9231 - 0.8128 0.8869
A-statistic | 0.3081093] 0.9899033 | 0.2548624| 0.1121267 - 0.0919864 | 0.3364332
Starvation P-value 0.128 0.646 0.6391 0.7902 0.8128 - 0.4343
A-statistic | 0.2998193 | 0.9492507 | 0.2444468 | 0.107716 0.0195026 - 0.3216601
< . |P-value 0.001921 0.5778 0.6888 0.6644 0.8869 0.4343 -
B A-statistic | 0.2806356| 0.8410033 | 0.2166543| 0.0958657| 0.017377| 0.0797641 -

and “deadlock-Suspension”. For example, in Table3 we show the obtained p-
value of 0.008 for testing the pair “Deadlock-Data race”, which is less than
0.05, and therefore we can reject the null hypothesis: the fixing time for Deadlock
and Data Race bug types are different. In addition, the A-statistic for the same
pair of bug types is about 0.796 (or 0.204 in the second row), which is greater
than the significance level of 0.71. We can say that in this case the effect size is
“large”. We can conclude that fixing time for deadlock and data race bug types
is different with a “large” effect size.

It should however be noted that the likelihood of statistical errors vastly
increases when doing multiple tests using the same dataset. The results from
the inter-bug-type comparisons are thus less reliable than the results from the
comparison between concurrency and non-concurrency bugs.

Answer RQ2: Concurrency bugs do require longer fizing time than non-
concurrency bugs, but the difference is not very large.

RQ3: Are concurrency bugs more severe than non-concurrency bugs?

We analyzed the difference between concurrency and non-concurrency bug sever-
ity in order to understand if the severity of bugs is differently distributed.
Figure4 shows the severity distributions. In order to statistically compare the
severity between concurrency bugs and non-concurrency bugs, we apply a Two-
Sample Kolmogorov-Smirnov test (also known as two-sample K-S test) to find if
the frequency between these two types of bugs is significantly different. Our null
hypothesis can be formulated as follows: are the severity level results of concur-
rency bugs and non-concurrency bugs drawn from the same distribution. In this
test, if the D-value is larger than the critical-D-value, the observed frequency is
distributed differently.
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Table 4. Kolmogorov-Smirnov test for concurrency and non-concurrency bugs severity

Shade Non-concurrency bugs Concurrency bugs [f(x) — g(x)]
Observed | Observed Observed | Observed | Observed Observed

frequency | proportion | cumulative |frequency | proportion | cumulative

proportion proportion
f(x) g(x)
Blocker 41 0.185520362|0.185520362 66 0.298642534 | 0.298642534 | 0.113122172
Critical 18 0.081447964 | 0.266968326 20 0.090497738 | 0.389140271 | 0.122171946
Major 118 0.533936652 | 0.800904977 120 0.5429864250.932126697 | 0.131221719
Minor 29 0.131221719/0.932126697 15 0.067873303 1 0.067873303
Trivial 15 0.067873303 1 0 0 1 0

Critical D-value = D221,0.05 = o = 0.091 | D-value= Suplf(x) — g(x)| = 0.131221719 = 1.36 221

53% 54%
H Non-concurrency 120
bugs
100
M Concurrency
bugs 80 30%

60
40 13%
2 8% 9% 7% 7%

H B LL
0 Blocker Critical Major Minor Trivial

[4Non-concurrency bugs 41 18 us 29 15
| & Concurrency bugs 66 20 120 15 0

Frequency

Fig. 4. Concurrency and non-concurrency bug severity

Table 4 shows that the D-value is 0.131, which is larger than the Critical-
D-value of 0.091. Thus, statistically we have enough evidence to conclude that
there is a difference between the concurrency and non-concurrency bug severity
distribution. In other words, the concurrency and non-concurrency severity types
are distributed differently.

Finally, we are also interested to identify the severity distribution difference
between different concurrency bugs classes. The results obtained for this analysis
are shown in Fig. 5. The results indicate that the highest severity is observed for
the “Blocker” class. We expected that most of the bugs to be of Deadlock type.
In reality, as shown in Fig.5, most of the bugs are of Data race type. We can
interpret this fact in the following way: the Data race type might represent the
most problematic bug type in terms of severity in the Hadoop project.

On the other hand, after comparing the different type of concurrency bugs
we found that most of the bugs categorized as being part of the Data race
type in terms of severity belongs to the Major class; the highest population of
Deadlock bugs belong to Critical class; the highest population of bugs categorized
in the Suspension type belongs to Critical class; the highest population of bugs
corresponding to Atomicity violation type belongs to Major and Minor class;
the highest population of Order violation bugs belongs to Minor class and the
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highest population of Starvation bugs belong to Major class. We can interpret
that the Deadlock and Suspension bugs have higher severity.

Answer RQ3: Concurrency bugs are considered to be more severe than non-
concurrency bugs, but the difference is not that large.

Not clear Deadlock
Not clear
%\ 18% Atomicity 5% Deadlock
/ violation

Suspension

Starvation
3%

Atomicity.
violation

Data race
w
Not dlear Deadlock
s\

20%
I

Data race
a8%

“Deadlock

¥ Data race

“Order violation

¥ Atomicity violation
¥ Livelock

¥ Starvation

¥ Suspension
Data race
30%

“Not clear

Fig. 5. Concurrency bugs severity

5 Discussion

In our study, we found a much smaller share of concurrency bugs than the one
found by other similar studies. This could possibly be due to the different time
span of our study and that of other similar studies. An interesting observation
is that 70% of the bugs that we found were reported in the five-year interval
of 2006-2010, and the remaining 30 % were reported in the five-year interval of
2011-2015.

Similarly, the fixing time found by other studies is much larger for concur-
rency bugs than for non-concurrency bugs. We find a difference, but it is rela-
tively small. This could be due to a large portion of fixing time in other studies
relate to reproducing the bugs using the bug scenario in the bug description. In
our study we found surprisingly few reports stating difficulties in reproducing
the bug.

The involvement of more than one thread cause a concurrency bug. For this
reason we predicted to find that concurrency bugs were more severe than non-
concurrency bugs. However, we expected most of the “Blocker” bugs to deadlock
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type due to its characteristic and properties but this was not the case. In our
study Data race was the biggest portion of “Blocker”. We can interpreter that
Data race is the most problematic bug to fix in Hadoop project.

Moreover, our investigation shows that about half of the concurrency bugs are
of Data race type. The reason could be that Data race is more severe than other
type of bugs (as shown in Fig. 5) and it would be normal if it takes longer time to
fix. About 15 % of the bugs belongs to the Suspension type. By investigating the
bug reports’ description and comments we noticed that most of the Suspension
bugs occurred when the developer put a block of code in waiting mode for an
unnecessary long time, thereby causing a Suspension bug.

5.1 Validity Threats

In the design and execution of this study, there are several considerations that
need to be taken into account as they can potentially limit the validity of the
results obtained.

— Some concurrency bugs might go unfixed or unreported because they occur
infrequently, only on certain platforms/software configurations, or are hard to
reproduce. It would be interesting to consider these kinds of bugs, but they
are not likely to have detailed discussions. As a result, these bugs are not
considered as important as the reported and fixed concurrency bugs that are
used in our study. However, based on our investigation , 81 bug reports out of
4872 bug reports tagged as “Cannot reproduce” while 25 of them mentioned at
least one of the concurrency keywords (listed in Sect. 2.2) in their description
or comments.

— The reports with other status (i.e., “In Progress” -this issue is being actively
worked on at the moment by the assignee - or “Open” -This issue is in the
initial ‘Open’ state, ready for the assignee to start work on it-) were not
considered in this study and there is a chance that we did not include the
relevant reports.

— Even if the obtained results (for RQ1, RQ2 and RQ3) are based on data
samples from a single project, these results might apply to other software as
well. More analysis is required to confirm whether this is in fact the case.

6 Related Work

A series of related studies on debugging, predicting and fixing concurrent soft-
ware have been conducted. In particular, there is a large body of studies on
prediction [13-16] and propagation [17,18] of bugs in source code.

Most of these studies strive to identify the components or source code files,
that are most prone to contain bugs. Fault prediction partially focuses on under-
standing the behavior of programmers and its effects on software reliability. This
work is complementary to the study conducted in this research, which is concen-
trated on a specific type of bugs (i.e., concurrency bugs) and on understanding
their consequences.
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In [19], Vandiver et al. analyzed the consequences of bugs for three database
systems. This work is focused on presenting a replication architecture, instead of
on studying bugs. The authors did not distinguish between concurrency and non-
concurrency bugs, and only evaluated whether they caused crash or Byzantine
faults.

Three open-source applications bug databases (Apache web server, GNOME
desktop environment and MySQL database) are investigated by Chandra and
Chen [20], with a slightly different focus than ours. The authors analyzed all
types of bugs (only 12 of them were concurrency bugs) to determine the effec-
tiveness of generic recovery techniques in tolerating the bugs. Concurrency bugs
are only one possible type of bug that affects their results. In contrast, based on
our main objective we focus on a more narrow type of bugs by limiting ourselves
to concurrency bugs, but provide a broader analysis (comparing concurrency and
non-concurrency bugs) taking into consideration several types of these bugs.

Farchi et al. [21] analyzed concurrency bugs by creating such bugs artificially.
They asked programmers to write codes which have concurrency bugs. We believe
that artificially creating bugs may not lead to bugs that are representative of
the real-world software bugs. We, on the other hand, analyze the bug database
of an open-source software, which is well maintained, and widely used software.

Lu et al. examined concurrency bug patterns, manifestation, and fix strate-
gies of 105 randomly selected real-world concurrency bugs from four open-source
(MySQL, Apache, Mozilla and OpenOffice) bug databases [1]. Their study con-
centrated on several aspects of the causes of concurrency bugs, but the study of
their effects was limited to determining whether they caused deadlocks or not.
We use the same study methodology to find relevant bug reports but we provide
a complementary angle by studying the effects of recent concurrency bugs not
limited to deadlock and not-deadlock bugs. In other words, according to our
objective we used other classification(s) for our study.

7 Conclusion and Future Work

This paper provides a comprehensive study of 4872 fixed bug reports from a
widely used open source storage designed for big-data applications. The study
covers the fixed bug reports from the last ten years, with the purpose of under-
standing the differences between concurrency and non-concurrency bugs. Two
aspects of these reports are examined: fixing time and severity. Based on a struc-
tured selection process, we ended up with 221 concurrency bugs and 221 non-
concurrency bugs (sampled). By analyzing these reports we have identified the
frequencies of concurrency and non-concurrency bugs. The study also helped
us to recognize the most common type of concurrency bugs in terms of sever-
ity and fixing time. The main results of this study are: (1) Only a small share
of bugs is related to concurrency while the vast majority are non-concurrency
bugs. (2) Fixing time for concurrency and non-concurrency bugs is different but
this difference is relatively small. (3) Concurrency and non-concurrency bugs are
different in terms of severity, while concurrency bugs are more severe than non-
concurrency bugs. These findings could help software designers and developers to
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understand how to address concurrency bugs, estimate the most time-consuming
ones, and prioritize them to speed up the debugging and bug-fixing processes.
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