
Chapter 2
An Overview on Steffensen-Type Methods

S. Amat, S. Busquier, Á.A. Magreñán, and L. Orcos

Abstract In this chapter we present an extensive overview of Steffensen-type
methods. We first present the real study of the methods and then we present the
complex dynamics related this type of methods applied to different polynomials.
We also provide an extension to Banach space settings and an application to a
Boundary Value Problem. We finish this chapter with contributions to this matter
made by other authors.

2.1 Introduction

One of the most studied problems in Numerical Analysis is the approximation of
nonlinear equations. A powerful tool is the use of iterative methods. It is well-known
that Newton’s method,

x0 2 ˝; xn D xn�1 � ŒF0.xn�1/��1F.xn�1/; n 2 N;

is one of the most used iterative methods to approximate the solution x� of F.x/ D 0.
The quadratic convergence and the low operational cost of Newton’s method ensure
that it has a good computational efficiency.

If we are interesting in methods without using derivatives, then Steffensen-type
methods will be a good alternative. These methods only compute divided differences
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and can be used for nondifferentiable problems. Moreover, they have the same order
of convergence than the Newton-type methods. For instance, if the evaluation of
F0.x/ at each step of Newton’s method is approximated by a divided difference of
first order Œx; x C F.x/IF�, we will obtain the known method of Steffensen,

x0 2 ˝; xn D xn�1 � Œxn�1; xn�1 C F.xn�1/IF��1F.xn�1/; n 2 N;

which has quadratic convergence and the same computational efficiency as New-
ton’s method. Recall that a bounded linear operator Œx; yIF� from X into X is
called divided difference of first order for the operator F on the points x and y
if Œx; yIF�.x � y/ D F.x/ � F. y/. Moreover, if F is Fréchet differentiable, then
F0.x/ D Œx; xIF�.

The organization of the paper is as follows. We start in Sect. 2.2 with the study of
scalar equations. We present in Sect. 2.2.1.1 some convergence analysis and some
dynamical aspects of the methods. Some numerical experiments and the dynamics
associated to the previous analysis is presented in Sect. 2.2.1.2. In Sect. 2.4, we
study the extension of these schemes to a Banach space setting and give some
semilocal convergence analysis. Finally, some numerical experiments, including
differentiable and nondifferentiable operators, are presented in Sect. 2.5. Finally,
other contributions are reported in Sect. 2.6.

2.2 The Real Case

Steffensen’s method is a root-finding method [39], similar to Newton’s method,
named after Johan Frederik Steffensen. It is well know that Steffensen’s method also
achieves quadratic convergence for smooth equations, but without using derivatives
as Newton’s method does. In this section, we recall the convergence analysis for
semismooth equations that is less popular.

2.2.1 Semismooth Equations

In [9, 31] the definition of semismooth functions is extended to nonlinear operators.
We say that F W Rn ! R

n is semismooth at x if F is locally Lipschitz at x and the
following limit

lim
V2@F.xCth0/h0!h;t#0

Vh0

exists for any h 2 R
n, where @F is the generalized Jacobian defined,

@F .x/ D conv@BF .x/
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Most nonsmooth equations involve semismooth operators at practice [32]. We
say that F is strongly semismooth at x if F is semismooth at x and for any

V 2 @F .x C h/ ; h ! 0;Vh � F0 .xI h/ D O
�
khk2

�
.

For n D 1, we denote by ıF .x; y/ the divided differences of the form:

ıF .x; y/ D F .x/� F . y/

x � y
:

For the convergence analysis we will need the following result.

Lemma 1 Suppose that F is semismooth at x� and denote the lateral derivatives of
F at x� by

d� D �F0 �x��� ; dC D F0 �x�C�

then

d� � ıF .u; v/ D o .1/ u " x�; v " x�;

dC � ıF .u; v/ D o .1/ u # x�; v # x�:

Moreover if F is strongly semismooth at x�,then

d� � ıF .u; v/ D O
�ju � x�j C jv � x�j� u; v < x�;

d� � ıF .u; v/ D O
�ju � x�j C jv � x�j� u; v > x�:

2.2.1.1 A Modification of Steffensen’s Method and Convergence Analysis

The classical Steffensen’s method can be written as

xnC1 D xn � ıF .xn; xn C F.xn//
�1 F .xn/ :

Our iterative procedure would be considered as a new approach based in a better
approximation to the derivative F0 .xn/ from xn and xn C F.xn/ in each iteration. It
takes the following form

xnC1 D xn � ıF .xn; Qxn/�1 F .xn/ (2.1)

where Qxn D xn C ˛njF.xn/j.
These parameters ˛n 2 R will be a control of the good approximation to the

derivative. Theoretically, if ˛n ! 0,then

ıF .xn; Qxn/ ! F0 .xn/ :
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In order to control the stability in practice, but having a good resolution at every
iteration, the parameters ˛n can be computed such that

tolc << j˛njF.xn/jF.xn/j � tolu;

where tolc is related with the computer precision and tolu is a user’s free parameter.
As the classical Steffensen’s method the modification (2.1) needs two evaluations

of the function in each iteration and it is quadratically convergent in the smooth
case. In the next theorem, we prove that the iterative method (2.1) is quadratically
convergent for strongly semismooth equations as well.

Theorem 1 Suppose that F is semismooth at a solution x� of F .x/ D 0. If d� and
dC are nonzero, then the algorithm (2.1) is well defined in a neighborhood of x�
and converges to x� Q-superlinearly. Furthermore, if F is strongly semismooth at
x�, the converge to x� is Q-quadratic.

Proof We may choose x0 sufficiently close to x� (and/or ˛n sufficiently small) such
that we have either x0; Qx0 > x� or x0; Qx0 < x�. According to Lemma 1 is well defined
for k D 0. It is easy to check that

jQxn � xnj D O.jF.xn/2j/ D O.jxn � x�j2/:

Then from Lemma 1,

ıF .xn; Qxn/ D ıF
�
xn; x

��C o.1/ D dC C o.1/ .or d� C o.1//:

Thus,

jxnC1 � x�j D jxn � x� � ıF .xn; Qxn/�1 F.xn/j
� jıF .xn; Qxn/�1 j jF.xn/� F.x�/� ıF .xn; Qxn/ .xn � x�/j
� jıF .xn; Qxn/�1 j jıF �xn; x�� � ıF .xn; Qxn/ j jxn � x�j
D o.jxn � x�j/:

And we obtain superlinear convergence of fxng. If F is strongly semismooth at
x�, we may prove similarly the Q-quadratic convergence of fxng. ut

At practice, this modified Steffensen’s method will present some advantages.
Firstly, since in general ıF .xn; Qxn/ is a better approximation to the derivative F0 .xn/
than ıF .xn; xn C �jF.xn/jF.xn// the convergence will be faster (the first iterations
will be better). Secondly, the size of the neighborhood can be higher, that is, we can
consider worse starting points x0 (taking ˛0 sufficiently small), as we will see at the
numerical experiments. Finally, if we consider � sufficiently small in order to obtain
similar results at the first iterations and solving the above mentioned disadvantages,
then some numerical stability problems will appear at the next iterations.

See [32] and its references for more details on this topic.
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2.2.1.2 Numerical Experiments and Conclusions

In order to show the performance of the modified Steffensen’s method, we have
compared it with the classical Steffensen’s method and the modified secant’s type
method proposed in [34]. We consider tolu D 10�8 >> tolc. We have tested on
several semismooth equations. Now, we present one.

We consider

F .x/ D
�

k.x4 C x/ if x < 0
�k.x3 C x/ if x � 0

(2.2)

where k is a real constant.
For x0 D 0:1 and k D 1, all the iterative method are Q-quadratically convergent,

see Table 2.1. Nevertheless, for � small the method proposed in [34] has problems
with the last iterations. If we consider a stop criterium in order to avoid this problems
then we would not be arrived to the convergence. However, our scheme converges
without stability pathologies.

If we consider now x0 D 1 and k D 10, the classical Steffensen’s method and
the modified secant method with � D 1 have problems of convergence, in fact they
need 258 and 87;174 iterations to converge respectively, see Table 2.2.

The other schemes obtain similar results as before, see Table 2.3.
Finally, in Tables 2.4 and 2.5 we take different initials guesses and different

values of k. In these tables, we do not write the results for Steffensen’s and for � D 1

because in all cases the method do not converge after 106 iterations. On the other
hand, if � is not small enough the convergence is slow, but if it is too small stability

Table 2.1 Error, Eq. (2.2) k D 1, x0 D 0:1

Iter. Steff. � D 1 � D 10�4 � D 10�8 tolu D 10�8

1 1:38e � 03 3:62e � 04 2:99e � 04 2:99e � 04 2:99e � 04

2 5:09e � 11 5:19e � 14 1:72e � 13 5:21e � 09 2:26e � 14

3 0:00e C 00 0:00e C 00 NaN NaN 0:00e C 00

Table 2.2 Iterations and
error, Eq. (2.2) k D 10,
x0 D 1

Steff. � D 1

256 1:00e � 02 87172 3:22e � 02

257 1:41e � 06 87173 3:42e � 05

258 0:00e C 00 87174 0:00e C 00

Table 2.3 Error, Eq. (2.2)
k D 10, x0 D 1

Iter. � D 10�4 � D 10�8 tolu D 10�8

5 1:26e � 02 1:13e � 02 1:13e � 02

6 7:49e � 07 4:79e � 07 4:92e � 07

7 9:08e � 14 7:84e � 09 0:00e C 00

8 8:32e � 15 NaN

9 NaN
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Table 2.4 Final iteration and
error, Eq. (2.2), x0 D 1

k � D 10�4 � D 10�8 tolu D 10�8

103 50870 3:88e � 13 14 3:68e � 15 12 0:00e C 00

104 > 106 17 0:00e C 00 15 0:00e C 00

106 > 106 > 106 20 0:00e C 00

108 > 106 > 106 26 0:00e C 00

1016 > 106 > 106 47 0:00e C 00

Table 2.5 Final iteration and
error, Eq. (2.2), k D 1

x0 � D 10�4 � D 10�8 tolu D 10�8

4 13 4:20e � 13 9 6:14e � 09 9 0:00e C 00

8 457095 1:27e � 13 11 2:42e � 09 12 0:00e C 00

16 > 106 20 3:46e � 09 14 0:00e C 00

32 > 106 > 106 16 0:00e C 00

problems appear, as we said before. Our iterative method gives goods results in all
the cases.

2.3 Dynamics

In the last years many authors has been studied the dynamics of iterative methods
[7, 8, 13, 14, 27]. This classical methods require the computation of the inverse of
derivatives which is well known that it can involves a very high computational cost,
so other authors have worked in developing tools in order to study nondifferentiable
methods [28] and studying the dynamics them [10, 15, 26].

We begin the study with the modification of the following classical iterative
methods:

1. Newton

xnC1 D xn � f .xn/

f 0

.xn/
:

2. Two-steps

yn D xn � f .xn/

f 0

.xn/
;

xnC1 D yn � f . yn/

f 0

.xn/
:

3. Chebyshev

xnC1 D xn �
�
1C 1

2
Lf .xn/

�
f .xn/

f 0

.xn/
:
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4. Halley

xnC1 D xn �
 

1

1 � 1
2
Lf .xn/

!
f .xn/

f 0

.xn/
;

where

Lf .x/ D f .x/f 00.x/
f 0.x/2

:

We denote by Œ�; �I f � and Œ�; �; �I f � the first and the second divided difference of
the function f .

Our modify Steffensen-type methods associated to the above schemes write:

1. Modify Steffensen

xnC1 D xn � f .xn/

Œxn; xn C ˛n f .xn/I f � :

2. Modify Steffensen-Two-steps

yn D xn � f .xn/

Œxn � ˛n f .xn/; xn C ˛n f .xn/I f � ;

xnC1 D yn � f . yn/

Œxn � ˛n f .xn/; xn C ˛n f .xn/I f � :

3. Modify Steffensen-Chebyshev

xnC1 D xn �
�
1C 1

2
Lf .xn/

�
f .xn/

Œxn � ˛n f .xn/; xn C ˛n f .xn/I f � :

4. Modify Steffensen-Halley

xnC1 D xn �
 

1

1 � 1
2
Lf .xn/

!
f .xn/

Œxn � ˛n f .xn/; xn C ˛n f .xn/I f � ;

where

Lf .x/ D f .x/Œxn � ˛n f .xn/; xn; xn C ˛n f .xn/I f �
Œxn � ˛n f .xn/; xn C ˛n f .xn/I f �2 :

These methods depend, in each iteration, of some parameters ˛n. These param-
eters are a control of the good approximation to the derivatives. In order to control
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the accuracy and stability in practice, the ˛n can be computed such that

tolc <<
tolu
2

� jj˛n f .xn/jj � tolu;

where tolc is related with the computer precision and tolu is a free parameter for the
user.

The classical Steffensen-type methods use ˛n D 1.
In this section we compare the dynamics of the above methods to introduce the

benefits of using the parameters ˛n. In the experiments we have taken tolu D 10�6.
We approximate the roots of polynomials. We use different colored painting

regions of convergence of each root and dark violet is used for no convergence.
We include only the examples for p.z/ D z3 � 1 but similar conclusions are

obtained for other examples.
The clear conclusion is that the good approximation of the derivatives (for

instance using the parameters ˛n) is crucial to remain the characteristic of the basins
of attraction. The classical Steffensen-type methods (˛n D 1) have smaller basins
of attraction and great regions of no convergence (Figs. 2.1, 2.2, 2.3 and 2.4).

Fig. 2.1 Basins of attraction for p.z/ D z3 � 1. Left: Steffensen’s method, Middle: Newton’s
method, Right: modified Steffensen’s method

Fig. 2.2 Basins of attraction for p.z/ D z3 � 1. Left: two-steps Steffensen’s method, Middle:
two-steps Newton’s method, Right: modified two-step Steffensen’s method
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Fig. 2.3 Basins of attraction for p.z/ D z3 � 1. Left: Chebyshev-Steffensen’s method, Middle:
Chebyshev’s method, Right: modified Chebyshev-Steffensen’s method

Fig. 2.4 Basins of attraction for p.z/ D z3�1. Left: Halley-Steffensen’s method, Middle: Halley’s
method, Right: modified Halley-Steffensen’s method

2.4 Extension to Banach Space Setting

We only consider the case of second order methods, but similar results can be found
for higher order methods.

2.4.1 Convergence Analysis

We consider both type of equations: F.x/ D x and the usual F.x/ D 0.
First of all, we must recall the expression of the method for fixed point type

equations:

xnC1 D xn C .I � ŒF.xn/; xnIF�/�1.F.xn/� xn/: (2.3)
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Theorem 2 Let B be an open convex set of a Banach space X. Let F W B � X ! X
be a nonlinear operator, with divided difference in B � X. Let x0 be such that

jjF.x0/ � x0jj � a0 (2.4)

jj.I � Œ˛0.F.x0/ � x0/C x0; x0IF�/�1jj � b0 (2.5)

jjŒx0

; x
00 IF�� Œ y

0

; y
00 IF�jj � k � .jjx0 � y

0 jj � jjx00 � y
00 jj/ (2.6)

para todo x
0

; x
00

; y
0

; y
00

en S0 D fx W jjx � x0jj � max.a0; 2a0b0/g. Si S0 � B,
˛n < 2˛n�1 .˛n 2 .0; 1�;8n/ y h D 2ka0b0.˛0 C b0/ � 1

2
then, the sequence fxng

given by (2.3) is well defined and converges to a fixed point of F.x/. Moreover, x�
belong to the ball

jjx � x0jj � a0b0.1 � p
1 � 2h0/

h0
; (2.7)

and the convergence radius is give by

jjxn � x�jj � a0b0.2h0/2
n

2nh0
: (2.8)

Finally, if condition (2.6) is held in jjx � x0jj � a0 C a0b0.1Cp
1�2h0/

h0
D a0 C M0

the fixed point x� in unique in the ball jjx � x0jj < M0.

The basic hypothesis given in the previous theorem is that the divided difference
of F was Lipchitz in any ball in a neighbourhood of the initial iteration, in particular
the Fréchet derivative of F exists. In some recent works [20–22] (for secant
methods), Hernández and Rubio relax these hypotheses and they only suppose that
the divided difference satisfy that

jjŒx; yIF� � Œv;wIF�jj � !.jjx � vjj; jjy � wjj/; x; y; v;w 2 B

where ! W RC � RC ! RC is a nondecreasing continuous function in both
components.

In the next theorem, we will extend that theory to our method

xnC1 D xn � .Œxn; xn C ˛nF.xn/IF�/�1F.xn/ (2.9)

in order to solve the equation F.x/ D 0.

Theorem 3 Let X be a Banach space. Let B be an open convex subset of X and let
suppose that there exists a divided difference of first order of G such that

jjŒx; yIF� � Œv;wIF�jj � !.jjx � vjj; jjy � wjj/; x; y; v;w 2 B
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where ! W RC � RC ! RC is a nondecreasing continuous function in both
components. Let ˛n be such that jj˛nG.xn/jj � tolu.

Let x0 2 B and let suppose that

1) jj� �1
0 WD Œx0; x0 C ˛0G.x0/IF��1jj � ˇ.

2) jj� �1
0 G.x0/jj � �.

3) Let m D ˇ!.�; tolu/. Let us suppose that

t.1 � m

1 � ˇ!.t; t C 2tolu/
/ � � D 0 (2.10)

has a minimum positive root which we call R.

If ˇ!.R;R C 2tolu/ < 1, M WD m
1�ˇ!.R;RC2tolu/ < 1 y B.x0;R/ � B then, the

sequence given by (2.9) is well defined, belongs to B.x0;R/ and converges to the
unique solution of F.x/ D 0 in B.x0;R/.

2.5 Application to Boundary Value Problems

We consider the following boundary problem

y00.t/ D f .t; y.t/; y0.t//; y.a/ D ˛; y.b/ D ˇ; (2.11)

choose a discretization of Œa; b� with N subintervals,

tj D a C T

N
j; T D b � a; j D 0; 1; : : : ;N;

and propose the use of the multiple shooting method for solving it. First, in
each interval Œtj; tjC1�, we compute the function y.tI s0; s1; : : : ; sj�1/ recursively, by
solving the initial value problems

y00.t/ D f .t; y.t/; y0.t//; y.tj/ D y.tjI s0; s1; : : : ; sj�1/; y0.tj/ D sj;

whose solution is denoted by y.tI s0; s1; : : : ; sj/.
To approximate a solution of problem (2.11), we approximate a solution of the

nonlinear system of equations F.s/ D 0, where F W RN �! R
N and

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

F1.s0; s1; : : : ; sN�1/ D s1 � y0.t1I s0/
F2.s0; s1; : : : ; sN�1/ D s2 � y0.t2I s0; s1/

:::

FN�1.s0; s1; : : : ; sN�1/ D sN�1 � y0.tN�1I s0; s1; : : : ; sN�2/
FN.s0; s1; : : : ; sN�1/ D ˇ � y.tN I s0; s1; sN�2; sN�1/:
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For this, we consider Steffensen’s method and method (2.9) and compare their
numerical performance. In our study, we consider the usual divided difference
of first order. So, for u; v 2 R

N , such that u ¤ v, we consider Œu; vIF� D�
Œu; vIF�ij

�N
i;jD1 2 L.RN ;RN/; where

Œu; vIF�ij D 1

uj � vj
.Fi.u1; : : : ; uj; vjC1; : : : ; vN/ � Fi.u1; : : : ; uj�1; vj; : : : ; vN//:

For the initial slope s0 D �
s00; s

0
1; : : : ; s

0
N�1

�
, to apply Steffensen’s method and

method (2.9), we consider

8̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
:̂

s00 D ˇ � ˛
b � a

D y.tN/� y.t0/

tN � t0
;

s01 D y.tN/� y.t1I s0/
tN � t1

;

s02 D y.tN/� y.t2I s0; s1/
tN � t2

;

:::

s0N�1 D y.tN/� y.tN�1I s0; s1; : : : ; sN�2/
tN � tN�1

:

In particular, to show the performance of method (2.9), we consider the following
boundary value problem:

y00.t/ D y.t/
�
y0.t/2 C cos2 t

�
; y.0/ D �1; y.1/ D 1:

In this case, we have T D 1 and consider three iterations of the schemes forN D 2; 3

and four subintervals in the multiple shooting method. The exact solution is obtained
with ND-Solve of MATHEMATICA taking y0.0/ D 0:6500356840546128 in order
to have a trustworthy error for values near to 10�15 (tolerance in double precision).

In Tables 2.6, 2.7, 2.8, 2.9 and 2.10, we observe that Steffensen’s method obtains
poor results. Notice that when N decreases (or the interval increases), the initial
guess is less closer to the solution. This is the reason of the improvements of
method (2.9) proposed in this work. For the worst case, N D 2, Steffensen’s method
diverges. And, for N D 3; 4, we observe clearly the second order of the methods, as
well as the best performance of method (2.9).

Table 2.6 Method (2.9),
a D 0, b D 10�3; N D 2

n kF.sn/k1 ky.t/� ynk1 ky0.t/� y0

nk1

1 1:190 : : : � 10�1 1:190 : : : � 10�1 9:634 : : : � 10�2

2 6:292 : : : � 10�3 6:292 : : : � 10�3 6:297 : : : � 10�3

3 1:680 : : : � 10�5 1:680 : : : � 10�5 1:772 : : : � 10�5
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Table 2.7 Method (2.9),
a D 0, b D 10�3; N D 3

n kF.sn/k1 ky.t/� ynk1 ky0.t/� y0

nk1

1 9:839 : : : � 10�2 2:041 : : : � 10�2 8:140 : : : � 10�2

2 7:274 : : : � 10�4 1:342 : : : � 10�4 5:189 : : : � 10�4

3 1:445 : : : � 10�8 1:169 : : : � 10�8 1:808 : : : � 10�8

Table 2.8 Steffensen’s
method; N D 3

n kF.sn/k1 ky.t/� ynk1 ky0.t/� y0

nk1

1 2:665 : : : � 10�1 2:527 : : : � 10�1 3:865 : : : � 10�1

2 1:893 : : : � 10�2 1:893 : : : � 10�2 1:965 : : : � 10�2

3 6:407 : : : � 10�4 1:669 : : : � 10�4 4:999 : : : � 10�4

Table 2.9 Method (2.9),
a D 0, b D 10�3; N D 4

n kF.sn/k1 ky.t/� ynk1 ky0.t/� y0

nk1

1 4:680 : : : � 10�2 2:484 : : : � 10�2 6:815 : : : � 10�2

2 2:331 : : : � 10�5 8:762 : : : � 10�5 2:334 : : : � 10�5

3 3:636 : : : � 10�9 3:636 : : : � 10�9 4:208 : : : � 10�9

Table 2.10 Steffensen’s
method; N D 4

n kF.sn/k1 ky.t/� ynk1 ky0.t/� y0

nk1

1 1:215 : : : � 10�1 5:081 : : : � 10�2 1:593 : : : � 10�1

2 6:728 : : : � 10�3 2:532 : : : � 10�3 5:457 : : : � 10�3

3 1:052 : : : � 10�5 3:891 : : : � 10�6 6:043 : : : � 10�6

2.6 Other Contributions

Finally, we introduce briefly some recent contributions.

• In [17] the authors study the convergence of a Newton-Steffensen type method
for solving nonlinear equations introduced by Sharma [37]. Under simplified
assumptions regarding the smoothness of the nonlinear function, they show
that the q-convergence order of the iterations is 3. Moreover, they show that
if the nonlinear function maintains the same monotony and convexity on an
interval containing the solution, and the initial approximation satisfies the Fourier
condition, then the iterations converge monotonically to the solution. They also
obtain a posteriori formulas for controlling the errors.

• Based on Steffensen’s method, the paper [23] derives a one-parameter class of
fourth-order methods for solving nonlinear equations. In the proposed methods,
an interpolating polynomial is used to get a better approximation to the derivative
of the given function. Each member of the class requires three evaluations of the
given function per iteration. Therefore, this class of methods has efficiency index
which equals 1.587.

• For solving nonlinear equations, the paper [33] suggests a second-order paramet-
ric Steffensen-like method, which is derivative free and only uses two evaluations
of the function in one step. A variant of the Steffensen-like method which is
still derivative free and uses four evaluations of the function to achieve cubic
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convergence is also presented. Moreover, a fast Steffensen-like method with
super quadratic convergence and a fast variant of the Steffensen-like method with
super cubic convergence are proposed by using a parameter estimation. The error
equations and asymptotic convergence constants are obtained for the discussed
methods.

• In [34], a parametric variant of Steffensen-secant method and three fast variants
of Steffensen-secant method for solving nonlinear equations are suggested. They
achieve cubic convergence or super cubic convergence for finding simple roots by
only using three evaluations of the function per step. Their error equations and
asymptotic convergence constants are deduced. Modified Steffensen’s method
and modified parametric variant of Steffensen-secant method for finding multiple
roots are also discussed.

• In [36], a family of fourth-order Steffensen-type two-step methods is constructed
to make progress in including Ren-Wu-Bi’s methods [23] and Liu-Zheng-
Zhao’s method [Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensen’s method of
fourth-order convergence and its applications, Appl. Math. Comput. 216 (2010)
1978–1983.] as its special cases. Its error equation and asymptotic convergence
constant are deduced. The family provides the opportunity to obtain derivative-
free iterative methods varying in different rates and ranges of convergence.

• In [11], a family of Steffensen-type methods of fourth-order convergence for
solving nonlinear smooth equations is suggested. In the proposed methods, a
linear combination of divided differences is used to get a better approximation to
the derivative of the given function. Each derivative-free member of the family
requires only three evaluations of the given function per iteration. Therefore, this
class of methods has efficiency index equal to 1.587. The new class of methods
agrees with this conjecture.

• A new derivative-free iterative method for solving nonlinear equations with
efficiency index equal to 1.5651 is presented in [18].

• In the paper [12], by approximating the derivatives in the well known fourth-
order Ostrowski’s method and in a sixth-order improved Ostrowski’s method by
central difference quotients, we obtain new modifications of these methods free
from derivatives. The authors prove the important fact that the methods obtained
preserve their convergence orders 4 and 6, respectively, without calculating any
derivatives.

• The authors of [19] present a modification of Steffensen’s method as a predictor-
corrector iterative method, so that they can use Steffensen’s method to approx-
imate a solution of a nonlinear equation in Banach spaces from the same
starting points from which Newton’s method converges. They study the semilocal
convergence of the predictor-corrector method by using the majorant principle.

• A derivative free method for solving nonlinear equations of Steffensen’s type
is presented in [17]. Using a self-correcting parameter, calculated by using
Newton’s interpolatory polynomial of second degree, the R-order of convergence
is increased from 2 to 3. This acceleration of the convergence rate is attained
without any additional function calculations, which provides a very high compu-
tational efficiency of the proposed method.
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• The paper [38] proposes two classes of three-step without memory iterations
based on the well known second-order method of Steffensen. Per computing step,
the methods from the developed classes reach the order of convergence eight
using only four evaluations, while they are totally free from derivative evaluation.
Hence, they agree with the optimality conjecture of Kung-Traub for providing
multi-point iterations without memory.

• In [40], based on some known fourth-order Steffensen-type methods, we present
a family of three-step seventh-order Steffensen-type iterative methods for solving
nonlinear equations and nonlinear systems. For nonlinear systems, a development
of the inverse first-order divided difference operator for multivariable function is
applied to prove the order of convergence of the new methods.

Other related works can be found in [1–6, 16, 24, 25, 29, 30, 35, 41–43].
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