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Abstract. Single-target regression is a classical data mining task that
is popular both in the batch and in the streaming setting. Multi-target
regression is an extension of the single-target regression task, in which
multiple continuous targets have to be predicted together. Recent studies
in the batch setting have shown that global approaches, predicting all
of the targets at once, tend to outperform local approaches, predicting
each target separately. In this paper, we explore how different local and
global tree-based approaches for multi-target regression compare in the
streaming setting. Specifically, we apply a local method based on the
FIMT-DD algorithm and propose a novel global method, named iSOUP-
Tree-MTR. Furthermore, we present an experimental evaluation that is
mainly oriented towards exploring the differences between the local and
the global approach.

1 Introduction

A common approach to complex data mining tasks is to transform them into
simpler tasks, for which have known methods that produce appropriate solu-
tions. This problem transformation approach has been used to address predictive
modelling tasks, such as the multi-label classification and multi-target regression
tasks. A multi-label classification task can thus be transformed into a collection
of binary classification tasks, while a multi-target regression task can be decom-
posed into several single-target regression problems.

There are, however, methods that forego the reduction to simpler tasks and
tackle the complexity head-on. Specifically, in the case of multi-target regres-
sion, methods that consider and predict all of the continuous targets at once
have received considerable coverage in the literature [13,20]. Almost exclusively,
though, these methods have been introduced in the batch setting.

Recently, the streaming setting is becoming more and more prominent, in
large part, due to the ever increasing presence of the Big Data paradigm. The
streaming setting emphasizes several of the characteristics of Big Data, i.e., the

© Springer International Publishing Switzerland 2016
M. Ceci et al. (Eds.): NFMCP 2015, LNAI 9607, pp. 17-31, 2016.
DOI: 10.1007/978-3-319-39315-5_2



18 A. Osojnik et al.

“V”s of Big Data. Specifically, streaming methods need to tackle Velocity —
data arriving with high speed; Volume — potentially unbounded number of data
instances; and Variability — potential changes in the data itself.

Methods that address the task of multi-target regression in a streaming set-
ting are few and far between, especially those that predict all of the targets
at the same time. In this paper, we present a new tree-based method, named
iISOUP-Tree-MTR, capable of addressing the task of multi-target regression in
this manner. We compare it to the simpler problem transformation approach
of using single-target tree-based methods in a streaming setting and show that
the iSOUP-Tree-MTR method has superior performance. Finally, we explore the
performance of ensembles, e.g., online bagging [15], when using the iISOUP-Tree-
MTR method as a base learner.

The structure of the paper is as follows. First, we present the background
and related work (Sect.2). Next, we present several tree-based approaches for
multi-target regression on data streams (Sect.3). Furthermore, we present the
research questions we address and the experimental design employed to answer
them (Sect.4). Finally, we conclude with a discussion of the results (Sect.5),
followed by conclusions, and directions for further work (Sect. 6).

2 Background and Related Work

In this section, we define the multi-target regression task and present the con-
straintsimposed by the streaming context. Additionally, we briefly review the state-
of-the art in multi-target regression, both in the batch and in the streaming setting.

2.1 Multi-target Regression

In essence, we can look at the task of multi-target regression as an extension
of the single-target regression task. In the later, only one continuous variable
needs to be predicted. The task of multi-target regression (MTR) deals with
predicting multiple numeric variables simultaneously, or, formally, with making
a prediction § from R”, where n is the number of targets for a given instance x
from an input space X. To categorize the different approaches to MTR we use
the nomenclature introduced by Silla and Freitas [12] for the task of hierarchical
multi-label classification. The task of simultaneous prediction of all targets at
the same time (the global approach) has been considered in the batch setting
by Struyf and Dzeroski [20]. In addition, Appice and Dzeroski [1] proposed a
method for stepwise induction of multi-target model trees.

2.2 Data Streams

Unlike the batch context, where a fixed and complete dataset is given as input
to a learning method, the streaming context presents several constraints that a
stream learning method must consider. The most relevant are [2]:

1. the examples arrive sequentially in a specific order;
2. the number of examples can be arbitrarily large;
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3. the distribution of examples need not be stationary; and
4. after an example is processed, it is discarded or archived.

The fact that the distribution of examples is not assumed to be stationary means
that methods learning in a streaming context should be able to detect and adapt
to changes in the distribution (concept drift).

2.3 Multi-target Regression on Data Streams

In the streaming context, some recent work has already addressed the task
of single- and multi-target regression. Ikonomovska et al. [11] introduced an
instance-incremental streaming tree-based single-target regressor (FIMT-DD)
that utilizes the Hoeffding bound. This work was later extended for the task of
multi-target regression (FIMT-MT) [10]. However, both of these methods had
the drawback of ignoring nominal input attributes. Recently, there has been
some theoretical debate whether the use of the Hoeffding bound is appropriate
[16], however, a recent study by Ikonomovska et al. [9] has shown that in prac-
tice the use of the Hoeffding bound produces good results. Other related work
includes an instance-based system for classification and regression (IBLStreams),
introduced by Shaker et al. [17], which can be, in principle, used for multi-target
regression.

3 Tree-Based Approaches for Multi-target Regression
on Data Streams

Generally, the quickest way of solving a complex task, such as multi-target regres-
sion, is to transform it into a set of simpler tasks that we know how to solve.
In the case of multi-target regression, specifically, this is achieved by training
a regressor for each of the targets separately, essentially resulting in a collec-
tion/ensemble of regressors. The other option for addressing the task of multi-
target regression is to produce a regressor which gives predictions for all of the
targets simultaneously.

To distinguish between these two approaches we refer to them as local and
global, respectively [12]. Specifically, a method that uses one regressor per target
is using the local approach, while a method that uses one regressor to predict all of
the targets simultaneously is using the global approach. Recent studies show, that
in the batch case, the global approaches outperform the local ones [13]. Global
methods tend to (implicitly) exploit the dependencies between the targets.

In this section, we present several tree-based methods for multi-target regres-
sion, which utilize the local approach, as well as the global approach. Tree-based
methods are often used, as they generally provide good results in terms of predic-
tive performance, while also yielding interpretable models. Finally, we present
a baseline method that can be viewed as both local and global and is highly
relevant to the methods introduced below.
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3.1 A Local Approach to MTR

One of the best known single-target tree-based regressors in the stream setting is
the FIMT-DD method [11]. It is based on the Hoeffding bound, which allows the
generalization of observations from small samples to the underlying distribution.
Similarly to Hoeffding trees for classification [4], FIMT-DD uses the Hoeffding
bound to determine the best splits at each node of the regression tree.

We have re-implemented the FIMT-DD method in the Java-based MOA
stream-mining framework [3] and extended it to use adaptive models in the
leaves, similarly as Duarte et al. [5]. Specifically, each leaf of the tree contains
a perceptron. The perceptron is a linear function of the values of the input
attributes x that produces the prediction, i.e., § = w - ¢ + b, where w and b are
a learned weight vector and a constant, respectively.

In the original implementation of Tkonomovska et al. [11], the perceptron was
always used to make the prediction. However, the adaptive model records the
errors of the perceptrons and compares them to the errors of the mean target
predictors, which predict the value of the target by computing the average value
of the target over the examples observed in a given leaf. In essence, each leaf
has two learners, the perceptron and the target mean predictor. The prediction
of the learner that (at a given point in time) has a lower error is then used as a
final prediction.

To monitor the errors, we use the faded absolute error which is calculated as

2521 0:95™19(j) — y(j)
S 0.95m=i

fMAElearner (m) =

where m is the number of observed examples in a leaf, §(j) and y(j) are
the predicted and real value for the j-th example, respectively, and learner €
{perceptron, targetMean}. In essence, the faded error is weighted towards more
recent examples. Intuitively, the numerator of the fraction is the faded sum
of absolute errors, while the denominator is the faded count of examples. For
example, the most recent (m-th) example contributes with a weight of 1, the
previous example with weight 0.95, and the first example with weight 0.95™~!.
This places an emphasis on the more recent examples and generally benefits the
perceptron, as we expect its errors to decrease as it learns the weight vector.
We have also implemented a meta-learning method in MOA that creates a
homogeneous ensemble of single-target regressors, one regressor for each target,
and combines their single-target predictions into a multi-target prediction in
real-time to facilitate the use of FIMT-DD as a multi-target regressor. This
combination of methods is referred to as the Local FIMT-DD method.

3.2 A Global Approach to MTR

As noted earlier, the global approach has been shown to yield better predic-
tive performance in the case of tree-based methods in the batch setting. This
has motivated the introduction of global tree-based methods for data streams,
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i.e., the FIMT-MT method introduced by Ikonomovska et al. [10]. FIMT-MT
extends FIMT-DD by replacing the use of the variance reduction heuristic with
the intra-cluster variance reduction heuristic, which captures some of the depen-
dencies of the targets. However, one of the major downsides of the FIMT-MT
method, is the fact that it completely ignores nominal input attributes.

We have extended the FIMT-MT method by adding the support for nominal
input attributes. In addition, we have also proposed the use of this extension
to address other structured output prediction tasks, e.g., multi-label classifica-
tion [14]. The new method is named incremental Structured Qutput Prediction
Tree for Multi-target Regression (iISOUP-Tree-MTR). This method, as the
one before, is implemented in the MOA environment.

In each leaf, the iSOUP-Tree method uses an adaptive multi-target model,
which consists of a multi-target perceptron and a multi-target target mean pre-
dictor. As in the single-target case, the multi-target perceptron produces the pre-
diction vector as y = Wx + b, where W is the weight matrix and b is the additive
vector of constants. On the other hand, the multi-target target mean predictor
computes the prediction as the mean value of each of the targets observed at a
given leaf. Individually, these learners can be seen as local, however, in a conjunc-
tion with a tree building method, they constitute a global method.

For each target y;, the errors fMAE;emeptmn and fMAEnget Mean are recorded
and the decision which of the predictions to use is made for each variable sepa-
rately. Formally, for each i € {1,...,n} the prediction )., copiron 15 used when

IMAE . centron < IMAE 41 0cintean, Otherwise we use §f,,. .iarean- Consequently, a
final prediction ¢ = (§!,...,9") can contain predictions made by the perceptron

(for some targets), the target mean predictor (for other targets), or both.

3.3 Ensemble of Trees for MTR on Data Streams

In this paper, we also consider constructing ensembles of trees for multi-target
regression in the stream setting. For this purpose, we use iSOUP-Trees, discussed
in the previous subsection, as base learners. To construct the ensemble, we use
the bagging method for introducing diversity among the ensemble members.
The bagging method for data streams was introduced by Oza et al. [15] and
incorporates a probabilistic variation of how many times each given example is
“seen” by each of the base learners. In this paper, we refer to this ensemble
method as iISOUP-Tree-MTR bagging.

3.4 Baseline Method

For the comparison of tree-based methods for multi-target regression on data
streams, we use an adaptive multi-target model as a baseline regressor. The
baseline regressor conveniently corresponds to both an ensemble of leaves using
the local approach, as well as to a single leaf in the global iSOUP-Tree app-
roach. In essence, the adaptive model corresponds to a tree-based model that is
not allowed to grow, i.e., with leaves that are never split. The baseline method
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is specifically implemented as a stripped down version of iISOUP-Tree-MTR,
building a tree that consists of a single leaf node.

4 Experimental Setup

In this section, we first present the experimental questions that we want to
answer in this paper. Next, we discuss the evaluation measures used in the
experiments and present the experimental methodology. Finally, we describe the
datasets and conclude with the methods used in the experiments.

4.1 Experimental Questions

The first experimental question, that we wish to address in this paper, is the
experimental comparison of local and global approaches. As the streaming con-
text imposes several constraints on the learning process, it is not immediately
clear whether the findings from the batch setting will be replicated in the stream-
ing setting. While we are specifically using tree-based methods for multi-target
regression on data streams, showing that the global approach increases predictive
performance could also suggest that this may be generally true, i.e., applicable
to other types of methods and structured outputs in the streaming setting.

When the product of the number of input attributes and target variables,
which generally corresponds to the time and memory complexity, is low, we
expect the local approach to be competitive with the global approach in terms
of time and memory. However, as this product increases, we expect that the
training of several distinct, even if simpler, models takes more time and especially
more memory than the training of a single, more complex, model.

In a single-target study, Ikonomovska et al. [9] have shown no particular
differences in the predictive performance of the basic method and the bagging
method (therein referred to as FIMT-DD and OBag, respectively). In this work,
we wish to investigate whether similar conclusions can be drawn in the multi-
target case. To that end, we explore the differences in predictive performance
between the iSOUP-Tree-MTR and the iSOUP-Tree-MTR bagging methods.
The resource consumption of the bagging method is trivially extrapolated from
the resource consumption of a single tree and the number of trees used. Conse-
quently, for this experimental question we focus on the predictive performance.

4.2 Evaluation Measures and Experimental Methodology

To evaluate the predictive performance we define the average relative mean
absolute error (RMAE) on an evaluation dataset D as

b

n IRl i i
mrap - Ly Zolb il
i) Pyt |y; - y;|

where y; are the true values of the targets, §; are the predictions of the evaluated
model and 7; are the predictions of a baseline model (all on D). Specifically,



Comparison of Tree-Based Methods for MTR on Data Streams 23

Table 1. Datasets used in the experiments and their properties. N — number of
instances, T — number of targets.

Dataset Domain N Input attr. | T
Bicycles [6] service prediction 17379 | 12 numeric
EUNITEO03 quality prediction 8064 | 29 numeric
Forestry Kras [18] vegetation prediction 60607 | 160 numeric | 11
Forestry Slivnica [19] | vegetation prediction 6218 | 149 numeric | 2
RF1 [21] environmental prediction | 9005| 64 numeric| 8
RF2 [21] environmental prediction | 7679|575 numeric
SCM1d [21] price prediction 9803 | 280 numeric | 16
SCM20d [21] price prediction 8966 | 61 numeric | 16

we use the predictions of the baseline perceptron as described in Sect.3.4 as
the baseline (but note that other candidates for the baseline can be used). By
definition, this means that the RMAFE of the baseline is always equal to 1.
Essentially, RM AF is the relative error averaged over all of the target variables.

To evaluate the time consumption, we will consider the running time of the
methods. The memory consumption is measured using the size (in bytes) of the
learned models. Both time and memory consumption, as well as RMAFE, are
reported at intervals of 1000 examples.

We are using the prequential [7] approach for evaluating data stream mining
methods. An incoming instance is first used to make a prediction, which is used
in the evaluation. Afterwards, the model is updated using the instance. Since
the reported errors on data streams can be volatile if reported on an instance
by instance basis, due to, e.g., the sampling of different parts of the input space,
we calculate the evaluation measures on batches of 1000 examples. Specifically,
we calculate the RM AFE on the first 1000 examples, report it, and then repeat
this for examples 1000 through 2000, etc.

4.3 Datasets

We have selected a total of 8 datasets for our experiments based on their size,
looking for diversity in the number of input and target attributes. We consider
the datasets under the assumption of no concept drift, given that these datasets
are generally considered as batch datasets. A summary of the datasets and their
properties is shown in Table 1.

The Bicycles dataset [6] is concerned with the prediction of demand for rental
bicycles on an hour-by-hour basis. The 3 targets represent the number of casual
(non-registered) users, the number of registered users and the total number of
users for a given hour, respectively.

The EUNITE03' dataset was used for the competition at the 3rd European
Symposium on Intelligent Technologies, Hybrid Systems and their implementation

! http://www.cunite.org/eunite/news/Summary%20Competition.pdf.
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on Smart Adaptive Systems in 2003. The data describes a complex process of con-
tinuously manufactured glass products, i.e., the input attributes describe vari-
ous influences which can or can not be changed by an operator, while the target
attributes describe the glass quality.

The data used in the Forestry Kras dataset [18] was constructed from multi-
spectral multi-temporal Landsat satellite images and 3D LiDAR recordings of a
part of the Kras region in Slovenia. The input attributes and target variables were
extracted from the readings, specifically for spatial units of 25 m by 25m. For
specifics on the data preparation procedure, see Stojanova et al. [18]. The task is
to predict 11 target variables which correspond to properties of the vegetation in
the observed spatial unit.

The data in the Forestry Slivnica [19] dataset was, as in the previous case,
constructed from multi-spectral multi-temporal Landsat satellite images and 3D
LiDAR recordings of a part of the Slivnica region in Slovenia. In this dataset, the
task is to predict only 2 target variables: vegetation height and canopy cover.

The river flow datasets, RF1 and RF2 [21], concern the prediction of river
network flows for 48 h at 8 locations on the Mississippi River network. Each data
example comprises the latest observations for each of the 8 locations as well as
time-lagged observations from 6, 12, 18, 24, 36, 48 and 60 h in the past. In RF1,
each location contributes 8 input attributes, for a total of 64 input attributes and
8 target variables. The RF2 dataset extends RF1 with the precipitation forecast
information for each of the 8 locations and 19 other meteorological sites. Specifi-
cally, the precipitation forecast for 6 h windows up to 48 h in the future is added,
which nets a total of 280 input attributes.

The SCM1d and SCM20d are datasets derived form the Trading Agent Com-
petition in Supply Chain Management (TAC SCM) conducted in July 2010. The
preparation (preprocessing) of the datasets is described by Xioufis et al. [21]. The
data instances correspond to daily updates in a tournament — there are 220 days in
each game and 18 games per tournament. The 16 targets are the predictions of the
next day and the 20 day mean price for each of the 16 products in the simulation,
for the SCM1d and SCM20d datasets, respectively.

The Bicycles dataset is available at the UCI Machine Learning Repository?
and the RF1, RF2, SCM1d and SCM20d datasets are available at the Mulan multi-
target regression dataset repository®. The examples with missing values in the RF1
and RF2 datasets were removed, so the resulting datasets were somewhat smaller
than reported in the repository.

4.4 Compared Methods

For our experiments, we consider the local and global tree-based methods
described in Sect. 3. Specifically, we consider the multi-target perceptron as a base-
line, the local FIMT-DD-based approach to MTR, the global iSOUP-Tree-MTR
approach, and iISOUP-Tree-MTR bagging.

2 https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Datasct.
3 http://mulan.sourceforge.net /datasets-mtr.html.
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The FIMT-DD method is capable of detecting changes in the concept and
adapting to them. However, as this study is oriented towards comparing the local
and global tree-based approaches on equal grounds, the change detection and
adaptation mechanisms in FIMT-DD have been disabled for this study.

When comparing the bagging approach we also study the effect of increasing
the number of trees in the ensemble. To do this we train an ensemble of 100 trees,
then use an increasing number of trees for prediction (20, 40, 60, 80 and 100 trees).
This allows us to directly see the improvement provided by additional trees, as the
results for the higher number of trees are in essence an extension of those with a
lower number of trees.

5 Results

In this section we present and discuss the results of our experiments and provide
insights into several of the observed phenomena. We consider the performance of
the compared methods on the 8 datasets in terms of the evaluation measures: pre-
dictive performance and time/memory consumption.

5.1 Predictive Performance (RM AE)

The predictive performance of the iSOUP-Tree-MTR method appears to be gener-
ally worse than that of the Local FIMT-DD method (Fig. 1), excluding the results
on the EUNITE03 and SCM20d datasets (Fig. 1b and h). However, we observe
that for some datasets (RF1, RF2, SCM1d and Forestry Kras) the iSOUP-Tree-
MTR method initially has an identical performance as the baseline. This occurs
due to the splitting mechanism of the iSOUP-Tree-M TR method: the root node of
the tree is not split until a large number of examples accumulates (in our specific
results, 3400 examples on all of the affected datasets).

The affected datasets have a high number of input attributes and/or target
variables. In the case of a large number of input attributes, many of them can and
do have similar values of the heuristic function so the splitting mechanism cannot
easily and quickly determine the best candidate among them. On the other hand,
when the number of target variables is high, the aggregation part of the heuristic
removes the specificity to particular output attributes, again resulting in similar
evaluations of different input attributes. The number of input attributes at which
this occurs is much higher (100+) than the number of target variables at which it
occurs (already at 8 targets, Fig. le and f). As examples accumulate, a tie threshold
is reached and a split is made with lower confidence (for details on the tie breaking
mechanism, see Tkonomovska et al. [§]). On the above datasets, inappropriate splits
are apparently often selected and the performance suffers.

This problem affects the local method as well, on a tree by tree basis for each
tree predicting a single-target. However, it is generally easier to distinguish among
candidate splits when considering only one target. A potential workaround to this
problem is the use of option trees [9], which bypass the myopia of the greedy tree
building approach. This problem also naturally affects the results of the ensemble
method, in a slightly different way as described below.
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On the datasets where this does not occur, iISOUP-Tree-MTR and Local FIMT-
DD have comparable results. Specifically, Local FIMT-DD outperforms iSOUP-
Tree-MTR on the Bicycles and Forestry Kras datasets, while the opposite is true
on the EUNITEO03 and SCM20d datasets.

When comparing the performance of bagging versus a single tree, bagging gen-
erally outperforms the single tree and in some cases even the local method. Interest-
ingly, the variation introduced by the bagging mechanism is sufficient to produce
splits (for some of the trees in the ensemble), even for the datasets where iISOUP-
Tree-MTR gets “stuck”. Therefore, the increase in predictive performance is high-
est on those datasets. In addition, increasing number of trees generally does not
increase the predictive performance much, i.e., the predictive performance of 20
tree ensembles is similar to that of 100 tree ensembles.

5.2 Time Consumption

The results about time consumption (see Fig.2) are clear. When the number of
input attributes and target variablesislow, i.e., on the Bicycles and the EUNITEO03
dataset, the local FIMT-DD uses less or a similar amount of time as compared to
the global iISOUP-Tree-MTR. In these cases, the number of local trees that are tra-
versed and processed is relatively low. In all other cases, iISOUP-Tree-MTR, con-
vincingly outpaces the local method, clearly demonstrating that it is a much more
scalable approach in terms of time consumption.

5.3 Memory Consumption

The graphs in Fig.3 indicate that memory consumption of the observed meth-
ods is less stable than those of the time consumption. However, the results are
more straightforward. The decreases in memory usage occur when a memory inten-
sive leaf node (which stores all the necessary statistics used to evaluate potential
splits) is replaced with a split node and new, empty leaf nodes. The iSOUP-Tree-
MTR method, which produces only one tree, uses much less memory. As with time,
iSOUP-Tree-MTR is more scalable in terms of memory.

6 Conclusions and Further Work

We have conducted an experimental study comparing different approaches for
multi-target regression on data streams. The main comparison of this paper con-
siders the local approach (using the FIMT-DD single-target regressor) versus the
global approach (using the iSOUP-Tree-MTR multi-target regressor. Addition-
ally, we have compared the performance of iSOUP-Tree-MTR and an ensemble of
such trees learned using the online bagging learning method.

Unlike the previous work by Tkonomovska et al. [10], our experiments have high-
lighted a vulnerability of the greedy, myopic tree building mechanism. Unable to
distinguish the best candidate split, the learning method is placed in a staying
pattern, where it waits for more information. It finally selects the currently best
evaluated split, even though there is not enough support to do so.
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More specifically, this problem occurs when the number of input attributes
and/or target variables is high. In the first case, when the number of input
attributes is high, it is difficult to distinguish them in terms of the employed heuris-
tic. In the second case, when the number of target variables is high, the heuristic
values across target variables, results in similar values of the heuristic for many
input attributes. The number of input attributes when this occurs is much higher
(100+) than the number of target variables (where this phenomena occurs already
at 8 targets). This results in bad predictive performance, which occurs on 4 out of
8 of the observed datasets.

On the remaining 4 datasets, we observe that the compared local FIMT-DD
and global iSOUP-Tree-MTR have similar results in terms of predictive perfor-
mance. However, the global method is much more scalable in terms of time and
memory consumption. As far as resource consumption is concerned, the local
method only outperforms the global one on one dataset — the one with the smallest
product of the number of input attributes and target variables.

Furthermore, we have observed that the bagging method generally produces
better results in terms of predictive performance. Due to the randomness of the
sampling process, it often avoids being trapped into the staying pattern of the
single-tree approaches. Note that, the increases in performance due to increasing
the number of trees in the ensemble (20 to 100) seem to be negligible.

While the increase in predictive performance brought by the bagging approach
can be valuable, it comes at a great cost to both time and memory consumption.
While we omitted the specific analysis of resource consumption for the ensemble
method, the time and memory demands are linear in the number of trees. This
leads to a trade-off between predictive performance and resource usage, if paral-
lelization is not used.

Overall, the global approach does have merit in the streaming context and can
produce similar results as the local approach, with a significantly lower resource
use footprint. In our future work, we plan to address the problem of insufficient
statistical proof when constructing the tree, possibly by implementing option trees
[9] within the global iISOUP-Tree-MTR approach. These have been shown to grow
faster with fewer available examples, by considering and using multiple attributes
for splits, especially in learning the upper levels of the tree.
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