2-Stripes Block-Circulant LDPC Codes
for Single Bursts Correction

Evgenii Krouk and Andrei Ovchinnikov

Abstract In this paper the low-density parity-check (LDPC) codes are considered
applied to correction of error bursts. Errors grouping and forming of so-called bursts
are typical effect in real communication and data storage systems, however, this effect
is typically ignored, and the coding task is reduced to correction of independent
errors, which makes the practical characteristics of coding systems worse compar-
ing to possibly reachable. Nevertheless, LDPC codes are able to protect from burst
errors as well as independent ones. The main result of the paper is dedicated to eval-
uation of maximum correctable burst length of Gilbert codes, which are the 2-stripes
special case of LDPC block-permutation codes, the construction which is often used
in modern practical applications and research.

Keywords LDPC codes * Bursts-correcting codes * Gilbert codes

1 Introduction

During the development of modern practical communication systems the channel
models which are commonly used (binary-symmetric channel or Gaussian channel)
are often inadequate since they consider independent errors. At the same time in
real communication channels the effect of “memory” occurs (for example due to
fading [1]) leading to the dependencies between erroneous symbols. To fight with
such errors grouping the interleaving procedure is often used [1].

However, usage of interleaver leads to typical channel behaviour loss, the chan-
nel is transformed to memoryless, this decreases the possible transmission rates,
and increases the complexity and delay of transmitter and receiver [2, 3]. This is
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because the classical coding theory usually proposes code constructions for inde-
pendent errors which are simpler to analyse. So the important task is to construct
coding schemes oriented on typical channel errors, in particular, on correcting the
error bursts, that is, the error patterns when first and last erroneous symbols are no
far than some value b from each other (and which is called the burst length). Besides,
the effect of errors grouping is typical for data storage systems.

In the coding theory the classes of burst-correcting codes are known. For exam-
ple, these are Fire codes or Reed-Solomon codes [4]. During the last decades a lot
attention was given to low-density parity-check (LDPC) codes, particularly block-
permutation constructions [5]. Gilbert codes which are considered in this paper
are the simple special case of such construction and were proposed initially for
burst-correction. However, the exact burst-correction capability of these codes was
unknown.

The paper is organized as follows. Section 2 describes Gilbert codes and known
estimations of its burst-correction capability. In Sect.3 the procedure is derived
allowing computation of exact value of maximum correctable burst length. The
Sect. 4 concludes the paper.

2 Gilbert Codes

LDPC-codes were invented by Gallager [6, 7] and later investigated in many works
[8-11]. While possessing comparatively poor minimal distance, these codes, how-
ever, provide high error-correction capability with very low decoding complexity. It
was shown that LDPC codes may overcome turbo-codes and approach to channel
capacity [12]. Additionally, some LDPC constructions (and block-permutation con-
structions as well) are cyclic or quasi-cyclic, allowing effective coder and decoder
implementation.

Block-permutation codes are one of the most prominent and widely used class
of LDPC codes [3, 5, 13]. The simple special case of this class are Gilbert codes,
which were proposed in [14] as burst-correction codes. Gilbert codes may be defined
by the parity-check matrix H,,

LI, I, .. 1,
He=|pa s i 0

where [, is (m X m)-unity matrix, C is (m X m)-matrix of cyclic permutation:

000..01
100..00

c=({010..00], ()
000..10

and Z < m.
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Many works were dedicated to estimation of burst-correcting capability of these
codes, as well as their modifications and extensions [15-19]. In [20] the estimation
of maximum correctable burst length b for the codes defined by matrix (1) is given
by inequality

< mi - —y—1}.
b_ye{r%]l’lfn_z}max{y I,m—y—1} 3)

However, estimation (3) is not correct, giving only the lower bound of the maximum
correctable burst length. The exactness of this estimation decreases with growth of .
In the next section we will give the method of exact evaluation of b.

3 Burst-Correction Capability of Gilbert Codes

The main result of this section and paper is the following theorem.

Theorem 1 Code with parity-check matrix H, defined by (1) can correct single
bursts of maximal length b,, where b, is calculated by the first satisfied condition:

1. by=m—1,mis odd.
2. If¢ > [m/2] + 1, then

b, =m—[m/2] + 1, modd,
b, =m/2 -1, m even.

3. If¢ < [m/2] + 1, then

by=m—-¢+1, if m: (€ -1),

by=m—¢+1, if k>0:(m—F+3—k-(£—1): (£ -2),
by=m—¢+2, if I>0: (m—k-(€-3): (£ -2),
by=m—2¢+2,if Ik>0:(m—-k-(Z-2): & -1),
by=m—-¢+2, if Ik>0:m—-k--1):&-2).

4. If all preceding conditions are unsatisfied, then:

Proof To prove the statement of the theorem we will introduce some notations and
prove some lemmas. Represent the matrix (1) as H, = [hy, hy, ..., h,_,], where h,—
(2m x m)-block-column, which we will call as block.

The code can correct single error burst of length b, if and only if all packets of
length b are in different cosets, i.e. there are no two error vectors e, and e, (forming
the bursts of length no more than b), such that

e,-H. =e,-H.. )
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Since e, and e, are error bursts, the analysis of (4) may be reduced to consideration
of submatrices of H, consisting of 2m rows and no more than b columns.

Clearly, code with parity-check matrix (1) cannot correct bursts of length m, since
the sum of all m columns from any block of H, gives all-one column.

Each burst B of length b < m affects no more than two adjacent blocks from H,, let
these blocks be y and y + 1. Let us replace in £, and &, all columns with numbers

not from B by zeros and sum obtained matrices h’y and h; 41> Obtaining
0B) = + 1, ). 5)
This matrix has the form
[ ili+1 1
1 0{0] O 0
01 0{0] O 0
00 1{0] O 0
T |10 0 0|0 0
o} = 00 0]0] 1 (U ©
00 0{0] O 1
0
ot Cr
L 0 -

where C” and C7*! are parts of matrices C” and C’*', and i + 1 is the beginning
position modulo m of burst B, which we will call as relative beginning of B.

From (4) and (5) it follows that the code with parity-check matrix H, cannot
correct bursts of length b < m if and only if for at least one pair of bursts B; and B,
(of length b) there exists the pair of vectors X; and X, of length m such that

X - O(By) =X, - Q(B,). (7
For any burst B the matrix Q(B) may be represented as
0(B) = [Q,(B), O,(B)]

where Q,(B) is (n X m)-unity matrix with ith row replaced by zeros.

Then the condition (7) may be written as
X - Q1(B)) =X, - 01(By), (®)

X - Oy(By) =X, - Or(By). )
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Removing the zero row in Q,(B), we obtain ((m — 1) X (2m))-matrix Q'(B) =
[0} (B), O4(B)].

Denote as (¥\s) the vector of length m — 1 obtained from y (of length m) by remov-
ing sth position (with correspondent shift of remained digits by one position to the
right). Then the following lemma may be formulated.

Lemma 1 The condition (7) is satisfied if and only if the vector y of length m exists

such that
{ G\i) - 05(By) = (\)) - Q5(B,), (10)
Vi=Yy = 0.

where i + 1, j + 1 are relative beginnings of bursts B, and B, correspondingly.

Proof Consider the expression (8). Matrices Q,(B,) and Q,(B,) are unity (m X m)-
matrices with ith and jth zero rows correspondingly. This means that multiplication
of X, by Q,(B,) gives the vector X; with ith position equal to zero. From (8) it follows
that X, and X, are coincide and contain zeros on positions i and j. That is, the vector
y =X, = X, may always be defined with y, =y, = 0.

Rewrite (8) and (9) as

{ G\ - 0 (B) = G\)) - 0}(B,)
G\D) - Q)(B)) = (G\)) - O4(B,)

Evidently, first equation is satisfied for any y, if y; = y; = 0, this gives the lemma’s
statement.

Lemma 2 For any burst B:
0,B)=11,_,,0]-C7, (11)

where I,,_, is unity ((m — 1) X (m — 1))-matrix, 0 is zero vector-column of length
m — 1 and y is integer between 0 and € — 1.

Proof To prove the lemma it is enough to show that for any burst B the correspondent
matrix Q’Z(B) is circulant ((m — 1) X m)-matrix.

Let B is burst of length m — 1 containing s > 0 last columns of block 4; and m —
s — 1 first columns of block 4, ;. Then Q’Z(B) =[q,(B), qz(B)]T, where g, (B) is the
matrix from first m — s — 1 columns of C’ and q,(B) is the matrix from last s columns
of C'=!. Matrices ¢, (B) and ¢,(B) are circulant by construction and we need to show
that (m — s — 1)th column of C'~! (i.e. first column of ¢,(B)) is cyclic shift of the
(m — s — Dth column of C’ (i.e. the last column of q,(B)) to conclude the proof.
This follows from the fact that (;m — s)th column of C*~! is equal to (m — s — 1)th
column of C'.

From Lemmas 1, 2 and condition (7) it follows that two bursts of length b < m
have the same syndrome if and only if there exists y of length m, such that for some
integer y the following condition holds:
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{SZ’S?:éyV’O)'CY’ (12)
i j ’

where (y\i, 0) is vector of length m obtained by adding zero position to (¥\i).
Let us put in correspondence to vector y the polynomial y(x) = 2::01 yxk. Then
(12) in polynomial representation will be

{ OGN = G\)) - ' mod & — 1, 13

Yi=Yy = 0
(coefficients of (y(x)\i) and (y(x)\j) are defined by vectors (y\i,0) and (¥\j, 0) cor-
respondingly).
Lemma 3 Ify(x) = EZ:OI yixk—polynomial, satisfying (13), then for any non-zero
v one of the following holds:
Yk = Yk-y) mod m> Yk = Yk—y+1) mod m> Yk = Y(k—y—1) mod m*

Proof Polynomial (y(x)\i) may be represented as

i—-1 m—2

GEND = Yyl + Yy = AW + B, (14)
k=0 k=i

Then ((y(x)\j) - x*) mod x™ — 1 may be written as

m—=2

j-1
(OE\) - x) mod x™ — 1 = ]Z Y+ Y X7 ) mod X7 — 1 =
k=0 i (15)

= (A" (x) + B'(x)) mod X" — 1.

From (13) the equality of coefficients correspondent to the same degrees of poly-
nomials (14) and (15) is follows.

Consider the coefficients for degrees k = 0,i — 1 (i.e. from A(x)). They are cor-
respondent to coefficients of the same degrees either from A”(x) or from B"(x).
However from (15) it follows that any degree k of ((y(x)\j) - x) mod x™ — 1 may
be represented as (s + y) mod m. Then

Y € A[(x) =y €A'(x) = Yk—y) mod m» O
i 14 (16)
Vi € Al(x) = Vi EB x) = Y(k=y+1) mod m"

Similarly for degrees k = i,m — 2

Ve € Bi(x) =y €EAT(X) = Y(k—y) mod m> OF
i 4 (17)
Ve EB(x)=y,_, €EB (x) = Y(k—y—1) mod m*

From (16) and (17) we get the lemma’s statement.
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Corollary 1 For any y(x) satisfying (13) the non-negative integers a;, a,, Qs exists
such that
a(y+D+ay+a(y—1)=m (18)

Proof Let y, be non-zero element of y. Then, according to Lemma 2, one of the
elements Yy_,) mod ms Yk—y+1) mod m OF Yk—y—1) mod m 1S also non-zero. Continuing
these steps the non-zero y, can be found for which one of the following statements
holds:

Vs = y(s—y) mod m = Yo Vs = y(s—y+1) mod m = Yo Vs = y(s—y—l) mod m — Yk (19)
From this there exists such nonnegative a;, a,, a; that:
a(y + 1)+ ayy +a3(y —1) =0 mod m. (20)

To prove the Corollary 1 it is enough to show that there are no other non-zero
elements between two non-zero elements of y.

If this is not true, then one of the Eqgs. (19) is satisfied after more that one pass-
ing through the vector y (in other words, the value of k —y, k—y —lork—y + 1
becomes negative before satisfying (19), and therefore is taken modulo m more than
once). In this case the vector y is either all-one vector and the minimal length of
uncorrectable burst is m, which is impossible, or it contains zero elements. Then the
y' exists, perhaps less than y from (20), equal to the number of positions between
non-zero elements or differs from it by one, for this y’ the condition (13) also holds,
and before satisfying (19) the position number is taken modulo m only once. From
this the statement of Corollary 1 follows.

Corollary 1 also means that from all y, for which (13) holds, the least non-zero
value should be chosen.

Lets call as section of y the sequence consisting of one and consequent zeros. For
example, y = 100010000 contains two sections of length 4 and 5.

From Corollary 1 it follows that y is concatenation of sections of lengths y, y + 1
and y — 1. Lemma4 and Corollary 2 specify the locations of these sections.

Lemma 4 For vector, satisfying (13), the following holds:
jtr—-1<m-1 (21)

Proof Indeed, let y;,; be the last non-zero element of y (otherwise (21) evidently
holds). Recall that the element y,,, is always equal to one, since j is relative burst
beginning. We will assume that the coefficient y, in y(x) is always equal to one. If this
is not true, the correspondent ¥ may be cyclically shifted, preserving all results of
(13), Lemma 3 and Corollary 1. Then from Lemma 3 and Corollary 1, the following
cases are possible:
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Yo = Ym mod m = y(m—y—l) mod m = yj+1’
Yo = Ym mod m = y(m—y+l) mod m — yj+l’
Yo = Ym mod m = y(m—}/) mod m — yj+1’

from thiswe getj+y —1<m—1.

Corollary 2 Ifi <j+ vy, then in sections, forming y, the section of length y — 1 is
either absent, or appeared exactly once and located last.

Proof From Lemma4 and inequality (21) the polynomial (15) may be represented

as

((y(x)\i) x’) mod x™ — 1 =
-1 m—y—2

= Z YA Y X+ Z Vi xEF7 oA =
k= k=m—y—1
s ! m—s (22)
= Z)’(k 7+1) mod mxk“‘)’,xy "+ Y e y+1xk =
k=j+y

=M@+Wﬂ+mm+wm

As we assumed before, let y, = 1. At first we will not consider cases when relative
beginning of one or both bursts coincides with the beginning of correspondent block
h, of matrix (1), these cases will be considered separately. Then i+12>y —1 or
i>y—2.Consideri =y —2 and i = y — 1. In the first case from (14) and (22) we
et ¥ir1 = V_| mod m = Ym—1> Which is possible only if ¥ contains only ones. If there
are no other solutions of (13), then the maximal length of correctable burst is m — 1.
We will exclude such vectors from consideration.

In the second case, for i =y — 1 we get y;;; = y;, which is impossible since the
element y;, , is always non-zero, while y; is always zero. From this we geti > y, i.e.
degrees numbers from 0 to y — 1 are completely belong to A’(x), and y, is the only
non-zero coefficient from coefficients y, from A™(x) (this follows from the fact that
the minimal number of positions between non-zero elements is y — 1, and coefficient
of x*~! is zero. Degrees higher than y — 1 belong to B”(x) and C™(x)).

Leti <j+ y. Then from (14) and (22), C"(x) C Bi(x), and the following expres-
sions hold:

Yk = Yk=y+1) mod m» 0 <k <73

Vi = Yy Yy <k<i
Vi = Yiey—1> ISk<(+7)
Vi = Yiey G+y) <ksm-2.

So, the expression y; = Y_,11) mod » May holds only for one non-zero element of y,
namely y,.

From this also follows that for i < j + y the equation a; = 1 holds and the only
section of length y — 1, appeared in y, is the last section.

Consider the special case i = j + y. Here C"(x) = B/(x), and the vector j does not
contain the sections of length y + 1 at all, it has one (last) section of length y — 1,
and other sections of length y (in other words, a; =0, a3 = 1).
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Let us analyse the results of Lemma 3 and its corollaries. Let we have the poly-
nomial y(x), satisfying (13), and correspondent vector y. If we denote as i® and j° the
number of zero positions of y before (i + 1) and (j + 1)th positions, then the length
of incorrectable burst is estimated as b = max(m — i°, m — j°).

However, it is unknown how to solve (13) having only m and #. From the other
hand, the properties of polynomial y(x) are known, reflected in Lemma 3 and corol-
laries. It is clear that, defining the coefficients «, a, and a5 of (18), we will define the
polynomial y(x) satisfying (13). At the same time for given m there may be several
solutions of (18). In this case the worst scenario should be chosen, i.e. polynomials
giving the minimal length of incorrectable burst. In the following we will show that
coefficients a;, a,, a; of (18), as well as the minimal length of incorrectable burst,
are dependent on mutual placement of bursts’ relative beginnings i and j.

Consider the case when the beginnings of one or both bursts are coincide with
the beginning of the correspondent block of H,. Then the values i + 1 or (and) j + 1
should be equal to zero, and from this i = —1 mod m or (and) j = —1 mod m (since
from i = —1 mod m follows (¥\i, 0) = ¥).

The following lemma connects the parameters m, y, coefficients a;, @,, and a3
from (18) and relative beginnings i and j of error bursts.

Lemma S For the vector y of length m and parameters i, j and y, satisfying (12), the
values of coefficients a;, a,, and az of (18) are defined by the values i and j according
to the Table 1.

Proof We will subsequently consider all possible locations of bursts’ relative begin-
nings 7 and j, using polynomial representations (14) and (22).

1. Leti <jand i =j = —1. This case corresponds to the fist row of Table 1. This
means that the equality y(x) = (y(x)\i) = (y(x)\/) holds, that is

m—1
G\ = Xyt
k=0

m—1
(Y@\) - x) mod x" — 1 = Y y,xlkty) mod m_
k=0

Table 1 Relative beginnings of bursts, coefficients of (18) and minimal lengths of incorrectable
bursts

# Condition Incorr. burst length Coeff. of (18) Value of y
1 i=-1,j=-1 m—y—1 a,=0,a;=0 -1
2 -1<i<(@+y),j#F-1 | m—-y a #0,a; =1 -2
3 i>@G+y),j# -1 m—y+1 a,=0,a3#0 -2
4 i=-1,j#-1 m—y+2 a;=0,a3#0 -1
5 i#F-1,j=-1 m—y+1 a #0,a3,=0 ‘-2
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from this yx = Y4, moa m for all k. Taking into account (18) we get a; =0, a3 =
0. The length b of incorrectable burst in this caseis b =m —y — 1.
Nowleti <j,i# —1,j# —1.

In the proof of Corollary 2 it was shown that if i # —1, then i > y. Consider dif-
ferent possible values of i and j.

(a) i =y. In this case from (14) and (22) we get B"(x) C B'(x), C"(x) C Bi(x).
In polynomial (14) the coefficient y;, is always correspondent to degree *,
and degree ¥ in polynomial (22) is always belong to B"(x), SO y;,; = Yo
Yj+1 = Yj—y- That is, before (i + 1) and (j + 1)th positions of y there is the
section of length y + 1, then the length of incorrectable burst is m — y.

(b) (y +1) <i < (j+ 7). In this case the degree x' belongs to B"(x), y;,.; = Viys
Yj+1 = Yj—y» and this is the generalization of the previous case 2a, the length
of incorrectable burst is also m — y.

These cases are correspondent to the second row of Table 1.

. Let i > j+y. As it was shown in the proof of Corollary?2, if i =j+y, then y

consists of one section of length y — 1 and other sections of length y. However,
since neither i nor j in considered case are not equal to —1, there are sections of
length y before relative beginnings of bursts, sob =m —y + 1.

Ifi > j + y, degree x' belongs to C™(x), and B"(x) C A!(x), so Vil = Yicy+1:Vje1 =
Yj—y+1- In this case in y there are sections of length y before positions y;,; and y;;,
sob=m—y+1.

Now we need to consider cases when i or j equal to —1.

. Leti=—1=m—1,j+# —1. Then (14) and (22) may be written as

m—1
O\ = ng yxt = Al),
(O@V)) - xy_) mod x" — 1 = A™(x) + ijy_' + B"(x) + C"(x).

From this for any k one of the equations is hold: y, =Yu_,) mod m» Yk =

Yk=y+1) mod m- 1N Other words, coefficient a; in (18) is equal to zero. This cor-
responds to the previous case, when B"(x) C A'(x), and there are y — 1 zeros
before position (j + 1). However, there are y — 2 zeros before position i + 1, so we
should select b = max(m —y + 1,m —y +2) = m —y + 2. That is, in this case
b=m-y+2,a;#0,a,=0.

Leti# —1,j=—-1=m— 1. Then

. m=2 ) )
GOND = Ty + X v = Al + B'G),
k=i (23)

m—1
((GE@\) - @) modx" - 1= Y(k—y) mod ok
k=0
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We get y;,. | = Yieys Vi1 = Yo = Y(<y) mod m- This gives b=m—y +1, a; #0,
a; =0.
Considered cases give the statement of Lemma 5.

If we know the values of coefficients in (18), we may calculate the minimal length
of incorrectable burst. However, in third and fourth rows of Table 1 we have the same
coefficients but different burst lengths. But taking into account the value of y we may
see that in fact these values coincide. Let us analyse the relationship between the
value of y (which is unknown during code construction) and £ (which is the code’s
parameter).

First consider i # —1, j = —1 = m — 1 (fifth row of Table 1). As it was shown, y
for such values i and j consists of sections of lengths y and y + 1, and the last section
has the length y. However, since i # —1 and y, = 1, this means that the first error
burst occupies blocks /i and £, and in the second burst the position correspondent to
the column of Q,(B,) with one in the first row (counting from zero), or equivalently
to the (m + 1)th row of block hy, should contain non-zero value. From this it follows
that the number of this position is (0 — y) mod m = m — y. But this is possible only
if second burst occupies the block 4, ;. Then the upper diagonal of Q,(B,) contains
y + 1 ones, and the number of the column containing second non-zero element in
this diagonal (i.e. the position of one in the (m + 1)th row of &,,,) is m —y. So,
since the burst B, occupies one block, the number of this block is y + 1 instead of y,
so the value of y cannot exceed £ — 2.

Consider in more detail the connection between y and . Itis clear thaty < £ — 1,
since the burst begins in block 4,. However, the burst may occupy two blocks and
we need to check whether the burst affects the block with number exceeding £ — 1.
Let for some ¢ the code can correct bursts of length no more than b,. Then there
are two uncorrectable bursts of length b, 4+ 1 occupying the first and last blocks of
H, (it is supposed that the second burst ends in the last block but it may begins in
the preceding one). If the second block does not affect the last block, this means that
these bursts cannot be corrected by the code with number of blocks less than £, then
we may consider this shorter code as the code with bursts in the first and last blocks.

Next, each vector y, which is defined by the incorrectable bursts (see (4) and
(12)) and is solution of (12) and (18), has the correspondent value of y equal either
toZ — 1 orto £ — 2. Consider the code with the number of blocks increased by one.
The length of incorrectable burst may either reduced or remain the same. In the first
case we have y’ =y + 1, in the second case y’ = y. If for ' = y + 1 there are no
solutions of equation (18) in terms of a;, @, and a3, then b, | = b, (b, means the
maximum length of correctable burst for the code with parameter ¢).

Continuing the analysis of y in similar way, we obtain the values given in the last
column of Table 1.

Summarizing the analysis, we may formulate the following results.

1. If the condition in the first row of Table 1 is satisfied, this means that m : y,
orm i (£ — 1) for given m and ¢, and the code cannot correct bursts of length
b=m-0¢+2.
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2.%>0:m-@G-D—=-k-y+1)iy,ork>0: m—-¢+3-k-(£-1)):
(€ -2),so0b=m—7¢+2.

3.%>0: m—k-(y=1):y,or Ik>0: Im—k-(Z—-3):(—-2),s0b=
m—7¢ + 3.

4. I%k>0: im—k-(y=1)iy,or Ik>0: iIm—k-(£-=2): (£—-1),s0 b=
m—7¢ + 3.

5.3%k>0: m—k-(y+1):y,or Ik>0: Im—-k-(Z—-1):(&—-2),s0b=
m—7¢ + 3.

Given the code parameters m and £ we should first consider the conditions giving
the least length of uncorrectable burst (i.e. 1 and 2). Then the conditions 3, 4 and 5
should be considered. If there are no satisfied conditions, then the minimal incor-
rectable burst is not in the last block of H,, then we should decrease ¢ and repeat
the procedure.

The following two lemmas conclude the proof of Theorem 1.

Lemma 6 If¢ > [m/2] + 1, then the code defined by (1) can correct single bursts
of length b < b,, where

b, =m—[m/2] + 1, modd,

{ b, =m/2 -1, m even. (24)

Proof According to Lemma 5 and its corollaries, for each non-zero element of y there
are two other non-zero elements at distance y, y + 1 or y — 1 positions to the left and
to the right (that is, non-zero elements of neighbour sections). If £ > [m/2] + 1,
then the maximum value of y may exceed m/2, this means that the number of sections
in ¥ is minimal in this case and is equal to 2, so the error burst contains only two ones,
which are the beginning and the end of the burst, “moving” to each other by the cyclic
shift by y positions.

Further increasing of ¢ (exceeding [m/2] + 1) will not lead to the decreasing of
uncorrectable burst length. It is clear that in this case the maximal length of cor-
rectable burst will be defined by (24).

Lemma 7 For ¢ = 3 and m odd, the code with parity-check matrix (1) can correct
single bursts of length b = m — 1.

Proof 1Tt is clear that for £ = 3 the error bursts occupy the first and last blocks of
H;. Otherwise, y would be equal to one and ¥ would consists of all-ones. Then y =
2, which is possible only for i = —1, j = —1, and from Table 1 the burst length is
m—y + 1, whichism — 1 fory = 2.

It is easy to check that for even m and £ = 3 one may always define the vector y
satisfying (13) and containing ones on even positions and zeros on others.

From the results given in Table 1, Lemmas 6 and 7 the statement of Theorem 1
follows.
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4 Conclusion

In this paper the burst-correcting capability of Gilbert codes is considered, when
correcting single error bursts. The procedure is formulated, allowing to calculate
the exact value of maximal correctable burst length depending on the parameters of
the code. Its worth mentioning that extending Gilbert codes by adding extra parity-
checks (or block-rows) to the parity-check matrix may improve the burst-correcting
capabilities, however, for any block-permutation LDPC-code this value will be less
than the block size.
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