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Abstract. The solar energy is a well alternative for covering the high
electrical demand, and it starts to be integrated into the energetic grid
infrastructure. High forecast accuracy can help in the management of
industrial strategies. We present an approach that combines the potential
of a Neural Network named Echo State Networks (ESN) and a well-
known optimisation technique named Simulating Annealing (SA). We
use the SA technique for selecting the meteorological variables relevant
in the forecasting task and the ESN as forecasting model. We present
the results evaluating our approach on a public dataset.
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1 Introduction

Solar energy has received significant attention during last years because is an
alternative of renewable resource that can help for reducing the carbon emis-
sions, and it can be used for covering a relevant part of the growing demand of
electrical energy. To have accurate solar irradiance predictions help to integrate
the energy into the grid, as well as to avoid congestions. Besides, high forecast
accuracy helps to mitigate the negative impacts of instable energy sources. In
this paper, we present a procedure for forecasting the solar power irradiance
using the history of the irradiance and other several meteorological variables.
The approach is based on a widely applied metaheuristic technique named Sim-
ulating Annealing (SA), which is used for selecting the most significant input fea-
tures, and the forecasting is done using the Echo State Networks (ESN) model.
An ESN is a Recurrent Neural Network often used for solving temporal learn-
ing problems. We have two main goals in our article, one consists in defining a
group of meteorological variables that impact on the solar power. The second one
consists in evaluating the accuracy of Echo State Networks for forecasting solar
irradiance using the previous information about the solar irradiance and a group
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of external meteorological variables, such as: wind characteristics, air tempera-
ture, etc. Related works of forecasting solar power irradiance has been presented
during the last years. Some approaches have been based on classic statistical
methods [1], Neural Networks [1–3], and other machine learning techniques have
been also studied [4–6]. We evaluate our approach using a well-known public
dataset [7], and we present the results for predicting the solar irradiance with a
forecasting horizon of three days.

The article is organised as follows. In the next section we define the problem
of forecasting a time-series and we present a background on the SA metaheristic
and the ESN model. Section 3 introduces our methodology. Section 4 is divided
in two parts. First part describes the data set and second part presents the
experimental results. The article ends with an outlook and conclusions.

2 Background

In this section we start by formalising the problem of forecasting time-series
data. Next, we present a background of the methods used in this article: Echo
State Networks and Simulating Annealing.

2.1 Formalization of the Problem

The goal of forecasting a time-series is to predict or estimate future events or
trends using the information concerning the past. Given a time-series of real
observations y(1), y(2), . . . , y(t) the problem of forecasting a time-series consists
in computing a learning tool ϕ(·,w) with parameters w that predicts (bet-
ter as possible) the value of y(t + τ) with τ > 0 using the precedent points
y(t), y(t − 1), . . .. The accuracy of ϕ(·) is assessed using an average over all dis-
tances between the target y(t + τ) and the predicted value that we denoted by
ŷ(t + τ). This problem is generalised when we have a set of external features
a(t) in a multidimensional space. In this case the forecast of y(t + τ) (τ > 0) is
given using the information of a(t),a(t − 1), . . . , y(t), y(t − 1), . . .. The parame-
ters of ϕ(·,w) are computed such that an error measure in an arbitrary range of
time [1, T ] is minimised, here we consider the widely used Mean Squared Errors
(MSE)):

MSE =
1
T

T∑

t=1

(ŷ(t) − y(t))2. (1)

2.2 Simulating Annealing Method

A popular optimisation technique is Simulating Annealing (SA), which is used
for continuous and combinatorial optimisation problems on multi-dimensional
spaces [8]. The technique is inspired from the thermodynamical process wherein
liquids freeze and crystallise or metals cool and anneal. The goal consists in
optimising an objective function that in this context is named energy function.
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The procedure is iterative and stochastic, at each step the method tests as feature
solution a random point on the searching space. We replace a current solution
scurr (a point on the large space) by a randomly selected nearby solution snew

that is chosen with a probability p. A nearby solution snew is a solution that has
a Hamming distance with the current solution scurr less than or equal to d, for
an arbitrary d value. The method has a global parameter called temperature (T )
that decreases in the number of iterations until some arbitrary frozen condition
T end (following the metal annealing analogy). The model is given by the following
selection rule

p = min{exp (−(E(snew) − E(scurr))/kT ), 1}, (2)

where k is a constant and p is a probability of selecting a new solution. This rule
gives to the model the capacity for exploring new regions that is done jumping
from a local minimum to other regions on the searching space. The algorithm has
the following input parameters: an initial temperature T (0), a cooling schedule ρ
in [0, 1], and a stop condition T end, in next section we specify how we set those
parameters.

2.3 Echo State Neural Networks

A Recurrent Neural Network (RNN) is a bio-inspired dynamical system used
for solving temporal learning problems. The recurrences allow to the network
to learn complex dynamics and to model systems that evolve in time. Besides,
the model has been also successfully applied for solving any type of supervised
learning problems. Despite the potential of the RNN for solving supervised tasks,
they have been seldom applied in real-world applications, due to the fact that
often can be hard to set-up the network parameters. First-order methods (opti-
misation techniques based on the gradient information) have been appropriated
for training feedforward networks, although they can fail in the case of recurrent
networks [9]. An alternative of the RNN has been introduced at the beginning of
the 2000 s with the name of Echo State Networks (ESN) [10]. The technique uses
the power of RNNs for memorising temporal data and overcomes the drawbacks
of training the weights of RNNs, without introducing additional inconveniences.
For that reasons, the model is a good alternative for tackling temporal learning
tasks.

The network has three layers connected in a forward schema. The first layer
typically process the input patterns. The second layer contains recursive con-
nections, and its role is memorising the temporal structure of the patterns and
expanding their geometrical information from the input layer in a higher dimen-
sional space. The third layer generates a linear combination of the expansion
created by the second layer. The ESN has circuits only in the second layer,
which is named reservoir. A main characteristic of the model is that the training
algorithm only focuses in adjusting a subset of weights, only the weights to the
third layer are adjusted. All the rest connections (input and reservoir weights)
are random initialized following some algebraic conditions and they are fixed
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during the learning process. As a consequence, the learning algorithm is fast
and robust because the consists in training the parameters of a linear regression.
The literature about ESN is very rich, and we can find several applications of
the model that show the well performance of ESN for solving temporal learning
tasks [11].

We follow by specifying the notation, let Na, Nx and No be the number of
input, reservoir and output neurons, respectively. The parameters of the model
are the weight matrices, let win be a Nx × Na matrix collecting input-reservoir
weights, let wr be a Nx × Nx matrix collecting hidden-hidden weights, and let
wout a No × (Na + Nx) matrix with the parameters from input and projected
space to the output space. The reservoir is characterized by a multidimensional
state x = (x1, . . . ,xNx) given by:

xm(t) = ψ

(
win

m0 +
Na∑

i=1

win
miai(t) +

Nx∑

i=1

wr
mixi(t − 1)

)
, (3)

for all m ∈ [1, Nx] where ψ(·) is the hyperbolic tangent function (tanh(·)). Let
y(t) be the prediction No-dimensional vector of the model at time t, which is
computed by a linear regression:

ys(t) = wout
m0 +

Na∑

i=1

wout
mi ai(t) +

Nx∑

i=1

wout
mi xi(t), ∀s ∈ [1, No]. (4)

In our experimental results we use a generalisation of the canonical ESN that
computes the reservoir state as follows: firstly, we compute a temporarily vector
state x′ using the expression (3). Secondly we compute the state given by:

xm(t) = (1 − α)x′
m(t) + αxm(t − 1), (5)

where the parameter α is called leaky rate and is used for controlling the reservoir
state update.

The ESN model has the following global parameters that impact in the model
performance: the size of the reservoir (given by the number of reservoir neu-
rons), the input scaling factor (a weighting factor of the input patterns), the
spectral radius of the reservoir matrix, the density and topology of the reser-
voir matrix [11,12]. The reservoir size impacts in the linear separability of the
data, there is a tradeoff between the large of the reservoir and overfitting. In our
experiments, the training data is normalised. We consider the input scaling fac-
tor equal to 1, therefore all the input patterns have equal relevance. The spectral
radius controls the stability of the reservoir state and impacts in the memory
capacity of the model. An important property of the model is that the stability of
the dynamical system x(t) only depends of the reservoir weight matrix wr [11], .
The stability is controlled by the spectral radius of wr, that we denote by ρ(wr),
if ρ(wr) < 1 the stability of the ESN can be ensured [11]. An usual practice
consists in scaling the initial reservoir, in order to control the spectral radius,
the scaling procedure is as follows: wr ← (β/ρ(wr))wr, where β is a constant in
(0, 1]. The sparsity of the reservoir matrix is often set on 20% non-zero values.
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3 Methodology

The section is divided in two parts, the first one present the procedure applied
for setting the global parameters of the ESN. The second part contains the used
methodology of this article.

3.1 Setting of the Global ESN Parameters

We begin by finding the best global parameters of the ESN model. We arbitrary
select three parts of the solar global irradiance time-series. The selection was
made considering the different trends of the 2015. A first part A has a grown
increasing trend in an arbitrary range of time [a1, a2] (days in February and
March), a second part B doesn’t present any evident trend in [b1, b2] (days of May
and June), and a third part C has a downward trend in [c1, c2] (days of October
and November). For each period A, B and C we compute ESNs with different
global parameters (Nx, ρ(wr), α), and we evaluate their accuracy using the MSE
(as an averaged error of the three parts). The global parameters of the ESN are
computed using the model for forecasting three days ahead. We forecast the solar
power using only information of the past of the solar power series, in other words
we don’t use any other meteorological variables. The evaluated ESN parameter
values are defined in a regular spaced-grid points in the following intervals: α ∈
[0.5, . . . , 0.9], Nx ∈ [30, 35, . . . , 120, 125] and ρ(wr) ∈ [0.1, 0.15, . . . , 0.95]. Let
N∗

x , ρ∗ and α∗ be the best global parameters of an ESN according our empirical
evaluations. A remark, the evaluations for reservoir matrices with ρ(wr) > 0.55
were in some cases unstable. This means that the accuracy presented a large
variance, therefore we analyse only the results for ρ(wr) ≤ 0.55.

3.2 Feature Selection Using SA Method

We apply the SA method for automatically selecting other meteorological vari-
ables for forecasting the solar irradiance. We assume that several external vari-
ables impact in the solar irradiance, such as: air temperature, humidity, wind
characteristics, etc. Therefore, we use SA as feature selection tool for defining
a set of meteorological variables. The selection can not be done in reasonable
time using a brute-force strategy or a greedy method due to the large number
of variables (in our experiments, we are using more than 20 variables). The pro-
cedure for using SA is as follows. Without loss of generality we enumerate the
input features by {1, . . . , N}, where N is the number of meteorological variables
including the solar power. As a consequence, the searching space is {0, 1}N ,
where the solutions have the form s = [s1, s2, . . . , sN ] where si = 0 represents
that the input feature i is omitted as input of the ESN, and si = 1 represents
that the variable i is an input of the model. For each combination we evaluate
the accuracy of an ESN with parameters N∗

x , ρ∗ and α∗, the objective is to find
s ∈ {0, 1}N such that the MSE is minimized. In the SA method, given a current
solution scurr we must select a nearby solution of scurr that we denote by snew. In
this step, we random select a set D of d integer values in [1, N ]. Next, we define
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the nearby solution snew as snewj = scurrj for all j /∈ D and snewj = scurrj +1 mod 2
for all j ∈ D where mod is the module function.

Our main goal is developing a device for predicting future values in a period
Δt using information until a current time. Therefore, given a explanatory vari-
able a(t) and the target y(t) until time t, we predict the solar irradiance value
at time t + 1 (ŷ(t + 1)), we use a(t), y(t) and ŷ(t + 1) for predicting ŷ(t + 2),
a(t), y(t), ŷ(t + 1) and ŷ(t + 2) for predicting ŷ(t + 3), and so on. We assume
that after a period Δt, we are able to have new measured values for the explana-
tory variables (a). In other words, we use also other meteorological variables,
for instance temperature, at time t for predicting the solar irradiance at time
t + Δt, and so on. We divide the time-series in two parts. The first part (named
training) is used for finding the best configuration of the input features and the
best global ESN parameters. The second part (named validation) is used for
evaluated the adjusted model. We use the fitted model for predicting the values
on the validation time-series, and the predicted values of power solar as well as
the other meteorological variables are used as input patterns for predicting new
values. We set Δt with the value of three days. All codes for data processing
have been developed in Matlab (Mathworks Inc. Natick, Ma, USA).

4 Experimental Results

The first part of this section contains a description of the data, the second one
presents our experimental results.

4.1 Data Description

We use the meteorological data provided by the National Renewable Energy
Laboratory and Solar Technology Acceleration Center (SolarTAC) [7]. The col-
lected data corresponds to the period started in January 1, 2015 till December
5, 2015. The temporal precision of the data is 1 min. The output variable is the
global irradiance given by the Global Horizontal Irradiance in W/m2, the input
features are: Air Temperature, Wind Chill Temp, Dew Point Temp, Relative
Humidity, Wind Speed, Pk Wind Speed, SDev Wind Speed, Wind Direction,
Wind Dir at Pk WS, SDev Wind Direction, Station Pressure, Precipitation,
Accumulated Precipitation, Zenith Angle, Azimuth Angle, Airmass, CMP22
Temp, CR1000 Temp, CR1000 Battery, and CR1000 Process Time. More infor-
mation about those variables and the used protocol for collecting the data see is
available in [7]. The preprocessing of the data consisted in changing the temporal
precision from 1 min to 10 min. Instead of using the variable information each
minute, we consider the data each 10 min. The time-series data has 50232 points
in this period. All the variables were normalised in [0, 1]. Figure 1 presents the
three periods used for setting the parameters of the ESN model. Due to the fact
that SA is a metaheuristic technique we evaluate our approach of different 30
experiment trials. For each one, we start the SA method by randomly selecting
the half part of the input features.
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Fig. 1. Training data used for finding the best ESN global parameters. The first graphic
covers the period since Feb. 3 till Mar. 10, the second graphic covers the period since
May 18 till Jun 22, and the third graphics covers the period since Oct. 4 till Nov. 8.

4.2 Results Analysis

As example, we present in Fig. 2 the accuracy of the model when two leaky
parameters (α in expression (5)) are evaluated. The graphic shows the MSE
on the validation data (three days ahead) for different size of the reservoir and
spectral radius. We can see that models with large reservoir size can provoke
overfitting on the training data, as a consequence they can have low accuracy
for modelling the validation data. According to the results, we set the parame-
ters as follows: α∗ = 0.8, N∗

x = 40 and ρ∗ = 0.25. A large leaky parameter (0.8)
means that a better accuracy is reached when the reservoir state is gradually
updated, that is weighting only with 0.2 the new information at each step given
by expression (3). Figure 3 illustrates how SA improves the model by selecting
a better configuration of input features. The vertical axis shows the log(MSE)
and the horizontal axis represents the first 80 iterations. The different curves of
Fig. 3 represent different SA experiments. We can see for all cases how the error
decreases with the number of iterations. We set the Hamming distance between
the current solution and the near solution with d = 3. The maximum number
of iterations of the SA was 400. A remark, in the SA algorithm we guarantee
that the solar power data is always an input feature of the ESN model. Figure 4
presents the evolution of the number of input features by the model over the
first 400 iterations. For a better visibility we present as example only 5 random
selected SA trials. For instance, the blue curve of Fig. 4 shows how at the itera-
tion 51 of the SA method, the best ESN solution has 12 input features, and at
the next step (iteration 52) the best solution has only 6 input features. Table 1
presents the performance on the validation dataset for forecasting 3 days ahead,
according to different number of iterations of the SA method. The first column
is the number of iterations, the second column shows the best reached accuracy
among the 30 SA trials. The next two columns are the mean and the variance of
the MSE among the 30 SA experiments. In addition the table shows the number
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Fig. 2. Sensitivity analysis of the ESN parameters. Example of the accuracy on the
validation data reached by two ESNs with leaky rate 0.6 and 0.8 and parameters
Nx ∈ [30, 125] and ρ(wr) ∈ [0.1, 0.55].
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Fig. 3. Evolution of the model accuracy (log(MSE)) over the first 80 iterations of the
SA algorithm. Each curve represents the evolution for different initial points of the SA
technique
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Table 1. Accuracy of the proposed method when is forecasted three days ahead. The
accuracy is presented according the number of iterations in SA algorithm. The columns
2, 3 and 4 are presented using scientific notation.

Iteration Min (10−4) Mean (10−4) Var (10−8) Number of features

50 5.2612 6.1036 1.0421 12

100 5.1195 5.7287 0.2834 10

150 4.9987 5.5482 0.0891 12

200 4.9986 5.4859 0.08349 10

of input features used by the best configuration at the iterations 50, 100, 150,
200. The lowest reached MSE was 4.9986633 × 10−4 computed using free run-
ning prediction over three days. The best combination of input features reached
with 400 iterations of SA was composed by the variables: global horizontal irra-
diance, air temperature, wind chill temp, dew point temp, relative humidity,
Pk wind speed, standard deviation of wind speed, accumulated precipitation,
Zenith angle, Azimuth angle, CR1000 Temp, and CR1000 Process Time. For
more information about those variables see [7].

5 Conclusions and Future Work

We present a procedure for forecasting the solar power irradiance using several
external meteorological variables. The approach uses the well-known metaheuris-
tic technique Simulating Annealing (SA) for selecting the most significant input
features, as well as a specific type of Recurrent Neural Network named Echo
State Networks (ESN) for forecasting the time-series. We evaluate the proposed
method over a real meteorological dataset provided by the Solar Technology
Acceleration Center (SolarTAC), Colorado, USA. The SA technique automati-
cally finds a good combination of meteorological variables, which affect the solar
power estimation. We consider that we obtain promising results for a forecasting
horizon of three days. We are interested in the near future to analyse the group
of meteorological variables computed by SA, as well as to extend the period used
for training the network model.
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Technical University of Ostrava, Czech Republic.
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