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Abstract. Clustering is one of the major tasks in data mining. However,
selecting an algorithm to cluster a dataset is a difficult task, especially
if there is no prior knowledge on the structure of the data. Consensus
clustering methods can be used to combine multiple base clusterings
into a new solution that provides better partitioning. In this work, we
present a new consensus clustering method based on detecting clustering
patterns by mining frequent closed itemset. Instead of generating one
consensus, this method both generates multiple consensuses based on
varying the number of base clusterings, and links these solutions in a
hierarchical representation that eases the selection of the best clustering.
This hierarchical view also provides an analysis tool, for example to
discover strong clusters or outlier instances.

Keywords: Unsupervised learning - Clustering + Consensus clustering -
Ensemble clustering - Frequent closed patterns

1 Introduction

Clustering is the process of partitioning a dataset into groups, so that the
instances in the same group are more similar to each other than to instances
in any other group. This partitioning may lead to discover meaningful patterns
in the dataset. Many clustering algorithms were developed in the last 50 years,
and, most often, each algorithm produces different partitioning when applied to
the same dataset, because they are designed to target a specific model (compact
clusters, non-convex clusters...). Thus the question is: How to choose a clustering
for a dataset from these many possibilities?

The most common solution is to use validation measure(s) to compare the
results and select the one that gets the higher score [4,7]. There are two general
categories of validation measures: Internal validation that compares the cluster-
ing against a specific clustering model, and ezternal validation that compares
the clustering against true labels (class labels given on an evaluation set using
domain knowledge). In both categories, many validation measures exist, and no
one impartially evaluates the results of all clustering algorithms [20]. In real life,
the user can have similar scores for different validation measures and/or for dif-
ferent clustering results, while the results are different in many aspects, like in
the number of clusters or in the instance grouping into clusters.
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Rather than depending on validation measures, another approach is to com-
bine the multiple clustering solutions generated by several clustering algorithms
and/or settings, in order to produce a final clustering which is better than each
individual algorithm can produce. This technique is called consensus clustering,
aggregation of clusterings or ensemble clustering, and the clustering algorithms
to be combined are called base clustering algorithms. Many consensus clustering
methods have been proposed, and some of them will be discussed in the next
section. In this paper, we propose a new consensus clustering method named
MultiCons. Instead of providing the user with a single solution, we generate
multiple consensuses by varying the selection of base clusterings, then linking
these multiple solutions in a hierarchical view. The user can then not only select
the best solution, but also discover strong clusters in the dataset that do not
change when varying the base clusterings. Hence, our proposed method is a
combination of ensemble of consensus solutions with a visual data analysis tool.

The paper is organized as follows: Sect.2 discusses some of the previous
work in consensus clustering. Section 3 explains the proposed approach. Some
experimental results are shown in Sect. 4, and we provide conclusions in Sect. 5.

2 Related Work

Consensus clustering refers to the problem of finding a single consensus clustering
from a number of different inputs or base clusterings that have been obtained
for a given dataset [11,24]. The advantage of this technique is to have a new
clustering result that is at least as good as the best clustering achieved by the
base methods.

Many consensus clustering methods were developed over the past years. In
Asur et al. [1], six predefined clustering algorithms suitable for protein-protein
datasets clustering were considered as base clusterings. A cluster membership
matrix! is then built, and a consensus clustering method is applied over this
matrix (agglomerative hierarchical clustering or recursive bisection) to obtain
the final consensus. All the 6 base clusterings have K clusters, and if K is high
the resulting binary membership matrix is sparse and the consensus cluster-
ing of this matrix is ineffective. Thus, PCA (Principle Components Analysis)
is applied before the consensus clustering to reduce the dimensionality of the
membership matrix into less, but more expressive, dimensions. These different
consensus techniques were compared, and the authors conclude that the PCA
based technique produced very efficient clustering and identified multiple func-
tionalities of proteins.

Three consensus clustering methods were proposed by Strehl & Ghosh [18].
The first step for all their proposed consensus functions is to transform the given
clusterings into a suitable hypergraph representation, where each cluster (column
in the membership matrix) from any base clustering is considered as a hyperedge
that connects several vertices (all the instances in this cluster) in a hypergraph.
Based on this mapping, Strehl & Ghosh propose: (i) Cluster-based Similarity

1 See Sect. 3.1 for a definition of cluster membership matrix.
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Partitioning Algorithm (CSPA) which is based on an overall similarity matrix S
built from the membership matrix H by using S = }H HT, where r is the number
of base clusterings. The aforementioned hypergraph is built from this similarity
matrix so that each hyperdge represents the sum of similarities between a given
pair of vertices (i.e. each time the two considered vertices are clustered together
by any base clustering, their similarity is increment by 1), then a graph-based
clustering method (METIS) provides the consensus clustering; (ii) HyperGraph-
Partitioning Algorithm (HGPA) all hyperedges as well as all vertices are equally
weighted, then a hypergraph partitioning algorithm (HMETIS) defines the con-
sensus by cutting a minimal number of edges; (iii) Meta-CLustering Algorithm
(MCLA) follow the same ideas, but hyperedges weights are proportional to the
similarity between vertices (instances) which is calculated using binary Jaccard
measure. The resulting hypergraph is then clustered using METIS to generate
K clusters. For each of these K meta-clusters, its hyperedges are collapsed into
a single meta-hyperedge. Each meta-hyperedge has an association vector which
contains an entry for each object describing its level of association with the
corresponding meta-cluster.

With their algorithm WClustering, Li & Ding [11] proposed weighting the
base clusterings to ensure removing redundant (similar) partitions, since this
process produces better results compared to other methods that generate the
consensus from brute-force averaging of the base clusterings. Weights are auto-
matically determined by an optimization process. Experimental results showed
that more accurate clustering was achieved by the k-means algorithm when
applied to the weighted consensus similarity matrix, compared to the results of
CSPA and HGPA. In Zhang & Li [24], the base clusterings are compared using
pairwise similarity, and then divided into groups using K-means. On each group,
one of the previously discussed consensus methods is used: PCA-based consensus
algorithm [1], CSPA and HGPA from [18], and WClustering [11]. Thus, the final
result is K consensuses for the user to select from.

The idea in Caruana et al. [2] is to generate many base clusterings, then
build a similarity matrix for these different partitions using Rand index. This
similarity matrix is passed to agglomerative hierarchical clustering to build a
meta clustering. The dendrogram shows how the partitions are similar to each
other, thus there is no final consensus. Instead, the user can analyze the resulting
dendrogram to choose which clustering is the most relevant. To have a diversity
in the base clusterings, feature weighting using Zipf distribution and PCA were
used to produce different base clustering views.

For more information about consensus clustering methods, see Ghaemi et al.
[5], Sarumathi et al. [17], and Vega-Pons & Ruiz-Shulcloper [20].

3 The Proposed Approach

Unlike consensus clustering methods that search for a median partition [20] to
enhance the results of an ensemble of base clustering results, our objective is
to identify hidden cluster structure in the dataset from the ensemble. Using the
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Frequent Closed Itemsets (FCIs) [15] technique from pattern mining domain,
we discover clustering patterns common to different sets of base clusterings.
FCIs define both clustering patterns (fragments) common to all base cluster-
ings, known as data fragments in [21], plus other “larger fragments” built from
fewer base clusterings. Regrouping these fragments based on the number of base
clusterings used to define them, patterns in each group can then be combined
according to their common instances to build a consensus. Generated consen-
sus clusters are then linked in a tree-shaped diagram to easily understand their
building process and identify stable clusters. Algorithm 1 describes the successive
steps of the proposed approach, as explained in the following subsections.

3.1 Cluster Membership Matrix

From the multiple clusterings of the dataset generated using a set of base clus-
tering methods, a cluster membership matriz M is built. M is a binary matrix
of NxM cells, where N is the number of dataset instances, and M is the num-
ber of cluster vectors (total number of clusters generated by all base clustering
algorithms), as given in Definition 1.

Definition 1. A cluster membership matrix M is a triplet (Z, C, R) where T
s a finite set of instances represented as rows, C is a finite set of variables, each
designating a cluster, represented as columns, and R is a binary relation defining
relationships between rows and columns: R C I x C. Every couple (i,c) € R,
where i € T and ¢ € C, means that the instance i belongs to the cluster c.

Consider for example a dataset of nine instances D = {1,2,3,4,5,6,7,8,9}
partitioned using five base clusterings into the five following partitions: P1 =
{{1,2,3}, {4,5,6,7,8,9}}, P2 = {{1,2,3}, {4,5,6,7,8,9}}, P3 = {{1,2,3,4,5},
{6,7}, {8,9}}, P4 = {{4,5,6,7}, {1,2,3}, {8,9}}, and P5 = {{4,5,6,7},
{1,2,3}, {8,9}}. Tablel shows the resulting cluster membership matrix con-
sisting of 9 rows (instances) and 14 columns (total number of clusters in base
clusterings). Each column P; represents cluster j in partition ¢ as a binary vec-
tor where values ‘1’ identify the instances that belong to the cluster. In pattern
mining domain, each column in M represents an item, as defined hereafter.

Definition 2. An item of a cluster membership matric M = (Z, C, R) is a
cluster identifier ¢ € C and an itemset is a non-empty finite set of items C' =
{c1, ooey en} C C in M. An itemset C C C is frequent in M iff its frequency,
called support, in M defined as support(C) = |{I € T | Vi € I,Vc € C, we have
(i,c) € R}| is greater than or equal to the user-defined minsupport threshold.

3.2 Generating Clustering Patterns

The next step consists of generating the Frequent Closed Patterns (FCPs) from
the cluster membership matrix M. Each FCP associates a FCI (a closed set
of cluster identifiers) and its corresponding set of instance identifiers, i.e., the
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Table 1. Example cluster membership matrix.
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identifiers of dataset instances that are common to all clusters in the FCI set.
FCPs represent maximal sets, regarding inclusion, of base clusterings that agree
on grouping a set of instances. Subsets of such sets of base clusterings that agree
on grouping the same set of instances will not be considered.? Stated another way,
FCPs are maximal rectangles in the membership matrix. See [23] for complexity
considerations about FCIs and frequent pattern mining.

Definition 3. A frequent closed pattern P = (C,1) in the cluster membership
matric M = (Z, C, R) is a pair of sets C C C and I C T such that:

(i) Vi € I and Ve € C, we have (i,¢) € R.

(ii) |I| > minsupport, i.e., C is a frequent itemset.
(i4i) i’ € T such that Ye € C, we have (i',c) € R.
(iv) Bc’' € C such that Vi € I, we have (i,c') € R.

Table 2 shows the set of the seven FCPs extracted from Table 1. Each row,
identified by its FCP ID, represents an FCP. The support of each FCP corre-
sponding to the size of its instance set, the minsupport parameter is set to 0 in
order to consider clustering patterns, i.e., clusters of base clusterings, of all sizes.

3.3 Generating Multiple Consensuses

Building clustering consensuses from the FCPs is an iterative process that con-
siders during each iteration all FCPs corresponding to a specific number, called
Decision Threshold (DT), of base clusterings. The DT value represents the min-
imum number of base clusterings to consider for building a consensus. For the
first consensus, we have DT = MaxDT, where MaxDT is the number of base
clusterings used. The DT value is then sequentially decremented until DT = 1
to integrate in the new consensus another clustering view generated by a smaller

2 Generating only clustering patterns of maximum agreement between base clusterings
reduces processing time.
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Table 2. Frequent closed patterns extracted from Table 1.

FCP IDs | Itemsets (FCIs) Instance IDs
{Ps, P}, P!, P, P'} {4, 5}

{Ps, P§, P}, P{, P’} {6, 7}

{P;, P}, P§, P{, PJ} {8, 9}

{Pi, P, P!, P}, P}} {1, 2,3}

{P3, P3, P!, P}} {4,5,6, 7}
{P}} {1, 2, 3, 4, 5}
{P3, P3} {4,5,6,7,8,9}

N OO W N

number of base clusterings. During an iteration DT = n, all FCPs with an FCI
of size n are combined with clusters of the previous iteration (for DT = n + 1)
making each consensus a complete clustering vector, i.e., covering all dataset
instances:

Definition 4. Having the first consensus, PMasPT = [P P, ... P,} and the
definition BPT = TIPT U PPT+1 yhere IPT is the instance sets of the FCPs
built from DT base clusterings, and PPT+ is the instance sets (clusters) of the
previous consensus. A new consensus PPT is the result of applying a consensus
function Y on BPT | that is, PPT = Y(BPT) = {Py, Py, ..., P} such that P;N P,
=0, V(,5) € {1,...k}, i # 4, and Ji=¥ P, = T.

The first consensus consists of instance sets of FCPs that define clustering
patterns common to all base clusterings (lines 5-7 in Algorithm 1), or data frag-
ments [21]. Consensuses are then iteratively built using results of the previous
consensus (lines 9-32 in Algorithm 1) according to the following properties of
instance sets. At each DT, an instance set I C 7 has one of the following three
properties:

(i) Uniqueness: It does not intersect with any other set I’ C Z, that is, INI" = .
(ii) Inclusion: It is a subset of another set I' C 7, that is, I C I'.
(iii) Intersection: It intersects with another set I’ C Z, that is, T N I" # 0,
INI' # 0 and I'\ T # 0.

To build a new consensus, intersecting sets, that represent sets of instances
that are close (very similar) in the data space,® of FCPs and clusters are merged
(lines 23-27 in Algorithm 1). Instance sets having inclusion property are removed
to consider the new clustering view (lines 1722 in Algorithm 1). The merging
process repeats until all instance sets have uniqueness property. Since only a
small number of FCPs is used for generating each consensus, the process of
generating consensuses is efficient, even when the total number of FCPs is large.

3 This is the objective of clustering algorithms, yet they differ in how they define the
similarity between instances.
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Input : Dataset to cluster.

Output: ConsTree tree of consensuses.

Generate multiple base clusterings of the dataset;

Build the cluster membership matrix M;

Generate FCPs from M for minsupport = 0;

Sort the FCPs in ascending order of the size of their instance list;
MazDT «— Number of base clusterings;

BiClust « {instance sets of FCPs built from MazDT base clusters};
Assign a label to each set in BiClust to build the first consensus vector and
store it in a list of vectors ConsVctrs;

/* Build the remaining consensuses */;

for DT = (MazDT - 1) to 1 do

BiClust — BiClust U {instance sets of FCPs built from DT base clusters};
N «— |BiClust| // Nbr of sets in BiClust,

repeat

for i = 1to N do

B; « i set in BiClust;

for j =1to N, j#1ido

Bj «— j*® set in BiClust,

if Bz g Bj then

Remove B; from BiClust,

Next ¢;

else if B; C B; then

Remove B; from BiClust,

Next j;

else if Bl n Bj ;é Q) then
Bj — Bz @] Bj;
Remove B; from BiClust,
Next ;

end

end
end

until All sets in BiClust are unique;
Assign a label to each set in BiClust to build a consensus vector and add it
to ConsVctrs;

end
/* Remove similar consensuses */;
ST « Vector of ‘1’s of length MaxDT;,
for i« = MazDT to 2 do
Vi «— i consensus in ConsVctrs;
for j = (i-1)to 1 do
V; «— §*® consensus in ConsVetrs;
if Jaccard(V;, V;) = 1 then
ST[i] — ST[i] + 1;
Remove ST[j];
Remove V; from ConsVctrs;
end

end
end
Build the tree of consensuses in ConsVetrs

Algorithm 1. The MultiCons approach.
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Similar consensuses are then removed, and a stability counter (ST) is asso-
ciated to each to count how many times it was generated, i.e., for how many
different values of DT (lines 3445 in Algorithm 1). For example, a consensus
with ST = 3 means that this consensus is generated from 3 consecutive values
of DT.

Considering the example in Table 1, the first consensus, with DT = 5, consists
of instance sets of FCPs number 1 to 4 in Table 2, which FCI size is equal to the
number of base clusterings. To build the next consensus, DT is decremented and
FCP 5, that defines a pattern common to the 4 base clusterings 1, 2, 4 and 5, is
integrated. FCPs 1 and 2 are removed as they are included in FCP 5, and the
consensus for DT = 4 thus contains clusters {1,2,3}, {4,5,6,7} and {8,9}. This
consensus represents the clustering agreement between at least 4 base clusterings.
Since no FCP has an FCI of size 3, the consensus for DT = 3 is identical to the
consensus for DT = 4. For DT = 2, FCP 7 is integrated, and replaces FCPs 3 and
5 that are included in FCP 7, resulting in the consensus: {{1,2,3}, {4,5,6,7,8,9} }.
For DT = 1, FCP 6 is integrated, and FCP 4 that is included in FCP 6 is
deleted. FCPs 6 and 7 are then merged as they intersect, and the consensus for
DT =1 thus results in grouping all instances in 1 cluster, which will become the
root of the tree representation described hereafter. In the resulting consensus
vector, consensuses for DT = 4 and DT = 3 are merged since they are identical
resulting in consensus for DT = 4 having ST = 2. This consensus, that is the most
stable generated, represents the best agreement between the 5 base partitions.
It tells that at least 4 base clusterings agree on generating its clusters. Actually,
the instances of clusters {1,2,3} and {8,9} are grouped together in the 5 base
partitions, instances of the first never being grouped with other instances, and
the instances of cluster {4,5,6,7} are grouped together in 4 partitions.

But, how can we recognize the best solution in operational situations? As
stated before, our objective is to find as many clustering patterns of the hid-
den cluster structure (or close to it) as possible. This is why, instead of forcibly
generate a median partition, we search for clustering patterns from different com-
binations of base clusterings, and then merge connected ones to build a structure
of well separated patterns. However, we can also recommend the best solution
as the one that is the most similar to the ensemble using the Jaccard index [10]
similarity measure. The consensus with highest average Jaccard similarity with
each partition in the ensemble is then recommended as the best solution. In the
case of preceding example, this is consensus for DT = 4.

3.4 ConsTree: A Tree of Consensuses

After generating all consensuses, a tree graphical representation is built to visu-
alize the different clustering results: The ConsTree tree of consensuses. Each
level in the tree depicts a consensus, with nodes representing its clusters and
edges representing inclusion relationships between instance sets of clusters of
successive levels. The bottom level of the tree is the first consensus.
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Definition 5. A tree of consensuses is an ordered set (L, <) of consensuses

L= Ug;i%ﬂ%ﬁ LPT ordered in descending order of DT wvalues. Let’s denote

L ={P&,....,P2} and LP = {P},..., PP} the consensuses generated for a and
B DT values respectively. Let’s denote Pj' the ¢ cluster in L™ and P? the rth
cluster in LP, with 1 < ¢ < m and 1 < r < n. For a > 3 we have L* < LP,
that is VP € L, 3PP € LP such that P C PP. L% is a predecessor of L® in
the tree of consensuses.

Figure 1 gives the Hasse diagram of the ConsTree for the example in Table 1.
It shows at each level how clusters of the preceding lower level are merged to
form new clusters, and the advised level, that is the consensus for DT = 4. We
can also note the left branch showing the stable cluster {1,2,3} that is never
merged except for root node.

Figure2 shows another example ConsTree, resulting of the application of
MultiCons to a dataset of 399 instances clustered using 10 base clusterings
selected randomly, with random settings and K varied from 2 to 11. This tree
consists of 7 levels, instead of 10 without merging of identical levels, as dupli-
cated levels for DT = 2 and 3, for DT = 4, 5 and 6 are merged. Visualizing
the tree enables the user to understand how the consensuses were built based
on different combinations of base clusterings, and to discover strong partitions
in the dataset: The cluster(s) that do not merge with others on a sequence of
consensuses, which reflect strong intra-cluster similarity between their instances
(as the ones circled in blue and red in Fig.2). It may also highlight groups of
instances that are far from being similar to other instances, such as the col-
umn of stable cluster circled in red and the similar column beside. Furthermore,
the fact that these two columns merge into one cluster, circled in green, rather
than merging with any of the previous stable clusters (circled in blue) provides
more insight on the peculiar information they hold. The ST value can also point
to the result that is more stable than others (the consensus for DT = 6), but
as the clustering task is more related to the relevance of the found patterns
to user preferences, the user may prefer to select the consensus at DT = 7

ConsTree
@ DT=1,ST=1
DT=2,ST=1
DT=4,8T=2

Advised: DT=4
Similarity= 0.7

(]

=]

=

B DT=5,8T=1
O

O Tree Quality= 1
O

Ens. Quality= 0.64

Fig. 1. ConsTree of example membership matrix Table 1.
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ConsTree

DT=1,ST=1
DT=3,8T=2
DT=6,ST=3
DT=7,ST=1
DT=8,ST=1
DT=9,ST=1

DT=10,S8T=1
Advised: DT=6
Similarity= 0.59
Tree Quality=1

Ens. Quality= 0.53

] 0}
142 174

@ i Q
141 174
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. \ v . . ° " K3 °
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63921713151314954132323122111811403339353322117349 139242

Fig. 2. Example of analysis from ConsTree visualization.

for example, because he/she prefers to separate the cluster of 83 instances at
DT = 6 into 2 stable clusters as in DT = 7, as these 2 may reflect better pat-
terns for him/her. Compared to classical ensemble approaches, that only provide
one solution representing the clustering that is most similar to the ensemble, the
tree of consensuses not only provides more information for the user to under-
stand the strong relations in the data, but it also assists him/her to choose a
final clustering based on his/her prior knowledge and preferences.

4 Experiments

We implemented the MultiCons algorithm using R language [16] on a DELL
PRECISION M4800 with Intel® Core™ i7-4710MQ @ 2.50 GHz, 32GB of
RAM, and Microsoft Windows 10 Professional (64-bit) operating system. To
generate the frequent closed patterns, we have used the FIST algorithm [13]
implemented in Java from the website of the authors.* The output of MultiCons
is represented as a graph with a vertex for each cluster of a consensus, and an
edge between each pair of vertices in two consecutive consensuses representing
two clusters related by inclusion. The plot function of the igraph R package [3]
can plot the tree from a data frame defining these edges.

For each test, the base clusterings were generated by random selection of a
set of clustering algorithms and/or parameter settings. Among the clustering
algorithms used: K-means, PAM, DBSCAN, agglomerative hierarchical cluster-
ing, AGNES, DIANA, MCLUST, C-Means, FANNY, Bagged Clustering, and
SOM. We compared the results of MultiCons against voting-based consensus

4 Another possibility is to use the arules R package [6].



24 A. Al-Najdi et al.

Table 3. Experimental results.

Dataset E.Coli | Wine |Zoo |Breast |Smiley |Shapes|Hyper |Chain | Atom | Golf |Hepta | Terta
cancer cube link ball

Size 336 178 101 | 699 500 2000 800 1000 |800 4002 | 212 400
# attributes 7 13 16 9 2 2 3 3 3 3 3 3

# classes 8 3 7 2 4 4 8 2 2 1 7 4

# base clusterings 9 8 18 11 6 8 8 6 8 5 7 7

K range for ensemble [2, 18] |[2, 10] | [4, 8]|[2, 6] [2, 7] [2, 9] [4, 11] | [2, 7] |[2, 9] | [2, 6] | [4, 10]|[2, 8]
Ensemble min 0.19 0.28 0.29 |0.35 0.40 0.46 0.41 0.24 0.46 0.17 |0.36 0.50
Ensemble max 0.63 0.87 0.86 | 0.90 0.74 1 1 1 1 0.50 |1 1
MultiCons 0.72 0.92 0.78 |0.89 1 1 1 1 1 1 1 1

# clusters in MultiCons | 15 4 5 3 4 4 8 2 2 1 7 4

SE 0.43 0.80 0.82 |0.89 0.59 0.83 0.89 0.83 0.98 1 1 1
GV1 0.43 0.87 0.79 |0.89 0.92 0.66 1 0.59 1 1 1 1
DWH 0.44 0.70 0.82 |0.89 0.56 0.98 0.91 0.53 0.99 1 0.78 1
HE 0.49 0.89 0.82 |0.89 0.78 0.84 1 0.64 0.98 1 0.78 1
SM 0.41 0.85 0.82 |0.89 0.75 1 0.80 0.65 1 1 0.98 0.66
GV3 0.49 0.87 0.82 |0.89 0.76 1 1 0.92 1 1 1 1
Soft/symdiff 0.36 0.80 0.83 |0.89 0.57 1 1 0.92 1 1 1 1
Medoids 0.37 0.87 0.83 | 0.90 0.74 0.87 1 0.35 1 0.20 |1 1

clustering algorithms available in R package CLUE [8], including the following
consensus methods: SE, GV1, DWH, HE, SM, GV3, soft/symdiff, and consen-
sus medoid. To validate the results of our consensus method and the CLUE
methods, we compared the clustering results against the true class labels of the
tested dataset using several external validation measures like NMI (Normalized
Mutual Information) [18], Jaccard, cRand (Corrected Rand), and FM (Fowlkes
and Mallows) [4,7] also in R package CLUE [9].

Table 3 presents results of experiments on benchmark datasets, with a sum-
mary description of the dataset, the base clusterings, and the quality of the
achieved consensus results compared to the true class using Jaccard measure.
The Jaccard measure was used because it gives a moderate trade-off between
the similarity to the true class and the number of generated clusters [22]. Note
that for voting methods in CLUE, all base clusterings in the ensemble must use
the same K value. However, we did not impose this constraint in our tests, just
set parameter K to the actual K, corresponding to the dataset true classes, for
these methods. MultiCons, that does not require parameter K, generates multi-
ple results with different numbers of clusters. The shown result of MultiCons is
the one that is the most similar to the ensemble (the recommended consensus).

E.Coli and Wine datasets are available on the UCI Machine Learning Repos-
itory [12]. The Zoo, Breast Cancer, Smiley, Shapes and Hyper Cube datasets
are available in the milbench R package [14]. The other datasets are from Ultsch
[19]. We can see that the MultiCons approach achieved very good results.

5 Conclusions

We presented a new multiple consensus clustering method that does not require
parameter setting; yet it can build the appropriate number of clusters based
on finding clustering patterns common to the set of base clusterings. This is a
major distinction with other consensus methods that require at least parameter
K, like CLUE methods, to generate K clusters in the consensus, as without prior
domain knowledge, it is difficult to predict K.
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To the best of our knowledge, the proposed method is the first to use frequent
closed patterns to detect similarities among base clusterings and to build multiple
consensuses from these. One of the benefits of using FCIs technique is efficiency:
Execution time is not directly related to the size of the dataset, but depends
instead on the number of base clusterings used and whether there are many
similarities, or many conflicts, between base partitions. Thus, even for large
datasets, few FCPs are generated if some clustering patterns are common to most
base clusterings, while other methods based on distance matrices are constrained
by the size of the dataset. Even when the number of FCPs is large, the greedy
processing in MultiCons is fast, since at each consensus, it requires only few FCPs
to work with. Tests showed that CLUE methods GV3 and soft/symdiff require
a lot of both computation and memory compared to MultiCons for example.

In addition to providing a consensus clustering result, the ConsTree gener-
ated by MultiCons serves as a nice data analysis tool. It shows which clusters
are stable, which reflect a strong intra-cluster similarity, leading to discovering
meaningful patterns in the dataset. On the other hand, stable consensuses (if
exist) suggest the existence of strong cluster structure in the dataset, which con-
sists of well-separated clusters. The ConsTree not only provides one solution to
the user, but it also allows he/she to choose another solution based on his/her
preferences and prior knowledge for separating or merging certain clusters, for
instance, the consensus below or above the suggested one.

References

1. Asur, S., Ucar, D., Parthasarathy, S.: An ensemble framework for clustering
protein-protein interaction networks. Bioinformatics 23(13), i29-i40 (2007)
2. Caruana, R., Elhawary, M., Nguyen, N., Smith, C.: Meta clustering. In: Proceed-
ings of the IEEE ICDM Conference, pp. 107-118 (2006)
3. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Systems, 1695 (2006). http://igraph.org
4. Dalton, L., Ballarin, V., Brun, M.: Clustering algorithms: on learning, validation,
performance, and applications to genomics. Curr. Genomics 10(6), 430 (2009)
5. Ghaemi, R., Sulaiman, M.N., Ibrahim, H., Mustapha, N.: A survey: clustering
ensembles techniques. WASET 50, 636-645 (2009)
6. Hahsler, M., Gruen, B., Hornik, K.: arules - a computational environment for
mining association rules and frequent item sets. J. Stat. Softw. 14(15), 1-25 (2005)
7. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
J. Intell. Inf. Syst. 17(2), 107-145 (2001)
8. Hornik, K.: A CLUE for CLUster Ensembles. J. Stat. Softw. 14(12), 1-25 (2005)
9. Hornik, K.: CLUE: Cluster ensembles (2015). r package version 0.3-50 http://
CRAN.R-project.org/package=clue
10. Jaccard, P.: The distribution of the flora in the alpine zone.l. New Phytol. 11(2),
37-50 (1912). do0i:10.1111/j.1469-8137.1912.tb05611.x
11. Li, T., Ding, C.: Weighted consensus clustering. In: Proceedings of the STAM Con-
ference on Data Mining, pp. 798-809 (2008)
12. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml


http://igraph.org
http://CRAN.R-project.org/package=clue
http://CRAN.R-project.org/package=clue
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

26

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A. Al-Najdi et al.

Mondal, K.C., Pasquier, N., Mukhopadhyay, A., Maulik, U., Bandhopadyay, S.: A
new approach for association rule mining and bi-clustering using formal concept
analysis. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 86-101. Springer,
Heidelberg (2012)

Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning
databases (1998). http://www.ics.uci.edu/~mlearn/MLRepository.html

Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association
rules using closed itemset lattices. Inf. Syst. 24(1), 25-46 (1999)

R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2015). https://www.R-project.
org/

Sarumathi, S., Shanthi, N., Sharmila, M.: A comparative analysis of different cate-
gorical data clustering ensemble methods in data mining. IJCA 81(4), 46-55 (2013)
Strehl, A.,; Ghosh, J.: Cluster ensembles - a knowledge reuse framework for com-
bining multiple partitions. JMLR 3, 583-617 (2003)

Ultsch, A.: Clustering with SOM: U*C. In: Proceedings of the WSOM Workshop,
pp. 75-82 (2005)

Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms.
IJPRAI 25(03), 337-372 (2011)

Wu, O., Hu, W., Maybank, S.J., Zhu, M., Li, B.: Efficient clustering aggregation
based on data fragments. IEEE Trans. Syst. Man Cybern B Cybern. 42(3), 913-926
(2012)

Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci.
2(2), 165-193 (2015)

Yang, G.: The complexity of mining maximal frequent itemsets and maximal fre-
quent patterns. In: ACM SIGKDD, pp. 344-353 (2004)

Zhang, Y., Li, T.: Consensus clustering + meta clustering = multiple consensus
clustering. In: Proceedings of the FLAIRS Conference (2011)


http://www.ics.uci.edu/~mlearn/MLRepository.html
https://www.R-project.org/
https://www.R-project.org/

2 Springer
http://www.springer.com/978-3-319-39383-4

Artificial Intelligence and Soft Computing

15th International Conference, ICAISC 2016, Zakopane,
Poland, June 12-16, 2016, Proceedings, Part ||
Rutkowski, L.; Korytkowski, M.; Scherer, R.;
Tadeusiewicz, R.; Zadeh, L&.; Zurada, J.M. (Eds.)

2018, XX, 770 p. 271 illus., Softcover

ISBM: 978-3-319-39383-4



	Frequent Closed Patterns Based Multiple Consensus Clustering
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Cluster Membership Matrix
	3.2 Generating Clustering Patterns
	3.3 Generating Multiple Consensuses
	3.4 ConsTree: A Tree of Consensuses

	4 Experiments
	5 Conclusions
	References


