Fundamental Conceptual Modeling
Languages in OMiILAB

Dimitris Karagiannis, Robert Andrei Buchmann, Patrik Burzynski,
Ulrich Reimer and Michael Walch

Abstract Regardless of the application domain, both the analysis of existing
systems and the creation of new systems benefit extensively from having the system
modeled from a conceptual point of view in order to capture its behavioral,
structural or semantic characteristics, while abstracting away irrelevant details.
Depending on which relevant details are assimilated in the modeling language,
modeling tools may support different degrees of domain-specificity. The boundaries
of what domain-specific means are as ambiguous as the definition of a domain—it
may be a business sector, a paradigm, or a narrow application area. However, some
patterns and invariants are recurring across domains and this has led to the emer-
gence of commonly used modeling languages that incorporate such fundamental
concepts. This chapter focuses on the metamodeling approach for the hybridization
of BPMN, ER, EPC, UML and Petri Nets within a single modeling method iden-
tified as FCML, with a proof of concept named Bee-Up implemented in OMiLAB.

Keywords Hybrid metamodeling + BPMN « ER « EPC . UML . Petri Nets

D. Karagiannis (=1) - P. Burzynski - M. Walch

Research Group Knowledge Engineering, University of Vienna,
1090 Vienna, Austria

e-mail: dk@dke.univie.ac.at

P. Burzynski
e-mail: patrik.burzynski@dke.univie.ac.at

M. Walch
e-mail: michael.walch@dke.univie.ac.at

R.A. Buchmann

Business Information Systems Department, Babes-Bolyai University,
400591 Cluj-Napoca, Romania

e-mail: robert.buchmann@econ.ubbcluj.ro

U. Reimer

Institute for Information and Process Management, University of Applied Sciences
St. Gallen, 9001 St. Gallen, Switzerland

e-mail: ulrich.reimer@fhsg.ch

© Springer International Publishing Switzerland 2016 3
D. Karagiannis et al. (eds.), Domain-Specific Conceptual Modeling,
DOI 10.1007/978-3-319-39417-6_1

4 D. Karagiannis et al.

1 Introduction

The goal of this chapter is to advocate the hybridization of widely adopted mod-
eling languages. Thereby, the benefit is the availability of conceptualizations which
have established foundations that can be specialized or extended in domain-specific
modeling languages. The modeling languages under our scrutiny are BPMN [1],
ER [2], EPC [3, 4], UML [5] and Petri Nets [6, 7]. Based on them, the FCML
(Fundamental Conceptual Modeling Languages) modeling method was derived
through a metamodeling approach that allows modeling with these languages
within the same tool. The motivation behind FCML is manifold:

1. it is a multi-purpose method whose implementation enables users to model in
several commonly used languages, in the same tool, thus defusing the typical
decision dilemma in choosing, for example, which business process modeling
language should be adopted in a certain enterprise; different modelers in an
enterprise may require or have familiarity with different languages (e.g., CEOs
preferring EPC, while CTOs favoring UML);

2. it exploits recurring semantics by allowing the user to execute certain mecha-
nisms (e.g., simulations) on different notations that comply to specific patterns
(e.g., workflow patterns); at the same time, it also provides language-specific
mechanisms and language-independent mechanisms, by exploiting the different
layers of abstraction involved in the hybridization of the different incorporated
languages;

3. it opens possibilities for domain-specific extensions, semantic linking and lifting
of what otherwise have been considered domain agnostic or general purpose
languages.

For demonstration purposes, an academic proof of concept of didactic and
experimentation interest was developed within the Open Models Laboratory [8] on
the ADOxx metamodeling platform [9].

Additionally, the chapter discusses the metamodeling approach that is employed
in the research environment of the Open Models Laboratory and therefore has
enabled the works presented throughout this book.

The chapter is structured as follows: Sect. 2 will discuss the relation of the
languages selected for the FCML method to domain-specific modeling and will
clarify the OMIiLAB assumptions about what domain-specific modeling is. Sec-
tion 3 will provide background on the modeling languages assimilated under the
FCML acronym and will establish the notion of modeling method and its
metamodeling framework, as employed by FCML and also by the other OMiLAB
projects. Section 4 will detail the FCML conceptualization in relation to the
underlying platform’s meta’model and Sect. 5 will showcase several key capabil-
ities of the Bee-Up modeling tool, which implements FCML.

Fundamental Conceptual Modeling Languages in OMiLAB 5

2 The Relevance of FCML for Domain-Specific Modeling

When designing languages for domain-specific modeling, a modeling method
engineer will, on the one hand, (a) consider the established experience and lessons
learned from standard languages or notations and, on the other hand, will (b) con-
sider specializations and/or extensions with respect to modeling requirements raised
for the addressed domain by the stakeholders who will either benefit from using
models or work on the creation of models. Modeling requirements are commonly
derived from two kinds of sources [10, 11]:

1. Directly, from design-time needs with respect to the capabilities of a required
modeling tool. These typically pertain to the functionality that must support
decisions regarding the engineering or re-engineering of a “system under study”
(e.g., analysis, simulation and evaluation), to intrinsic qualities that models
should have (e.g., understandability, semantic richness and consistency; see also
existing frameworks for evaluating model quality [12, 13]) or to non-functional
qualities that the modeling tool should have (e.g., usability, the ability to gen-
erate or reuse certain parts of models);

2. Indirectly, from run-time needs with respect to the capabilities of an information
system that somehow makes use of the model contents—e.g., process-aware
systems or other kinds of model-driven systems [14, 15]. The advocates of the
model-driven engineering paradigm have emphasized the role of
domain-specific modeling in capturing the domain concepts that are relevant to
applications at run-time [16].

Such modeling requirements provide the starting motivation for the development
of modeling languages with domain-specificity—that is, domain-specific modeling
languages. The exact boundary of what “domain-specific’ means, and where it
differentiates from “cross-domain” or “general purpose”, is not fixed in an absolute
way. Some languages are more specific than others, and some domains are narrower
than others. The notion of domain itself may have different interpretations—it could
be a business sector, a community-driven paradigm, a narrow application area or
even a single (typically virtual) case of an enterprise that is not interested in model
interoperability or understanding outside its environment. In this line of argu-
mentation, we cannot argue that languages, such as those included in the proposed
FCML method, are truly “general purpose” languages: UML is primarily involved
in software engineering, compared to ER which has a narrower focus on data
modeling; EPC and BPMN were designed for business process management and
can be extended towards the more holistic scope of enterprise modeling. Petri Nets
are the most abstract due to the fact that their inherent nature is based on a strong
mathematical formalism, but their applicability is also clearly limited to a class of
problems pertaining to process dynamics. Therefore, the languages discussed in this
chapter, although addressing wider classes of problems than most of the methods
described in this book, are also domain-specific in their own right, and some of
them are more specific than the others—e.g., for describing a business process,

6 D. Karagiannis et al.

BPMN has more specificity than UML activity diagrams, as it will be stressed
further in this chapter in an attempt to illustrate the generic-to-specific spectrum in
the context of conceptual modeling.

The fundamental nature of a process, whose description may be traced back to
ancient Greek philosophers and the “ontology of becoming” (and later to
state-transition systems), is based on a flow that alternates transitions (changes,
actions) with states (outcomes of changes, possibly considering also incidental
external events). A conceptualization process led to translating this ontological
view to Transitions and Places in Petri Nets, or to the more business-oriented
Functions and Events in EPC. The reason why both exist, despite the obvious
conceptual redundancy, is the different modeling requirements that they satisfy:

1. on a syntactic level: minimal notation in Petri Nets, to visualize some formalized
behavior, versus color-coded and shape-coded notation in EPC to improve
readability and cognitive effectiveness;

2. on a semantic level: formal semantics open to grounded interpretation (to enable
cross-domain reuse) in Petri Nets, versus business concepts with non-local
semantics, limited reuse, but good familiarity for targeted stakeholders, in EPC;

3. on a functionality level: focus on dynamic simulation and excitability in Petri
Nets, versus focus on understandability and model interoperability in EPC.

Although approaches exist to cover all these classes of requirements, there is an
inherent trade-off between machine-oriented executability and human-oriented
understandability and this trade-off determines a polarization of requirements.

Modeling requirements also determine how we perceive the quality of models,
as enabled by the modeling language. In an absolutist sense, “all models are wrong”
[17], since all of them must leave out properties of the system under study (in this
sense, domain-specific languages would be “less wrong” the more specific they
are). Therefore, completeness, correctness, usefulness and other quality attributes
should be judged in a frame that is built on the addressed requirements. While, for
some users, model executability is essential (as input for some process automation
system), for others, reasoning on model contents or cognitive effectiveness may be
much more important. What some modelers would perceive as modeling agility,
others may consider as ambiguous semantics. For exemplification, let us consider
the following comparison:

e For some users, it is convenient to repurpose the UML activity diagram type as
an algorithm flow chart notation in some contexts and for business process
diagrams in other contexts. This is perceived as model agility since it allows a
loose interpretation of the same notation, based on how the activities are named
or based on some a priori understanding of what the model is expected to
describe;

e Other users may require a clear distinction between high-level business tasks
and low-level algorithm steps, between business decisions and conditional
(IF) split nodes. Such a distinction imposes a more constrained use of the
modeling tool/language, but also opens possibilities with respect to how models

Fundamental Conceptual Modeling Languages in OMiLAB 7

Degrees of Domain Specificity
in Business Process Modelling
GENERIC SPECIFIC

e.g.,UML activity diagram e.g.,BPMN diagram e.g., BPMN model in FCML
Concept of Activity/Action Concept of Activity/ Task ~ Concept of Activity/Task
with loose interpretation specialized in different with complex machine-
types with notational interpretable properties
distinction (notational distinction also
N Y possible)

Tosk 2 \ Y *
- Create

Explain prablem

Ll
=, - @ Create embroidery (Task

g Times

Task 3 Task 4 Execution time:
b00-000-00:10:00]

Present rules

J J Waiting time:

00:000:00:00:00

Resting time:
00:000:00:00-00

Fig. 1 Degrees of domain-specificity in business process modeling

can be processed by some model-driven functionality. The distinction may be
enforced by the language syntax (e.g., subsumptions and notational variants for
the same concept) or by the language semantics (i.e., explicitly defined in the
language metamodel).

A straightforward example of the varying degrees of domain-specificity is
illustrated in Fig. 1. A similar concept (Activity/Task) is presented with different
notations and different semantics in UML activity diagrams, BPMN diagrams and
FCML process models based on BPMN:

e In UML, the loose interpretation is possible by not fixing machine-interpretable
semantics (except for the Activity-Action granularity distinction), but only a
visual distinction from other types of nodes in the diagram. Domain-specificity
is assimilated gradually as certain semantic aspects are fixed;

e BPMN adds typing (manual tasks, automated tasks, etc.) which is also reflected
in the notation variability. This means that concepts from the application domain
(here, business process management) become first-class citizens in the language
alphabet, rather than being human interpretations of some generic symbols;

e Further on, the proposal of this chapter, FCML, adds property sheets to each
Activity element, where the modeler may specify simulation-relevant attributes
(e.g., different kinds of costs, times, resource consumptions) or semantic links
(e.g., to a responsible role from a related organizational chart). These property
sheets are prescribed by an “Activity schema” which is defined in the
metamodel of the language as a means to provide semantics for the modeling

8 D. Karagiannis et al.

language constructs. Since the semantics is explicitly represented, it can be
inspected and interpreted by the machine in order to impose a consistent model
interpretation. The property sheet provides the definitorial attributes for the
Activity concept in the context of this language: an Activity is something that
takes time, costs, must be performed by an organizational role with support
from some enterprise resource, etc. In a more general sense, such a concept
schema may also be found in other knowledge representation approaches—e.g.,
formal concept analysis [18], ontology engineering [19, 20] and description
logics [21]. The Semantic Web community works with such explicit,
machine-interpretable semantics in order to achieve semantic interoperability
across the Web and it also proposed applications for the metamodeling com-
munity [22]. In metamodeling, such a description is implemented on the
underlying metamodeling platform and makes it impossible to interpret a
business process as an algorithm flow chart. The freedom of interpretation is
thus traded for a richness of semantics on which business-oriented functionality
may be built—e.g., simulation of different properties with different kinds of
meaningful aggregations (total costs, lists of employees involved on a process
path, etc.), cross-model queries for enterprise analysis, etc.

FCML extends both UML and BPMN activities with domain-specific properties
that specialize their semantics in an enterprise modeling context. In addition to
attributes like costs and times, Fig. 2 shows an example where a BPMN task is
assigned to its responsible performer/role not only through the visual means that
BPMN provides (e.g., containment in a swimlane/pool) but also through a
machine-interpretable semantic link to the organizational chart, as modeled within
its own context (an organizational structure model with departments, performers,
roles, etc. which may have its own domain-specific elements or editable properties).

These examples show how a modeling language may include concepts of
varying domain-specificity even within the same model, or across different
implementations. The challenges identified by the paradigm of “multilevel
modeling”—see [23] further refine this aspect and contribute to a more flexible
view on what the boundaries of a modeling language are. Although a scale from
generic to specific may emerge from this discussion (as shown in Fig. 1), it will not
hold in the general case. If we add Petri Nets to the discussion, their positioning in
the spectrum is unclear (activity diagrams do not have a specialization of the Place
concept, whereas in FCML the UML activity may have domain-specific semantics).

The goal of this section was to clarify our interpretation on domain-specificity in
relation to FCML and with respect to the scope of this book. On the one hand, we
tried to defuse the overly simplified traditional dichotomy between general purpose
and domain specific languages, at least in the context of conceptual modeling. On
the other hand, we aimed to remove also the simplification that modeling languages
should be positioned in a linear range from generic to specific, as they employ
different conceptual constructs. Consequently, we assigned the moniker Funda-
mental Conceptual Modeling Languages to the languages selected for hybridization
under FCML, due to their quality of established references and starting points for

Fundamental Conceptual Modeling Languages in OMiLAB 9

Domain-specific
extension to BPMN

Editable (Organisational model)
domain-specific
BPMN model with added specificity Task properties

["Premiuem Credit Officer™ : “Riske™)"[==

z
s

Credes
; Depatment
'/r 1
Customer Custonm crass-m.adfrl Semuiatson T
-o-| subadscid semantic link /
apphcatsan s B 4 P
o "\ I
/
Vs

Premium c
Continucus execution
Premium Customer — Customar

Clerk Procsssing Done by Pd

¢ Basic? E
Premium o Basic' Premum Credt
i #

- 4| Execution intesruptakie

| 1 Olcar
Task stack P
Basic Customer Basic Customer N
Processing @ personsl

Clerk

Jobn

@,_

ary
Paul

global

Fig. 2 Extending the domain-specificity of BPMN concepts in the FCML implementation

the concept specialization that is typically required in domain-specific modeling
languages. The message of this section is that, when dealing with knowledge
representation, any generic-to-specific variation should be discussed on concept
level rather than language level, and this conclusion is aimed at extending the
previously stated motivation behind FCML.

3 Method Description

3.1 Background on the Fundamental Conceptual Modeling
Languages

The FCML modeling method incorporates and extends several modeling languages
that gained wide popularity and are supported by communities with the help of a
wide array of modeling tools, both commercial and free. This section provides a
brief overview on the assimilated languages, to be later illustrated also by the proof
of concept implemented in OMiLAB.

Entity-relationship (ER) diagrams have been widely adopted in the conceptual
modeling community as the fundamental approach for data modeling, starting with
the milestone paper of Peter Chen [2]. ER models have an ontological nature, in the
sense that they describe categories of being and their relations, thus having a scope
similar to that of UML class diagrams or metamodels. However, the objectives of
ER modeling have been traditionally related to data modeling and database design,
a prominent use being the generation of data schemata [24] or reverse engineering
diagram generation [25]—typically for relational databases, but not necessarily [26,
27]. The ER metamodel is highly abstract, dealing with Entities rather than
“paradigm-specific” tables/tuples. Therefore, ER diagrams may also describe data

10 D. Karagiannis et al.

intended to be stored in other data structures. Its core concepts are the Entity, the
Relationship (that exists between Entities) and the Atrtribute (of an Entity or
Relationship). Additional properties of these are the primary key (for Entities),
cardinalities and roles (for Relationships). Several extensions have been proposed
over time—e.g., the “extended” ER (E’R) adds subsumption, thus allowing for
entity specialization [28, 29]. The typical usage of ER diagrams is in the require-
ments analysis and design phases when the modeler employs ER to refine granu-
larity and to adapt a data model across the conceptual-logical-physical layers. One
of the mechanisms typically associated with ER diagrams is the generation of
database schemata, for example by deriving SQL statements that are on the same
level of abstraction and detail as the diagram content. A flagship conference [30]
became the forum of a community that initially revolved around concerns related to
ER modeling, later expanding according to the different “waves” of modeling
approaches developed over decades, including the one driven by the standardized
Object Management Group languages such as UML [5].

Unified Modeling Language (UML) is one of the most prominent standards in
software engineering, a language established in the late 1990s to support a unified
method for object-oriented software development, by incorporating lessons learned
from the large number of modeling languages that had been in use during the 1980s
and early 1990s [31]. Therefore, UML may be seen as a natural descendant of the
simpler and more focussed ER modeling approach. It covers a much wider scope
through a number of diagram types addressing various aspects of a software system,
classified into two categories: static (structural)—e.g., class diagrams, component
diagrams and dynamic (behavioral)—e.g., activity diagrams and sequence diagrams.
It still shares with ER the desideratum of code generation; however, UML addresses
an object-oriented development context (e.g., class definitions derived from class
diagrams). Additionally, UML fuelled the model-driven software engineering
paradigm, due to some key strengths that are complementary to the modeling lan-
guage itself: (a) model interoperability through diagram interchange formats—XMI
[32]; and (b) a standard constraint definition language—OCL [33]. The notions of
UML profiles and stereotypes were introduced to enable customization of the lan-
guage alphabet for different development paradigms—e.g., XML-based applications
[34]; or even domain-specific extensions—e.g., SysML [35], SoC [36]. Just like ER
modeling, UML also ignited research interests and a community aggregated around
a long-standing scientific conference—MODELS [37].

Business Process Model and Notation (BPMN) is an OMG standard [1]
designed to support the business process management paradigm with a more
extensive range of diagrammatic possibilities compared to traditional flowcharting
or UML activity diagrams. One of the key benefits of BPMN is the
domain-specificity added by typing generic concepts that have been available in
traditional flowcharting languages. This specificity (addressing the “domain” of
business process management) manifests as a richness of types (Task types, Event
types, Gateway types) that provide semantic enrichment for not only
human-readable interpretation but also for executability—thus stimulating the rise
of business process execution engines. This was possible in tandem with the

Fundamental Conceptual Modeling Languages in OMiLAB 11

syntactic interoperability means provided by the XML ecosystem—specifically, the
dedicated schemata for capturing a machine-processable serialization of diagram-
matic process descriptions: BPEL [38], XPDL [39]. BPMN places a strong focus on
the notational level, with the semantic variability being reflected in notational
variability, through visual cues added to the shapes that represent tasks, events,
gateways, etc.; at the same time, translations between BPMN and BPEL have been
proposed [40] to support executability. Limitations of such mappings have been
discussed in the sense of a conceptual mismatching between the diagramming
standard and the serialization standard [41]. Trade-offs must be made between
understandability and the formal rigour required for process executions, and con-
sequently, subsets of the modeling constructs have been proposed in BPMN 2.0,
addressing different modeling scopes—see also the analysis of [42]. The overall
scope of BPMN being limited to business process descriptions, it provides only
minimal support for describing the enterprise context—e.g., swimlanes reflecting
organizational responsibilities for different parts of a process. Decision logic was
recently separated from BPMN in a complementary modeling language—Decision
Model and Notation [43].

Event-driven Process Chain (EPC) diagrams were introduced by the frame-
work of Architecture of Integrated Information Systems (ARIS) and its software
tools [3, 4]. EPC shares with BPMN the targeted domain (business process man-
agement), although the exact scope is different, due to a different trade-off between
understandability and underlying formal rigour and due to how they are contex-
tualized in enterprise architectures—see a comparative analysis at [44]. EPC
advocates cognitive effectiveness through color coding and shape coding while
removing the rich taxonomical classifications promoted by BPMN (perceived as
excessively complicated by certain stakeholders, see [45, 46]). However, EPC
formal semantics have been analyzed (with the help of Petri Nets in [47]) and
serializations for model-driven systems have been proposed—ARIS was an early
adopter of XPDL, attempts at BPEL serialization have been discussed [48] and an
EPC-specific XML vocabulary has been proposed [49]. The core concepts of EPC
are the Function and the Event, which can be interpreted as a flow of alternating
“changes” and “states”, with Functions being connected to elements of enterprise
context: responsible organization unit, supporting IT system, input and output
information. EPC shares with BPMN the basic control flow split and merge nodes
of different logical types (XOR, AND and OR). Unlike BPMN, it stresses the need
to identify states that emerge from, or trigger the need for the execution of Func-
tions (events also exist in BPMN, but quite often they are considered implicit
between two consecutive tasks). Another important distinction in general use is that
EPC adds elements of the enterprise context (e.g., organizational units responsible
for performing a Function are a language concept, not only a visual container).
Actually, EPC emerged from an integrated way of modeling enterprise architecture,
which is out of scope for BPMN.

Petri Nets [6, 7] is one of the longest standing diagrammatic modeling methods,
with minimal but powerful semantics based on strong mathematical foundations.
The trade-off here is that, on one hand, the method is sufficiently abstract to have

12 D. Karagiannis et al.

cross-domain applicability with respect to process dynamics (especially relevant in
the context of distributed systems); on the other hand, the level of abstraction
imposes a learning curve that is not typically acceptable for business stakeholders
and consequently the method was developed rather for academic concerns or as an
underlying abstraction for other languages—see the effort of defining Petri
Nets-based semantics for UML activity diagrams [50] or EPC models [47]. The
Petri Nets method has a minimal metamodel that includes three highly abstract
concepts—Places (states), Transitions (changes, actions) and Arcs (indicating the
flow of places/transitions). The behavioral dynamics of a system are captured by a
property called Token, which may be passed along the flow of places, each passing
being triggered by the firing of a transition, which signifies an action taken. Sim-
ulation mechanisms are employed to monitor the possible states of the system as a
whole, based on how the transitions may be fired, on how multiple possibly con-
current tokens are passed along, as well as on token availability in different places
during different system states (token availability in a selected place will enable the
transitions following that place). Typical simulation goals are the assessment of
reachability of certain states, the risk of deadlock, the liveness/deadness of certain
transitions. Extensions such as Colored Petri Nets [51] or transfer/reset nets [52]
were introduced to enrich expressivity with additional properties (e.g., guarded
transitions, token data, reset arcs).

3.2 The Metamodeling Approach

The engineering of a hybrid modeling method such as FCML must follow a
metamodeling approach to ensure proper semantic coverage, and to ensure that the
method is not only bringing different types of diagrams in the same modeling tool,
but it also adds the following benefits:

e It extends diagrams to the status of conceptual models in the following sense:
the model is not only a notational construct built with different graphical shapes
relying on human interpretation; instead, each shape is instantiated from a
higher abstraction concept with explicitly defined, machine-interpretable
semantics, based on a concept taxonomy and descriptive properties through
which the language terminology is defined. This allows both structural and
semantics-driven processing of models, including reasoning on the structure or
domain-specific properties of model elements, with rules processed by means
that are specific to each metamodeling platform (the FCML implementation in
OMiLAB was built on ADOxx [9]). The main distinction from other knowledge
representation paradigms (e.g., description logics, ontology engineering) is that
with metamodeling there was less effort towards interoperability across the
popular metamodeling platforms—EMF [53], ConceptBase [54], MetaEdit +

[55, 56]—whereas description logics and ontology engineering are following a
trend towards the unifying logic envisioned in the Semantic Web “layer cake”

Fundamental Conceptual Modeling Languages in OMiLAB 13

and a Web-oriented standardization overlooked by the W3C through several
drivers—e.g., RDF for representing facts [57], OWL as an ontology language
[20], RIF as a rule interchange format [58]. To stimulate the emergence of a
similar unifying abstraction layer, OMiLAB has initiated a cross-platform lan-
guage for modeling method definition, MM-DSL, with an early draft discussed
in [59];

e Furthermore, the metamodeling approach integrates models with meaningful
cross-model relations that will act on one hand as semantic relations between
concepts of different languages and on the other hand as hyperlinks that support
navigation across models (thus improving usability and understandability). This
will be showcased in Sect. 5 as a means of making models compliant to
cross-notational simulation algorithms, but is not limited to this.

Figure 3 depicts the abstraction layers involved in the metamodeling approach of
OMILAB. A standardized version of a multi-layered conceptual architecture was
also defined as a framework for UML, under the name MetaObject Facility [60].
We provide here a brief explanation on these layers:

e On the Modeling layer, models are created according to a specific modeling
language, with distinctive notation and semantics for each diagrammatic
symbol;

e To make modeling possible, on the Meta layer the terminology of the language
is prescribed by specifying: the concepts that are allowed to be used, their
notational manifestations, their semantics (property-based descriptions),

-

Meta-Model

subclass

Meta? layer
The concepts that can be used
to describe metamodels

BPMN M Meta layer
Metamodel The "terminology" of the
modellinglanguage
(concepts that can be used
in models)
Reviewing k! Modelling layer
Process . ' Models written in a specific
e y T language
£ (Review | ¥ Notify N Y o
(}’—* Paper W

Fig. 3 Abstraction layers in metamodeling—adapted from [65]

14

D. Karagiannis et al.

syntactic and semantic constraints (e.g., domain or ranges for visual connectors).
Without these, a modeling tool is a semantically agnostic diagramming tool.
This is where the metamodeling effort and hybridization take place primarily
and the result is a terminological structure extended with dynamic visualization
and all the properties that are necessary for the required modeling functionality
(e.g., simulation);

The creation of the language terminology requires itself a Meta® layer, where
several foundational meta-concepts (e.g., class, property) provide invariants that
are instantiated in language metamodels. Metamodeling platforms provide these
pre-defined invariants: some popular examples are ADOxx [9], GOPPRR [61],
ECore [62]—see an overview in [63]. Within our metamodeling approach, we
investigated current metamodeling approaches and their meta-concepts and
proposed meta-concept extensions on Meta” layer for systematic modularization
and flexible composition of metamodels, an important aspect of the engineering
of hybrid modeling methods [64].

The result of the OMIiLAB metamodeling approach is encompassed by the

notion of modeling method, which extends that of a modeling language. The

modeling method was defined in [65] and its building blocks are depicted in Fig. 4,
with a possible formal view provided in [66]:

1.

The modeling language provides the set of modeling constructs (their notation,
grammar and semantics). The language grammar (syntax) defines fundamental
modeling constructs of the language and relationships between them, whereas
the notation is concerned with the form of the language [67]. By assigning
visual representations to modeling constructs, the semantics (static and
dynamic) specifies unambiguously the meaning of language constructs [68]. To
achieve manageable granularity and understandability, the language may be

modeling

method
- g fex

mechanisms
&

del o usedin

I technigue | A

- ¥ of language applcation L

: debvers e
procedure generic
language 4 defines meaning mechanisms
& algorithms
defines grammar |4

specific
describes steps results —— mechanisms

notation e syntax o meanwg of samaniica & algorithms
rl: | hybrid

I
considers arTanges —— mechanisms

semantic | sccordng to & algorithms
mapping > domain A

Fig. 4 The building blocks of a modeling method [65]

Fundamental Conceptual Modeling Languages in OMiLAB 15

partitioned in model types addressing different facets or dimensions of the
modeled system. This partitioning can be motivated as a usability feature (a
top-down decomposition approach to avoid visual cluttering) or as a conse-
quence of hybridization (a bottom-up strategy employed to interconnect mod-
eling language fragments). In any case, the model types can be connected with
semantic hyperlinks that enable cross-model navigation, as well as cross-model
functionality. The work at hand exploits this by semantically extending generic
concepts with additional properties that relate them to domain-specific concepts
in other model types (e.g., see in Sect. 5 the case of the EPC extension);

2. The modeling procedure defines the steps that must be taken by modelers
towards their goal. In the simplest case, it advises on the precedence in creating
different types of models in order to achieve a coherent set of related models of
different types. This includes the preparation of cross-model links to enable
specific functionality that relies on certain model patterns, to be highlighted in
Sect. 5;

3. The mechanisms and algorithms cover functionality that must process model
contents for various purposes (simulation, visualization, transformation, evalu-
ation, etc.). In this respect, the work at hand illustrates the generic-to-specific
spectrum with respect to modeling functionality:

(1) The SQL generation mechanism is specific to ER modeling and roken-
based simulations are specific to Petri Nets;

(i) Workflow simulation mechanisms are less specific, as they apply to a
wide range of model types, as long as they allow the description of the
typical workflow patterns. Path analysis or workload assessment may
aggregate domain-specific properties attached to the control flow model
types (BPMN, EPC and UML activity diagrams). Similarly, reasoning
mechanisms may apply to several model types. For example, querying
conceptual models might require reasoning (e.g., to account for inheri-
tance) and can be defined for models represented in UML class diagrams
as well as for ER models. Reasoning mechanisms can also provide in-
ference services to be utilized by an application that is generated from the
model or built on top of it, e.g., for classifying instances into classes.
Furthermore, reasoning mechanisms enable consistency checking of a
model during build time to support the modeler in creating and editing a
model [69]. The means for implementing simulation and reasoning
mechanisms, as well as other algorithms associated with a modeling
language, would be highly dependent on the metamodeling platform. In
this respect, ADOxx provides the AdoScript scripting language which can
be wused for programmatic implementations driven by the
machine-interpretable model semantics (e.g., the graph rewriting mech-
anism described in [70]);

16 D. Karagiannis et al.

(iii) The algorithms that come along with a modeling method (such as the
ones mentioned above for generating SQL statements, for simulation, and
reasoning mechanisms in general) interpret the constructs of the under-
lying modeling language in a specific way in order to implement the
intended functionality. In other words, the algorithms attribute a specific
meaning or semantics to the constructs. Instead of having the semantics
local to the algorithms, which introduces the risk of inconsistent inter-
pretations between different algorithms, it is preferable to represent the
semantics in an explicit way as part of the modeling language, i.e., in the
metamodel. The Semantic Web community achieves such a machine-
interpretable semantics by formally grounding their modeling languages
in description logics [21]. Machine-interpretable semantics opens up new
possibilities, such as (semantic) interoperability and (semantic) bridging
between models. An example of model mapping, which benefits from
such a machine-interpretable semantics is illustrated in Chapter 19 of this
book (formally described in [71]), where models regardless of their type
are converted to Linked Data graphs to allow reasoning on model con-
tents through standardized means using the RDF framework [57]. The
metamodeling community has so far been less interested in semantic
interoperability across metamodeling platforms and the resulting oppor-
tunities—therefore, we mention this challenge here as a current research
opportunity.

Based on the definition discussed here, a domain-specific modeling tool must
implement a complete method and not only a language. Consequently, the tool
should include (a) model-driven functionality that is relevant with respect to the
modeling requirements; (b) guidelines and constraints for modeling scenarios with
respect to different modeling goals and related functionality. The next sections will
emphasize this aspect by using the case of FCML and its Bee-Up implementation.

4 Method Conceptualization: The Underlying
Meta’model

To achieve its hybridization goal, FCML makes use of the meta’model founda-
tional constructs provided by the ADOxx metamodeling platform [9] whose
meta’model was analyzed in detail in [72]. The choice of platform and the
implementation followed certain principles, such as: minimizing the workarounds,
having the platform-specific metamodels as close as possible to the original ones,
having the possibility of restricting metamodels through configuration rather than
because of platform restrictions. The ADOxx meta’model constructs are shown in
Fig. 5 and a mapping of their relevance for each language assimilated in FCML is
provided in Table 1.

http://dx.doi.org/10.1007/978-3-319-39417-6_19

Fundamental Conceptual Modeling Languages in OMiLAB 17

friie ettt e N o
Conigueation of Static kbwary Dynarmsc libeary
el]]] e] [
___________ +-_______m___,;.__ /. I /_
Depending on the class type ,__..---"" ‘é[Ubrarypon | o
ic Attribute’ subl;
:;Tﬁ:u -s..'..'.‘-n’?" f e 4—\;—5 tmmﬁnﬁ
TRelation classes’) or -—
‘Annbute types' (¢.9 purtae |4
RECORD for Recond < L
classes] are not avalabie |_
has facet | e T AP, A5
o—[rex | v | '

[entman]| [] [e)

4" Instance -

: atrbute Imm| | Sumgle type] h _/

- i Anmom

i . Help tna | Camm: lqu ellu

: i

' H Enumecstion - . Uss Wnstance .

- i domnan I:I relerences atiributes’ mstead ry * H

¥ . of Class aftributes’ ' !
H L

Fig. 5 The underlying ADOxx platform meta’model

Table 1 Involvement of different ADOxx concepts in the FCML components
Meta®model Concept [BPVN | _EPC__ | ER | UML_| PN
Library v v v v v

Static Library
Dynamic Library
Model Type

Modelling Class

Atiribute (Not Pattormspeciic) [N
Cinstancennribue [V
(ihertance (subciassofl |
[simuation (Pattormspeciic. [N .

N B E
N BN E
N N N E

AN
<

e A Library contains the ADOxx definition for a modeling method, including its
language definition, mechanisms and algorithms. It typically has two parts: the
Static part covering structural model types (e.g., UML class diagrams, ER
models, organizational charts, etc.) and the Dynamic part covering behavioral
model types (e.g., UML activity diagrams, BPMN, EPC and Petri Nets). The
table suggests that the Static part is not inherent to BPMN and EPC, but was
added as domain-specific extensions in FCML. Several Library attributes act as
metadata with possible coupling to external systems (e.g., external scripting or
system commands);

18

D. Karagiannis et al.

A Model Type, as already explained in the previous section, is a partition of the
hybrid modeling language alphabet, thus serving a separation of concerns and
including only the concepts that are relevant to a particular aspect of the system
under study. FCML provides a model type for each of the UML diagram types,
one for BPMN, one for EPC, one for ER, one for Petri Nets and additional ones
as domain-specific extensions (e.g., organizational “work environment”
models);

A Mode is a subset of a Model Type which restricts the use to a limited set of
constructs determined by frequency of use or functionality requirements for a
particular class of problems (e.g., a simulate-able model might require more
concepts compared to a model created strictly for human communication);

A Modeling Class is a metamodel concept that can be instantiated in models in
the form of a directed graph node. Such a concept is defined in terms of (a) a
“schema” prescribing its set of definitorial and descriptive properties and (b) a
notation that can be customized according to required visual dynamics (e.g.,
interaction points as functionality triggers, notation variability determined by
instance-level property values);

A Relation Class is another type of metamodel concept, a connecting concept
that can be instantiated in models in the form of visual connectors. Connectors
have their own schema with their own properties and possibilities for notational
customization—however, constraints such as domain, range, cardinality and
relational notation must be considered;

A Record Class is a schema for a tabular property that may be included in the
prescribed property sets of any modeling concept, to collect property values that
are complex and cannot fit a simple property slot. The use of this kind of
properties is limited in FCML to only a few of the UML constructs (e.g., class
attributes in a class diagram);

An Attribute Profile is a schema for a set of properties that should be reused
throughout the metamodel but will not act itself as the schema of a modeling
concept. Currently, FCML does not employ this component;

An Attribute is a property attached to the semantic definition of a modeling
concept. They can be made visible as editable attributes, in property sheets that
are attached to any model element, or they can be used strictly for inheritance
purposes at metamodel level. Their Facets allow for additional restrictions on
their value range, including the possibility of having links (interrefs) to elements
from different model types;

The Inheritance indicates the possibility of reusing modeling concepts by
inheriting their “schema” in more specialized concepts. This is one of the key
enablers for extending concept specificity in domain-specific modeling lan-
guages and has been extensively used in FCML, with the exception of Petri Nets
whose minimal metamodel does not require inheritance;

Fundamental Conceptual Modeling Languages in OMiLAB 19

(ADOxx Meta?-Model

inheritance 1 source g+

Class Relationship

.
r I
ER Meta-Model (excerpt)

L.

has source EorR target Relates
Attribute (abstract)
target .,
source
Attribute
, 55 J

Library Data model

Fig. 6 The ER metamodel assimilated in FCML

e The Query indicates the possibility of inheriting an internal query engine built
on the generic structure of any model, as well as the customization of
pre-defined queries for each specific model type. In the current implementation,
FCML does not fully employ this component, although work is underway to
design model queries that are relevant to the specificity of each model type;

e The Simulation indicates the possibility of inheriting several simulation engines
that are applicable on models of various specificities if they comply with certain
modeling patterns (e.g., workflow patterns in BPMN, EPC, UML activity dia-
grams). Section 5 will illustrate how this applies to FCML;

o The Custom Algorithms/Mechanisms indicates the possibility of extending
model-driven functionality with any customized mechanism (e.g., reasoning,
code generation) based on the specific semantics and structure of each model
type. These can be programmed in the internal AdoScript language and Sect. 5
will illustrate such possibilities for ER and Petri Nets. The other FCML model
types can also make use of the customized mechanism of a more generic nature
(e.g., model exporting).

Figures 6, 7 and 8 provide a more detailed view on the core meta’model con-
cepts that are involved in the metamodel for each of the languages assimilated in the
FCML (ER, BPMN, EPC, UML—partially depicted, and Petri Nets, respectively).

20

D. Karagiannis et al.

(ADOxXx Meta?-Model

Attribute
e
0.
Class

Relationship
L

A

(ADOxXx Meta?-Model

Model Type =

Relationship

source
target

(BPMN Meta-Model (excerpt)

Start Event

N,

Function

Flow Object

(abstract)
"Reviewing Process
>-@-E3-E-@0

N

L4 S

AN

Reviewing Process

I\D I\@ w—' -F’
J

Fig. 7 The BPMN and EPC metamodels assimilated in FCML

use case diagram class diagram

T e

= Fapat
¥ - - duthar | Sirimg Rating
0.1 —) +Bale - Sty
| sratng Ratng | —— | *mwirance m
=) R ——]
-1 + eatrrve () i

Bl

{ B &
ADOxx Meta®-Model ADOxx Meta®-Model =
Has complex e Mechanism/
Algorithm
1 source 0.*
lass Relationship
. AN >
? - - : (PN Meta-Model (excerpt) il
Use Case Diagram Meta- | | Class Diagram Meta-
Model (excerpt) Model (excerpt) F?;:::;?t
— R :
=3 - = o | Transition
. AN /
(Paper review Paper review Product dispenser \

Fig. 8 The UML (fragment) and the Petri nets metamodels assimilated in FCML

5 Proof of Concept: The Bee-up Tool

A proof of concept for FCML was implemented in the OMiLAB environment as
the Bee-Up modeling tool [8]. We take the opportunity to showcase in this section
how the implementation extends the original specifications of the assimilated lan-
guages, due to the added specificity as well as due to method-level integration on
the meta’model foundation provided by ADOxx.

Fundamental Conceptual Modeling Languages in OMiLAB 21

Model-type specific

functionality
2) Model Edit View Processtools Extras Window Help Export
ofee o mma s[ESCOR Jsddd he s wdnT|ED AR
gealsbe | TEE| @ = "

) Exercige sheet &

) Exercise sheet 9 - =

) Testing

B)EPC Process A o=]~ == =10
&) EPC Process B /|- T —— ———

@) Exercises: 5 i

[B) Exercises: &
353 Model folders

.:_d;h:lmrs: e @ Moadrzlahng
OB Exercises: k -

[P Exercises: n —~
[Exercises: sate E 4
Eahc': S5 5eq

[Exercises: u O

[Exercises: UAD 1 [|

) Exercises: wl

2] Exercises: x |
=] Organization structure

@] Process &)
@) Process B -

Model type-specific
toolbar with symbols

Fig. 9 The Bee-Up user interface

Figure 9 shows an overview of the Bee-Up user interface, with its model
management component, the main menu providing implementations of FCML
mechanisms and the modeling area providing a Model-Constructs ribbon that is
specific for each type of model (determined by its metamodel).

The creation of a model will trigger a panel where the FCML languages are
classified according to the categories that may also be found in UML (static or
dynamic)—however, we include here all the FCML model types (notice that EPC
and BPMN span across the two categories with elements of domain-specificity that
are relevant, for example, to simulation mechanisms).

Figure 10 shows this panel and the list of UML model types, as well as several
samples of UML models (sequence, class and state diagram). Each diagram element
(nodes, containers, connectors) has a sheet of editable properties (bottom-left side
of Fig. 10), which includes the possibility of extending the semantic of all the
concepts found in the FCML languages with domain-specific properties, additional
typing or semantic hyperlinks to related models.

Another model type is Petri Nets. The official notation of Petri Nets is quite
minimal, as most languages that have not been designed with enterprise modeling
requirements in mind (it provides only the minimal distinctions necessary to grasp

22 D. Karagiannis et al.

Categories of Model type filter

_FomL model types UML *

ynarmc Model type:

[P Activity Diagram

[2 Class / Object Diagram

&) Classifier Pool
Communication Diagram

B Component Diagram

[Composite Structure Diagram
[Depleyment Diagram

[N Intersction Ovenview Diagram
B Package Diagram

[BA Sequence Diagram

A State Machine Diagram

[™ Timing Disgram

[} Use Case Diagram

Sequence Diagram

State Diagram
‘ Computer ‘ ‘ Server ‘

running \

next

i checkEmail —— operation
ens, | | @—Gm —-—1
¢ 3

| createEmail iy

g ! —— - texmmaleL processed
I
= lost F POEREL, |y oo
! Message sort :
o : Class Diagram

downloadEmail i

= WM -

UML-specified types|
and properties

deleteEmail —

Fig. 10 The UML model types included in FCML

the underlying mathematical formalism). The Bee-Up implementation adds on the
notational level several visual cues and visual dynamics to facilitate user interaction
in support of Petri Nets-specific simulation mechanisms. Figure 11 shows: (a) in-
teractive visual cues (the Fire boxes) that may be used by the modeler to step
through the states of the model; (b) a purely functional symbol added to the
modeling language to provide simulation triggers with preset parameters (e.g.,
transition priorities) directly on the modeling canvas; (c) symbols that may store
and restore relevant system states described in terms of the number of tokens
present in each place.

Figure 12 shows an example of a BPMN process model together with simulated
costs for a particular process path (highlighted by the notational dynamics that can
be programmed in ADOxx). This is actually a Path analysis mechanism that is
domain-specific in the following senses: (a) it is applicable only to those models
whose structure conforms to workflow-specific patterns (e.g., BPMN, EPC and
UML activity diagrams); (b) it aggregates domain-specific properties that were

Fundamental Conceptual Modeling Languages in OMiLAB 23

Storage:
JPEEPEY ELLLERT LR %3 [Place |Tokens
=7 C 1 :Pcrson waiting |
5 |2 |Person on bus 0
3 |3 |Bus leaving 0
System State System State System State = | Bus waiting 1
1: Initial 2: Stopped bus 3: Bus left 5 |Buc amiving 0
- Properties for
APy state storage
Properties for » B > Q
places @ .
» ne
, Tokens: 5::;:; person ::'::: Notational

4 gets on extension for
the bus e » interactive
B transition firing

Bus us stops Bus Bus starts Bus Properties for
arriving waiting leaving simulation trigger
- - -
e Simulation configuration
K =
Strategy: random Transition conflict strategy
Ié:rati[:rlsi 10 E & default
it random
Simulate 1 Simulate 10 priority then default
iteration iterations » priority then random

Iterations:
10

| Show log

Fig. 11 Petri Nets simulation controlled by interactive visual cues

attached to the process steps along each path (e.g., different kinds of costs, times,
domain-specific resource consumptions); these extensions are applied on the
metamodel level for the corresponding Task/Activity concept in each model type,
inheriting some of them from a higher level concept that acts as the hybridization
bridge of FCML.

Figure 13 illustrates another domain-specific simulation mechanism, this time
applied to EPC models which were semantically extended at metamodel level with
hyperlinks between EPC functions and roles or performers from a distinct orga-
nizational model. The existence of a separate organizational structure model type
allows multiple EPC processes to be linked to the same human resources or
responsible units while at the same time avoiding the visual cluttering that would
occur by reusing the organizational unit on the modeling canvas of each EPC
model. Besides the domain-specific aspects that can be added to the organizational
units without affecting the EPC metamodel, the key benefit of this “separation of

24 D. Karagiannis et al.

Path highlighting through

Simulation-specific property for dynamic notation Domain-specific task properties
sequence flow connectors " that are relevant for simulation
(probability of decision outcome): ,* (e.g., different types of times,

/ costs)

Simulation 4

=)
ut st — Costs
i‘ Transition condition: shape and size 5
: 5 Costs:
3 0.4 T, 3
AN \) | 200
Y Tl ; 7 =
\\ I—.' _ -"-.;',\—-J Create embroidery| ‘<\~J‘§,‘ ,/
4 " I 1
Yis E
Check shirt N\ 3
custormization 4 Ny »l - pack;:: Ship
requests V' d No *

Order Customization
received requested?
[Path analysis - Bynamic modek Process A %
Path specific [.
Criterion (descending order): [Path analysis - Results Path 2 |
Probability - =
Process: Process A - Save..
2 & of 2 pathis). L | ®Path 2
—d] Print
Path results... | . 4
Results Help]
Results. i B
Path analysis and aggregation of Process A (Business Process Diagram (BPMN 2.0))
quantitative domain-specific e
3 Start Event (BPMN): Order recerved
propertles Task (BPMMN): Check shirt customization requests
Exchusrve Gateway (BPMN]: Custornizatson
requested? --» 0.2
Non-exchusre Gateway (BPMN): Non-exchsive
Gateway (BPMN)-12489

Fig. 12 Path analysis on BPMN model extended with domain-specific task properties

concerns” is the ability to build on it the workload assessment simulation that
aggregates relevant properties (e.g., work times) for the organizational unit under
scrutiny, as suggested in Fig. 13.

Figure 14 shows an example of a simple ER model and its key mechanism—
SQL code generation. The editable property sheets which were used in previous
examples to collect domain-specific properties (e.g., for enabling simulation) were
tailored here to capture information that is specifically needed for the SQL gen-
eration mechanism (e.g., data types or key options for attributes, roles or cardi-
nalities for entity—relationship arcs).

Fundamental Conceptual Modeling Languages in OMiLAB

1000417887 DOMATA0H
00244115340
5099,589T07 O106:05:5841
4 {EPC Process B)

Fig. 13 Workload simulation on multiple extended EPC models in Bee-Up

Properties of ER elements
(e.g., of entity attributes)

—5 Data Type: W
=
= e
= [FINot NULL ™
= B N
_;I 7 Unique N ER model for SQL code
BL L ength / Precision @ @ generation
= |32
-]
— Aftribute type: -
=] Person
-
—=3 [[] Key attribute m
=

o2 >

-- Table for Entity (ER): Person
ICREATE TABLE Fersen ({
1D VARCHAR(32) NOT NULL,
Hame VARCHAR(32),
BirthDate DATE, SQL export output
CONSTRAINT pk_Person FRIMARY KEY (ID)
tH

-- Foreign keys constraints are added last to ensure the columns already exist.

-= Foreign keys for imows dus to primary keys referencing other tables
[RLIER TASLE kmows ADD COMSTRAINT fk knows Person FOREIGN KEY (ID) REFERENCES Person(ID):

Fig. 14 ER modeling in Bee-Up, with SQL generation mechanism

26 D. Karagiannis et al.

6 Conclusions

The proposed FCML method addresses a heterogeneous domain by enabling
multi-purpose modeling in the same tool, with varying degrees of
domain-specificity added to several commonly used modeling languages that tra-
ditionally address the domains of software engineering and business process
management. SQL generation, workload simulation and path analysis are typical
examples of specific mechanisms that must be executed on particular model pat-
terns and will provide useful results only if domain-specific properties are assigned
to model elements, thus extending the scope of the languages incorporated in the
FCML method. In this sense, its hybridization is not only a juxtaposition of types of
diagrams from different languages, but it is also an integration of concepts with
recurring semantics—at least for the purposes of process-based simulation.
On-going work is being invested for an extensive semantic lifting across the lan-
guages included in FCML, since opportunities are open due to the different com-
plementing scopes (e.g., the entity in an ER data model could be linked as input
to an EPC function), but also due to certain overlapping (e.g., UML sequence
diagrams could be linked as subprocesses to a higher level process model described
with BPMN or EPC).

Ultimately, the kind of hybridization proposed by FCML and its
proof-of-concept Bee-Up are aimed at being used as a multi-purpose and
multi-layered modeling approach, where method agility is manifested by a multi-
tude of notation alternatives in a single tool for different kinds of users, and also by
machine-interpretable semantics on which functionality of varying specificity may
be built.

The work at hand also advocates a possible starting point in the design of
domain-specific modeling languages, while at the same time providing a resource of
lessons learned which can support both teaching activities in the area of conceptual
modeling, as well as scientific experimentation at metamodeling level with the
fundamental modeling languages assimilated in FCML.

Acknowledgements We thank Srdjan Zivkovic and all the participants of the NEMO Summer

School Series for the discussion of FCML.
Tool Download http://www.omilab.org/bee-up.

References

—

. OMG: The BPMN specification page. http://www.bpmn.org (2016). Accessed 1 Mar 2016

2. Chen, P.: The entity-relationship model—toward a unified view of data. ACM Trans. Database
Syst. 1(1), 9-36 (1976)

3. Scheer, A.W.: ARIS, p. 20. Springer, Heidelberg, Vom Geschiftsprozess zum
Anwendungssystem (2002)

4. Software AG: ARIS—the community page. http://www.ariscommunity.com (2016). Accessed

1 Mar 2016

http://www.omilab.org/bee-up
http://www.bpmn.org
http://www.ariscommunity.com

Fundamental Conceptual Modeling Languages in OMiLAB 27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

217.

. OMG: The UML resource page. http://www.uml.org (2016). Accessed 1 Mar 2016
. Petri, C.A., Reisig, W.: Petri net. Scholarpedia 3(4), 6477 (2008). doi:10.4249/scholarpedia.

6477

. Reisig, W.: Understanding Petri Nets. Springer, Heidelberg (2013)
. OMiLAB: The metamodelling page for FCML and the Bee-Up tool. http://www.OMiLAB.

org/bee-up (2016). Accessed 1 Mar 2016

. BOC GmbH: ADOxx—official website. https://www.adoxx.org/live/home (2016). Accessed 1

Mar 2016

Buchmann, R.A., Karagiannis, D.: Agile modelling method engineering: lessons learned in the
ComVantage project. In: Ralyte, J., Espana, S., Pastor, O. (eds.) Proceedings of the 8th
IFIP WG 8.1 Conference on the Practice of Enterprise Modelling (POEM 2015), Valencia,
Spain. LNBIP, vol. 235, pp. 356-373. Springer, Heidelberg (2015a)

Karagiannis, D.: Agile modeling method engineering. In: Proceedings the 19th Panhellenic
Conference on Informatics (PCI 2015), pp. 5—10, Athens, Greece. ACM (2015)

Krogstie, J., Sindre, G., Jorgensen, H.: Process models representing knowledge for action: a
revised quality framework. Eur. J. Inf. Syst. 15, 91-102 (2006)

Moody, D.: The physics of notations: towards a scientific basis for constructing visual
notations in software engineering. IEEE Trans. Software Eng. 35(5), 756777 (2009)
Bencomo, N., France, R., Cheng, B.H.C., ABmann, U.: Models@run.time. LNCS, vol. 8378.
Springer, Heidelberg (2014)

van der Aalst, W.M.P.: Process-aware informations systems: lessons to be learned from
process mining. In: Jensen, L., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and
Other Models of Concurrency II. LNCS, vol. 5460, pp. 1-26. Springer, Heidelberg (2009)
Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 25-31 (2006)

Box, G.E.P.: Science and Statistics. J. Amer. Stat. Assoc. 71, 791-799 (1976)

Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis: Foundations and
Applications. LNAI vol. 3626, Springer (2005)

Staab, S., Studer, R.: Handbook on Ontologies. Springer (2004)

W3C: OWL 2—the W3C recommendation. https://www.w3.org/TR/owl2-overview. Accessed
1 Mar 2016

Baader, F., Calvanese, D., McGuinness, DL., Nardi, D., Patel-Schneider, P.F.: Handbook of
Description Logics. Cambridge University Press (2010)

Staab, S., Walter, T., Groner, G., Parreiras, F.S.: Model driven engineering with ontology
technologies. In: ABmann, U., Bartho, A., Wende, C. (eds.) Reasoning Web—Semantic
Technologies for Software Engineering, LNCS 6325, pp. 62-98. Springer, Heidelberg (2010)
Frank, U.: Multilevel modeling: toward a new paradigm of conceptual modeling and
information systems design. Bus. Inf. Syst. Eng. 6(6), 319-337 (2014)

Voultsidis, M.: ER2SQL—the official page. http://www.er2sql.com (2016). Accessed 1 Mar
2016

Andersson, M.: Extracting an entity-relationship schema from a relational database through
reverse engineering. In: Loucopoulos, P. (ed.) Proceedings of the 13th International
Conference on the Entity-Relationship approach, Manchester, England. LNCS, vol. 881,
pp. 403—419. Springer, Heidelberg (1994)

Della, P.G., Di Marco, A., Intriglia, B., Melatti, 1., Pierantonio, A.: Xere: towards a natural
interoperability between XML and ER diagrams. In: Pezze, M. (ed.) Proceedings of the 6th
International Conference FASE 2003 part of the Joint European Conference on Theory and
Practice of Software, Warsaw, Poland. LNCS, vol. 2621, pp 356-371. Springer, Heidelberg
(2003)

Liu, C., Li, J.: Designing quality XML Schemas from ER diagrams. In: Yu, J.X., Kitsuregawa,
M., Leong, H.V. (eds.) Proceedings of the 7th International Conference on Advances in
Web-Age Information Management, Hong Kong, China. LNCS 4016, pp 508-519. Springer,
Heidelberg (2006)

http://www.uml.org
http://dx.doi.org/10.4249/scholarpedia.6477
http://dx.doi.org/10.4249/scholarpedia.6477
http://www.OMiLAB.org/bee-up
http://www.OMiLAB.org/bee-up
https://www.adoxx.org/live/home
https://www.w3.org/TR/owl2-overview
http://www.er2sql.com

28

28

29.
30.
31.
32.
33.
34.

35.
36.

37.

38

39.

40.

41

42.

43.

44.

45.
46.

47.

48.

49.

50.

D. Karagiannis et al.

. Embley, D.W., Ling, T.W.: Synergistic database design with an extended Entity-Relationship

model. In: Lochovsky, F.H. (ed.) Proceedings of the 8th International Conference on
Entity-Relationship approach to database design and querying, pp. 111-128. Elsevier,
Toronto, Canada (1990)

Teorey, TJ., Yang, D., Fry, J.P.: A logical design methodology for relational databases using
the extended entity-relationship model. ACM Comput. Surv. 18(2), 197-222 (1986)
Conceptual Modeling conference series. The ER conference series website http://www.
conceptualmodeling.org (2016). Accessed 1 Mar 2016

Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language user guidelines, 2nd edn.
Addison-Wesley (2005)

OMG: The XMI specification page. http://www.omg.org/spec/XMI (2016). Accessed 1 Mar
2016

OMG: The OCL resource page. http://www.omg.org/spec/OCL. Accessed 1 Mar 2016
Carlson, D.: Modeling XML Applications with UML. Addison-Wesley (2001)

OMG: The SysML resource page. http://www.omgsysml.org (2016). Accessed 1 Mar 2016
Vanderperren, Y., Mueller, W., He, D., Mischkalla, F., Dehaene, W.: Extending UML for
electronic systems design: a code generation perspective. In: Nicolescu, G., O’Connor, L.,
Piguet, C. (eds.) Design Technology for Heterogeneous Embedded Systems, pp. 13-39.
Springer, Netherlands (2012)

ACM/IEEE: Official page of the 18th edition of the MODELS International Conference. http://
cruise.eecs.uottawa.ca/models2015 (2015). Accessed 1 Mar 2016

. OASIS: BPEL—the official website. https://www.oasis-open.org/committees/tc_home.php?

wg_abbrev=wsbpel (2016). Accessed 1 Mar 2016

WIMC XPDL specification—official website (2015). http://www.xpdl.org. Accessed 1 Oct
2015

White, S.A.: Using BPMN to model a BPEL process. BPTrends 3, 1-18 (2005)

. Recker, J., Mendling, J.: On the translation between BPMN and BPEL: conceptual mismatch

between process modeling languages. In: Latour, T., Petit, M. (eds.). Proceedings of
Workshops and Doctoral Consortium. The 18th International Conference on Advanced
Information Systems Engineering, pp. 521-532. Namur Univ. Press (2006)

zur Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use of
the business process management notation. In: Bellahsene, Z., Leonard, M. (eds.) Proceedings
of the 20th International Conference on Advanced Information Systems Engineering,
Montpellier, France. LNCS vol. 5074, pp. 465-479. Springer, Heildelberg (2008)

OMG: The DMN specification page. http://www.omg.org/spec/DMN (2016). Accessed 1 Mar
2016

Velitchkov, I.: BPMN versus EPC revisited part 1. http://www.ariscommunity.com/users/ivo/
2011-04-11-bpmn-vs-epc-revisited-part-1 (2016). Accessed 1 Mar 2016

Burlton, R.: Perspectives on Process Modeling. BPTrends (2009).

Swenson, K.: BPMN 2.0: no longer for business professionals. https://social-biz.org/2010/09/
01/bpmn-2-0-no-longer-for-business-professionals/ (2016). Accessed 1 Mar 2016

van der Aalst, W.M.P.: Formalization and verification of event-driven process chains. Inf.
Softw. Technol. 41(10), 639-650 (1999)

Meertens, L.O., Iacob, M.E., Eckartz, S.M.: Feasibility of EPC to BPEL model
transformations based on ontology and patterns. In: Rinderle-Ma, S., Sadiq, S., Leymann,
F. (eds.) Proceedings of the BPM 2009 workshops, Ulm, Germany. LNBIP, vol. 43, pp. 347
—358. Springer, Heildelberg (2010)

Mendling, J., Niittgens, M.: EPC markup language: an XML-based interchange format for
event-driven process chains. IseB 4(3), 245-265 (2006)

Storrle, H.: Semantics of control-flow in UML 2.0 activities. In: Bottoni, P., Hundhausen, C.,
Levialdi, S., Tortora, G. (eds.) Proceedings of the 2004 IEEE Symposium on Visual
Languages and Human-Centric Computing, pp. 235-242. IEEE, Rome, Italy (2004)

http://www.conceptualmodeling.org
http://www.conceptualmodeling.org
http://www.omg.org/spec/XMI
http://www.omg.org/spec/OCL
http://www.omgsysml.org
http://cruise.eecs.uottawa.ca/models2015
http://cruise.eecs.uottawa.ca/models2015
http://www.xpdl.org
http://www.omg.org/spec/DMN
http://www.ariscommunity.com/users/ivo/2011-04-11-bpmn-vs-epc-revisited-part-1
http://www.ariscommunity.com/users/ivo/2011-04-11-bpmn-vs-epc-revisited-part-1
https://social-biz.org/2010/09/01/bpmn-2-0-no-longer-for-business-professionals/
https://social-biz.org/2010/09/01/bpmn-2-0-no-longer-for-business-professionals/

Fundamental Conceptual Modeling Languages in OMiLAB 29

51.
52.

53.

54.

55.

56.

57.
. W3C: The RIF specification page. https://www.w3.org/TR/rif-overview/ (2016). Accessed 1

58

59.

60.
61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Jensen, K., Kristensen, L.M.: Coloured Petri nets. Springer, Heidelberg (2009)

Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability.
In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) Proceedings of the 25th Int Colloquium
ICALP98, Aalborg, Denmark. LNCS, vol. 1443, pp. 103—115. Springer, Heidelberg (1998)
Eclipse: The Eclipse Modelling Framework official page. https://eclipse.org/modeling/emf/
(2016). Accessed 1 Mar 2016

Jeusfeld, M.: Metamodeling and method engineering with ConceptBase. In: Jeusfeld, M.,
Jarke, M., Mylopoulos, J. (eds.) Metamodeling for Method Engineering, pp. 89-168. The MIT
Press, Cambridge, USA (2009)

Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit + a fully configurable multi-user and multi-tool
CASE and CAME environment. In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B., Rolland,
C., Solvberg, A. (eds.) Seminal Contributions to Information Systems Engineering,
pp. 109-129. Springer

MetaCase: MetaEdit + tool. http://www.metacase.com/products.html (2016). Accessed 1 Mar
2016

W3C: The RDF official resource page. http://www.w3.org/RDF/ (2016). Accessed 1 Mar 2016

Mar 2016

Visic, N., Fill, H.-G., Buchmann, R., Karagiannis, D.: A domain-specific language for
modelling method definition: from requirements to grammar. In: Rolland, C.,
Anagnostopoulos, D., Loucopoulos, P., Gonzalez-Perez, C. (eds.) Proceedings of the 9th
International Conference on Research Challenges in Information Science (RCIS 2015),
pp- 286-297. IEEE, Athens, Greece (2015)

OMG: The MOF specification page. http://www.omg.org/mof/ (2016). Accessed 1 Mar 2016
Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Generation. Wiley
(2008)

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. Addison Wesley, The Eclipse Series (2004)

Kern, H., Hummel, A., Kuhne, S.: Towards a comparative analysis of meta-metamodels. In:
The 11th Workshop on Domain-Specific Modeling, Portland, USA (2011). http://www.
dsmforum.org/events/DSM11/Papers/kern.pdf. Accessed 1 Oct 2015

Zivkovic, S.: Metamodel composition in hybrid modelling—a modular approach. Doctoral
thesis, University of Vienna (2016)

Karagiannis, D., Kiihn, H.: Metamodelling platforms. In: Bauknecht, K., Min Tjoa, A.,
Quirchmayer, G (eds.) Proceedings of the Third International Conference EC-Web 2002—
DEXA 2002, Aix-en-Provence, France. LNCS vol. 2455, p. 182. Springer (2002)
Karagiannis, D., Buchmann, R.A.: Model fragment comparison using natural language
processing techniques. In: Hess, T. (ed.) Brenner W, pp. 249-269. Wirtschafts-informatik in
Wissenschaft und Praxis, Springer (2014)

Harel, D., Rumpe, B.: Modeling Languages: Syntax, Semantics and All That Stuff, Part 1: The
Basic Stuff (2000)

Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling: a graphical
approach to the operational semantics of behavioral diagrams in UML. In: << UML > 2000
—The Unified Modeling Language, pp. 323—337. Springer, Berlin Heidelberg (2000)
Walter, T., Parreiras, F.S., Staab, S.: OntoDSL: an ontology-based framework for
domain-specific languages. In: Schiirr, A., Selic, B. (eds.) Proceedings of the 12th
Inernational. Conference on MODELS, Denver, USA. LNCS vol. 5795, pp. 408-422.
Springer, Heidelberg (2009)

Buchmann, R.A., Karagiannis, D.: Modelling mobile app requirements for semantic
traceability. J. Requirements Eng. (2015). doi:10.1007/s00766-015-0235-1

https://eclipse.org/modeling/emf/
http://www.metacase.com/products.html
http://www.w3.org/RDF/
https://www.w3.org/TR/rif-overview/
http://www.omg.org/mof/
http://www.dsmforum.org/events/DSM11/Papers/kern.pdf
http://www.dsmforum.org/events/DSM11/Papers/kern.pdf
http://dx.doi.org/10.1007/s00766-015-0235-1

30 D. Karagiannis et al.

71. Karagiannis, D., Buchmann, A.: Linked open models: extending linked open data with
conceptual model information. Inf. Syst. 56, 174—-197 (2016)

72. Fill, H.G., Karagiannis, D.: On the conceptualisation of modelling methods using the ADOxx
meta modelling platform. Enterp. Model. Inf. Syst. Architect. 8(1), 4-25 (2013)

2 Springer
http://www.springer.com/978-3-319-39416-9

Domain-Specific Conceptual Modeling
Concepts, Methods and Tools

Karagiannis, D.; Mayr, H.C.; Mylopoulos,). (Eds.)
2016, XlI, 594 p. 301 illus., Hardcover

ISBN: 978-3-319-30416-9

	1 Fundamental Conceptual Modeling Languages in OMiLAB
	Abstract
	1 Introduction
	2 The Relevance of FCML for Domain-Specific Modeling
	3 Method Description
	3.1 Background on the Fundamental Conceptual Modeling Languages
	3.2 The Metamodeling Approach

	4 Method Conceptualization: The Underlying Meta2model
	5 Proof of Concept: The Bee-up Tool
	6 Conclusions
	Acknowledgements
	References

