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Abstract This paper addresses the issue of lead time behavior in supply chains. In
supply chains without information sharing a supply chain member can only use the
information they observe; orders/demand and their lead times. Using this infor-
mation four different scenarios of lead time behavior are suggested and discussed.
Based on this discussion an analytical approach is proposed that investigates the
link between order quantities and lead times. This approach is then demonstrated on
data from a company. In the particular case it is determined that there seems to be a
link between order quantities and lead times, indicating that a complex lead time
model may be necessary. It is also concluded that current state of supply chain
management does not offer any methods to address this link between order quan-
tities and lead times and that therefore further research is warranted.
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1 Introduction

The bullwhip effect is a term that covers the tendency for replenishment orders to
increase in variability as one moves up-stream in a supply chain. The term is also
often referred to as demand amplification from its technical definition as the vari-
ance of orders divided with the variance of the observed demands. In the current
state of research typically five main causes of the bullwhip effect are considered
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(see e.g. Lee et al. [9]): demand forecasting, non-zero lead time, supply shortage,
order batching and price fluctuation. Recently Michna et al. [10] has added lead
time forecasting and variability of lead times as a sixth main cause of the bullwhip
effect. Forecasting of lead times is necessary when a member of the supply chain
places an order and the signal processing of lead times in a similar manner as signal
processing of demands causes bullwhip effect. While demand forecasting is a
well-known challenge in planning [15], lead time forecasting is a phenomenon that
is of particular interest for the management of supply chains. A number of
approaches to manage supply chains have been proposed ranging from simulation,
to optimization and control theory (see e.g. Sitek [18]). This work focuses on lead
times and their behavior. Despite it being well established that lead times are critical
in terms of both supply chain management and bullwhip effect they have received
surprisingly limited attention in literature. This work outlines a step in remedying
this through proposing an approach for how a supply chain member using obser-
vations of their up-stream orders (lead times and order quantities) can develop a
model of lead time behavior. Firstly we want to list the main problems arising in
supply chains when lead times are not deterministic. Secondly we propose an
approach for how a supply chain member using paired observations of their
up-stream orders (lead times and order quantities) can develop a model of lead time
behavior depending on orders. The aim is to use this model to improve inventory
management and decision making. It is also the aim to establish whether complex
models of lead time behavior should be studied further.

The remainder of the paper is structured as follows. First, the theoretical back-
ground is established and the relevant literature is reviewed. Second, an approach to
investigate the link between lead times and order quantities is proposed. Third, a
test [of the approach is conducted using data from a manufacturing company.
Finally conclusions and further potential avenues of research are presented.

2 Theoretical Background and Literature Review

This research focuses on supply chains that do not use information sharing, but
where each echelon acts solely based on the information it can observe. In the
simplified case each member of a supply chain echelon can only observe (1) the
demand received from the previous echelon and the orders it itself places in the next
echelon (Q) (2) the lead time (LT) for the orders it places and the lead time it itself
gives its customers. If we limit the scope of the research to using information that
any echelon should be able to gather by observing its suppliers’ behavior we arrive
at four different cases of lead time models that are plausible.

In the first case LT’s are deterministic. This case is trivial to establish and will
not be subject to further study. However, it is worth noting that this particular
scenario has received significant attention in literature. Chen et al. [3] conclude that
the mean lead time and the information used to estimate demand are the single two
most important factors in determining the bullwhip effect in a supply chain.
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In the second case we assume that LT’s are mutually independent identically
distributed independent of demands and orders, i.e. lead times are exogenous. This
case has received some attention in literature in the context of the bullwhip effect,
see recent papers by Disney et al. [4], Do et al. [5], Duc et al. [6], Kim et al. [8],
Michna et al. [10] and Nielsen et al. [13]. From Michna et al. [10] we know that the
consequence of having i.i.d. lead times is a significant increase in the bullwhip
effect and they indicate that lead time forecasting is another important cause of the
bullwhip effect. This is seen in the equation below. Where the demand amplification

(bullwhip measure BM) is expressed as the ratio VarðqtÞ
VarðDtÞ:
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demand distributions and m and n are respectively the number of observations used
to estimate the lead time and demand. It is a relatively trivial matter to develop an
appropriate lead time model if in fact lead times are i.i.d. It is simply a matter of
having sufficient observations available to estimate a distribution [13]. However,
under the assumption of i.i.d. lead times there is a problem with the so-called
crossovers which happens when replenishments are received in a different sequence
than they were ordered see e.g. Bischak at el. [1, 2], Disney at el. [4] and Wang and
Disney [19]. The crossover (see Fig. 1) effect is especially severe when a member
of the supply chain forecasts lead times to place an appropriate order.

In the third case LT depends on Q i.e. the distribution of LT depends on the
parameter m = Q

F =Fðx, QÞ

Consider the situation where a number of thresholds of order sizes exist i.e.
several intervals Q∈ Qi; Qj

� �
exist for each of which there is a corresponding

distribution of LT. In practice this seems like a potentially likely relationship
between Q and LT. It also seems reasonable that LT unidirectionally depends on Q.
From the perspective of inventory and supply chain management it is highly
complicated if LT depends on Q in any form as the estimate of LT is used to
determine an appropriate Q. The work presented by Nielsen et al. [12] indicates that
such relationships may in certain cases be appropriate. However, to the best of the
authors’ knowledge no supply chain models exist that take this into account. In
information sharing supply chains it could well be that Q or total demand depends

Fig. 1 Order crossover
where order 1 is placed prior
to order 2, but received after
order 2
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on LT. However, as only non-information sharing supply chains are considered this
case is not investigated in this research.

In the final case the joint Q-LT distributions is not the product of the marginal
distributions of Q and LT, that is we observe a stochastic dependence of lead times
and orders which means that

H x, yð Þ=C FðxÞ,GðyÞð Þ

where H is a joint distribution of lead times and orders, C is a copula function, F is a
marginal distribution of lead time and G is a marginal distribution of orders see e.g.
Joe [7] and Nelsen [11]. This case is by far the most complicated of the four, both to
establish and to address. However, this scenario seems rather unlikely as it implies
that Q is in fact a random variable (although jointly distributed with LT). From
practice this is unlikely to be the case for any echelon of a supply chain baring the
final echelon before the end-customer. It would also be potentially very complicated
to manage inventory if such a relationship did in fact exist.

There is of course any number of other appropriate models for LT behavior.
However, the models above have the benefit that they depend on information that a
supply chain member can acquire through observation, i.e. observing actual lead
times achieved for orders. Order quantities may be an important factor in deter-
mining lead times, but this is likely due to capacity constraints at up-stream ech-
elons where the order quantity acts as a proxy estimator for capacity utilization.
Pahl et al. [14] reviews a large body of literature for situations where lead times
depend on capacity utilization. However, without information sharing, capacity
utilization at the supplier is not known by the customer at the time of order
placement. So the above proposed LT models seem easy to implement and
appropriate to use in the general case.

3 Approach

The following approach to determine an appropriate lead time model relies on
having a number of pair observations Qx,LTxð Þ of order quantities and their cor-
responding lead times. This information can be observed by any member of a
supply chain by monitoring its orders to suppliers. It also assumes that it has been
established that LT can be considered to be random variables, i.e. not constant.

The proposed approach contains three main steps as seen in Fig. 2. The first step
is data cleaning, where any incorrect data entries are removed (negative values,
non-integer values etc.). Following this each pair of observations Qx, LTxð Þ is
removed if either the LT or the Q observation can be considered a statistical outlier.
For simplicity in this research any observation of either Q or LT that is larger than the
observed mean (μ̄Q and μ ̄LT ) and four standard deviations is considered an outlier.
Also for simplicity all outliers are removed in one step rather than iteratively.
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In the second step each pair of observations is portioned into buckets using Q to
determine into which bucket the pair is placed. The buckets are derived such that
the total range of Q is partitioned into a reasonable number of buckets covering an
equal range. Subsequently the distribution of LT for each of these buckets is
evaluated. The evaluation is a simple comparison of the main shape parameters of
the LT distribution; mean, median, standard deviation and skewness. The mean and
standard deviation of the LT distributions are used because we know from Duc
et al. [6], Kim et al. [8] and Michna et al. [10] that they are critical for the size of the
bullwhip effect incurred due to stochastic lead times. The median and skewness are
included as they are critical for the time it takes for a supply chain to reach steady
state. In this case a simple benchmark is used to determine if the different set of
observations behave in conflicting manners. The benchmark is calculated in
the same manner for all four shape parameters. Exemplified by the mean LT:
μ ̄LT , set μ̸ ̄LT , all, where μ ̄LT , set is the mean for the particular set of orders partitioned on
Q and μ̄LT , all is the calculated mean LT for all observations. Values above 1 indicate
that the particular subset has a higher mean than the whole data set. Values close to
1 indicate a similar mean on the particular parameter.

The third step involves evaluating the output from step two to determine an
appropriate model of LT. Here the benchmarks are needed to determine whether
there is any significant difference in LT behavior for the different ranges of Q,
whether they cover a significant amount of observations or total demand to warrant
modeling separately or a simple i.i.d. model for LT can be used instead.

Fig. 2 A three step approach to determine an appropriate LT model
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4 Test Case

In the following data from four products from the same product family and a total of
29,897 observations of orders with corresponding order sizes (Q) and lead times
(LT) are analyzed using R [16].

Figure 3 shows the cumulative data removed from the samples in each of the
four steps and as can be seen, removing outliers, using a four standard deviations
criteria, reduces the available data with between 2 and 3 %. This data removal is
however necessary as there are several extreme observations in the tails of both the
order size and lead time distributions that could potentially skew any subsequent
analysis. In an application of the approach data cleaning must always be conducted
in the given context.

Figure 4 shows a three dimensional frequency diagram with the frequency
intensity as the z-axis. The data has for this purpose been cut into five intervals
covering an equal range of Q and LT respectively. As can be seen, small order
quantities (Q) and small lead times (LT) dominate the frequency plots for all four
products. X2-tests using the buckets depicted in the Fig. 4 shows that LT depends
on Q on a better than 0.001 level in all four cases.

To evaluate the buckets’ suitability in representing the actual data we investigate
the number of observations in each bucket of Q and their contribution to total
demand. The left hand side of Fig. 5 shows that for the particular data sets used in
the analysis small orders (order size interval 1) very much dominate the data in the
sense of observations as also seen on Fig. 4.

From the right hand side of Fig. 5 it should be noted that the total volume of
demand is actually very dispersed between the order size intervals with no clear
pattern between the four products. In the present analysis the observations have
simply been partitioned into five groups of equal range for Q and LT. Another

Fig. 3 Data removed in each
of the four data cleaning steps
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Fig. 4 3D frequency diagrams

Fig. 5 Ratio of observations and the ratio of total demand in a given order interval for each of the
four products
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approach could have been to split the data into groups based on equal volume of
sales or equal number of observations. However, these approaches would poten-
tially be misleading with regards to the link between Q and LT.

Figure 6 shows the comparison across the range of Q for all four products and
the four shape parameters. The four products appear to be behaving similarly so an
overall evaluation will be given. With regards to the mean of the LT distributions
the first interval of Q (i.e. the smallest order quantities in the data sets) (top left
graph in Fig. 6) have uniformly the lowest expected mean where the remaining four
intervals of Q have an expected mean LT of between 1.5 and 2.5 higher than the
mean of the whole data set. The conclusion is the same for the median LT (top right
graph in Fig. 6). The lowest range of Q has a much lower median LT than the four
other intervals of Q regardless of product. It is interesting to note that the difference
here is upwards to a factor 8 and thus much higher than the difference in mean,
where the largest differences are a factor 2.5 larger. For the standard deviation of the
LT distribution the picture is more complicated (bottom left graph in Fig. 6). There
seems to be some indication that the standard deviation of the LT is lower for

Fig. 6 Comparison for the four shape parameters for the four investigated products
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smaller Q. However, the evidence is not conclusive. The final parameter is the
skewness (bottom right graph in Fig. 6). Here the results are the same for all four
products. The skewness of the distribution is lower for larger ranges of Q and
although they are significantly less all LT distributions are skewed in the same
direction regardless of which interval of Q is considered.

The overall conclusion is that there seems to be ample evidence that in the
particular case lead times can be considered to depend to some extend on the order
quantities. From the number of observations available in each order size interval
(regardless of product) one could consider to merge the four order size intervals that
cover the larger orders into one interval. In all four cases they behave similar and
doing this would mean that 59.4, 67.4, 43.6 and 67.0 % of the total volume would
be in one order size interval (i.e. large orders). This would allow for simplifying the
LT model to two functions:

F1 x,Qð Þ for Q∈ Qi;Qj
� �

F2 x,Qð Þ for Q∈ Qj;Qh
� �

where Qi;Qj limits the range of the first order interval for a given product, and Qh is
the largest order size included in the final range and F1 and F2 are density functions
for each of the respective intervals of Q. In the data preparation values of Q larger
than Qh have been removed, so in practice some approximation of expectations for
LT for Q>Qh must be included. For illustrative purposes the corresponding density
functions have been numerically approximated [17] for product 1 for all intervals of
Q and for the last four intervals of Q combined. The results are illustrated in Fig. 7.

While the presented example is just one case, there is no reason to believe that
this case is unique and it underlines the need to conduct research into supply chains
with order quantity dependent lead time distributions. No doubt in practice this type

Fig. 7 Density plots of lead times for product 1 for different intervals of Q
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of supply chain without information sharing is more difficult to manage than one
where lead times are independent of order quantities or even more ideally one
where lead times can be considered to be deterministic.

5 Conclusions and Future Research

From literature it is established that lead times and their behavior are a major source
of bullwhip effect in supply chains. It is also established that there are limited
studies of how actual lead times behave. To remedy this, a simple approach for
analyzing lead times in supply chains with no information sharing is proposed. The
approach utilizes data that any company should have readily available to establish if
there is a link between order quantities and lead times. The approach is tested on
data from a company and it is concluded that the lead times for four products appear
to depend on the order quantity. Future research will focus on analyzing the impact
of quantity dependent lead times on supply chains.
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