CHAPTER

A planimeter is a drafting
instrument that measures
the area enclosed in a
region. Its design is based
on Green’s theorem, one of
NS several global results about
B X S S curves presented in this

=\ Honm —g / g3 N chapter.

Additional Topics
in Curves

This chapter presents several excursions that delve more deeply into the
geometry of curves, including some of the famous theorems in the field. The
theory of curves is an old and extremely well developed mathematical topic.
Our aim is simply to describe a few fundamental and interesting highlights.

1. Theorems of Hopf and Jordan

This section is devoted to proving the following two historically significant
global theorems:
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62 2. ADDITIONAL TOPICS IN CURVES

THEOREM 2.1.
Let 7y : [a,b] — R? be a simple closed plane curve. Let C = ~([a,b])
denote its trace.

(1) (Hopf’s Umlaufsatz) The rotation index of v is either 1
or —1.

(2) (The Jordan Curve Theorem) R*? — C = {p € R? |
p ¢ C} has exactly two path-connected components. Their
common boundary is C. One component (which we call the
interior) is bounded, while the other (which we call the ex-
terior) is unbounded.

Each theorem provides a method to meaningfully distinguish between the
two possible orientations of 4, and the methods they provide are equivalent:

DEFINITION 2.2.
A simple closed plane curve = : [a,b] — R? is called positively ori-
ented if it satisfies the following equivalent conditions:

(1) The rotation index of v equals 1.

(2) The interior is on one’s left as one traverses ~; more pre-
cisely, for each t € [a,b], Roo(~'(t)) points toward the
interior in the sense that there exists & > 0 such that
v(t) + sRoo (7' (t)) lies in the interior for all s € (0,9).

Otherwise, v is negatively oriented, in which case its rotation index
equals —1, and Rgo(v'(t)) points toward the exterior for all t € [a,b].

The equivalence of these two conditions will follow from ideas in the
proofs of Hopf’s Umlaufsatz and the Jordan curve theorem (Exercise 2.1).

The curve in Fig.2.1 hints that Theorem 2.1 is not as obvious as it
might at first appear. Although this curve performs many full clockwise and
many full counterclockwise turns, most of them cancel each other, leaving a
net counterclockwise rotation of one turn. This curve is therefore positively
oriented, which is more easily verified by observing that its interior is on its
left.

The remainder of this section is devoted to (1) sketching the proofs of
these two fundamental theorems, which could be skipped on a first read, and
(2) generalizing Hopf’s Umlaufsatz to piecewise-regular curves, which is an
important prerequisite for Chap. 6.

Recall that the velocity function of a unit-speed closed plane curve ~ :
[a,b] — R? can be regarded as a function v : [a,b] — S! with v(a) = v(b),
where S = {(cos6,sin6) | € R}. This viewpoint allowed us in the previous
chapter to construct a global angle function 6 : [a,b] — R, contrived so that
v(t) = (cosO(t),sinf(t)) for all t € [a,b]. From this, we defined the rotation
index of the plane curve as 5 (6(b) — 6(a)).
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positive orientation

exterior

FiGURE 2.1. Perhaps it’s not obvious how to prove Theorem 2.1

Now forget about the plane curve, and imagine instead that you began
with an arbitrary continuous function from [a, b] to S' whose values at a and
b agree. Don’t assume that it is the velocity function of anything. We claim
that the above steps still apply:

PROPOSITION AND DEFINITION 2.3.
If f: [a,b] — St is a continuous function with f(a) = £(b), then there
exists a continuous angle function 0 : [a,b] — R such that for all
t € [a,b], we have

f(t) = (cosO(t),sinb(t)).
This function is unique up to adding an integer multiple of 2w. The
degree of f is defined as the integer 5 (6(b) — 6(a)).

If f is smooth, then the claim follows from Proposition 1.39 (on page 35),
since integrating f yields a unit-speed plane curve whose velocity function is f.
The proof for continuous functions is outlined in Exercise 2.2. In summary,
the degree of a continuous function f : [a,b] — S! with f(a) = f(b) is an
integer that represents roughly the number of times the domain is wrapped
counterclockwise around the circle. Notice that the rotation index of a closed
plane curve v (as defined in Exercise 1.55 on page 40) equals the degree of
its unit tangent function ¢ — (t).

We will repeatedly use the idea that two functions from [a, b] into St with
sufficiently close outputs must have the same degree. In fact, if their outputs
never point in opposite directions, then they must have the same degree:

LEMMA 2.4.

Let f1,£5 : [a,b] — St be continuous functions with £ (a) = f1(b) and f2(a) =
f2(b). If £ and fa have different degrees, then fi(tg) = —fa(tg) for some
tg € [a7 b]
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PRrROOF. Let 01,605 : [a,b] — R be angle functions for f; and fa. Consider
the difference 6(t) = 02(t) — 61(t). Since the degrees are different,

0(b) = d(a)| = [ (02(b) — O2(a)) — (01(b) — 01(a)) | = 2.

27 (degree fa) 27 (degree f1)

Since § has a net change of at least 27, there must be an odd integer multiple
of ™ between d(a) and §(b). The intermediate value theorem implies that ¢
achieves this value for some ty € [a,b], so f1(tg) = —f2(to)- O

PROOF OF HOPF'S UMLAUFSATZ. Let 4 : [a, b] — R? be a simple closed
plane curve. Let C denote its trace. Let p € C' be a point such that C' is
entirely on one side of the tangent line, L, to C' at p. One can find such a point
by considering a circle (centered anywhere in R?) with radius large enough
to contain C'; and then shrinking the radius until the circle first touches C'.
The point at which it first touches C' will have the desired property.

We can assume without loss of generality that -+ is parametrized by arc
length with v(a) = p. Consider the triangle

T = {(thtg) | a S tl S tg S b}
Define the function v : T — S' as follows:

’)’/(tl) if tl = t2
’l/)(tl,tg) = % if tl 75 t2 and {tl,tg} 75 {a,b},
—v'(a) if {t1,t2} = {a,b}.

For most inputs, ¥ (t1,t2) is the unit vector pointing in the direction
from ~(t1) to y(t2). The rest of the definition just ensures that 1) is con-
tinuous. For example, according to Proposition 1.7 (on page 4), the correct
way to extend ) continuously to a point (¢,¢t) on the hypotenuse of T is
Y(t,t) =~'(1).

Let oy : [0,1] — T be a parametrization of the line segment from (a, a)
to (b,b). Let ay : [0,1] — T be a parametrization of the line segment
from (a,a) to (a,b) followed by the line segment from (a,b) to (b,b). It is
possible to interpolate continuously between ay and oy by a family of paths,
a,:[0,1] = T, s € [0,1], each of which goes from (a,a) to (b,b); see Fig. 2.2
(left). Here “continuously” means that (s,t) — a(¢) is a continuous function
from [0, 1] x [0,1] to T.

For each s € [0,1], let D(s) denote the degree of 1 o o : [0,1] — S
Lemma 2.4 can be used to show that s +— D(s) is locally constant and
therefore continuous on [0,1]. Since D is integer-valued and continuous, it
follows from Proposition A.19 of the appendix (on page 353) that D must be
constant on [0,1], so D(1) = D(0).

By definition, D(0) equals the degree of the unit tangent function of -,
which equals the rotation index of 4. It remains to explain why D(1) equals
1 or —1. In Fig.2.2 (right), as a; first goes from (a,a) to (a,b), the path
1) o o follows the blue vectors, tracing the top half of S' counterclockwise.
Then as a; goes from (a,b) to (b,b), the path 1 o a; follows the negatives
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(&%)

F1GURE 2.2. The proof of Hopf’s Umlaufsatz

of the blue vectors, tracing the bottom half of S' counterclockwise. Thus,
D(1) = 1. If « had the other orientation, then D(1) = —1. This completes
the proof.! O

For the next proof, we require the idea of a tubular neighborhood. Suppose
that v : [a,b] — R? is a simple closed plane curve. For small € > 0, consider
the function ¢ : (—¢,€) x [a,b) — R? defined as

p(s,t) =~(t) + s- Roo(v(t)).

a b
FIGURE 2.3. A tubular neighborhood

For fixed tg, the function s — ¢(tg, s) parametrizes a small line segment
that crosses the trace of v orthogonally; in Fig. 2.3, it is shown in green for
five choices of ty. The important fact is that these green lines to not intersect
each other. In other words, we have the following:

PROPOSITION 2.5.

For sufficiently small € > 0, ¢ is injective.

ITo help visualize the function 1 o a5 and the degree of this function, a nice animation
is available at http://www.mathematik.com/Hopf/index.html



66 2. ADDITIONAL TOPICS IN CURVES

We will postpone the proof of this claim until Exercise 3.11, after we
discuss the inverse function theorem. The phenomenon is both local and
global. The value € must be chosen small enough to ensure that the green
lines remain disjoint locally as the curve bends sharply, and also globally
as the curve loops back close to itself. The image of ¢ is called a tubular
neighborhood of .

If the trace of « is removed from the tubular neighborhood, then what
is left has two path-connected components, namely ¢ ((—¢,0) x [a,b)) and
» ((0,€) x [a,b)). Each is path-connected, because ¢ identifies it with a
rectangle.

PROOF OF THE JORDAN CURVE THEOREM. Let ~ : [a,b] — R? be a
simple closed plane curve. Let C' denote its trace. For any p € R? — C,
consider the function fp : [a,b] — S* defined as

£ (t) = m

[v(t) - p|
Let W (p) denote the degree of f,. Intuitively, if you stand at p while keep-
ing your finger pointing at a friend who traverses C, then W(p) is the net
number of counterclockwise rotations that this activity forces you to perform.
Lemma 2.4 can be used to verify that W is locally constant and therefore
continuous on its domain R?—C. It is constant on every path-connected com-
ponent of this domain, because along every path in the domain, W changes
continuously but is also integer-valued, so Proposition A.19 from the appen-
dix (on page 353) implies that it must be constant. Our aim is to show that
R? — C has exactly two path-connected components, one on which W = 0
and the other on which W =1 or W = —1 (depending on the orientation of
¥)-

If q is sufficiently far from C, like the point labeled “q” in Fig.2.4,
then f, is not surjective, because its image is constrained to an arc of S?,
so Lemma 2.4 implies that W(q) equals the degree of a constant function,
which is 0. We will demonstrate next that W also attains at least one nonzero
value, so R? — C has at least two connected components.

Imagine zooming in with sufficient magnification at a point of C so that
the zooming window lies within a tubular neighborhood, and C is well ap-
proximated by its tangent line within this window. Choose a pair of points
P1, P2 in this window that are close to each other but are on opposite sides
of C. We claim that the window and the points can be chosen such that
[W(p1) — W(p2)] = 1. To prove this, let € denote any quantity that ap-
proaches zero as the zooming window shrinks and as |p; — p2| becomes small
relative to the size of the window. Just to make the discussion more specific,
we assume that the curve is positioned and oriented as in Fig. 2.4 (with C hor-
izontal traversed left to right, p; above, and ps below) and is parametrized so
that «(t) lies in this window for time parameters t € [a, ¢| (where a < ¢ < b).
Restricted to [a, c], both f,, and f,, begin within distance € of (—1,0) and
end within distance € of (1,0); f,, approximately covers the bottom half of
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FIGURE 2.4. W(q) =0, while |[W(p1) — W(p2)| =1

S counterclockwise, while fp,, approximately covers the top half of S* clock-
wise. Furthermore, for ¢ € [¢,b] we have |fp, (t) — fp, (¢)| < €, as indicated by
the dashed purple lines in Fig.2.4.

We will perform some small perturbations to f,, and f,, that (by
Lemma 2.4) do not alter the degree of either function. First, we can modify
both functions on [a, ¢] so that they begin exactly at fj, (a) = fp,(a) = (—1,0)
and end exactly at fy,, (¢) = fp,(c) = (1,0). Next, we can redefine fj,, to equal
f,, on [c,b]. After these modifications, their degrees differ by one. To un-
derstand why, imagine traversing f,, followed by the reverse orientation of
fp,. This path, denoted by fp, — f5,, traverses the bottom half of S' coun-
terclockwise, then does something else, then does that same something else
in reverse, then traverses the top half of S* counterclockwise. The net result
is one counterclockwise rotation. Since the degree of f,, — f,, equals 1, it
follows that degree(fy, ) — degree(fp,) = 1.

We now know that p; and p2
are in different path-connected
components of R? — C. We claim
that these are the only compo-
nents. In other words, every
other point p € R? — C can be
connected to either p; or ps by
a continuous path in R? — C. To
see this, choose a shortest path
from p to C. Before reaching C,
this path will reach a fixed tubu-
FIGURE 2.5. Every p € R? — C can be |y neighborhood of C| inside of
joined to either p; or p2 with a path that which it can be connected to p;
avoids C or po; see Fig. 2.5.

P2
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Thus, R? — C has exactly two path-connected components. Let B C R?
denote any ball large enough to contain C. Clearly, one component of R? —C
contains the complement of B, and is therefore unbounded, so the other
component is contained in B and is therefore bounded. O

The remainder of this section is devoted to generalizing its main theo-
rems. The Jordan curve theorem remains true if v : [a,b] — R? is only a
continuous function with «(a) = ~(b) that is one-to-one on [a,b), but the
proof is more difficult in this setting.

Hopf’s Umlaufsatz does not make sense when ~ is only continuous, but
it can at least be generalized to piecewise-regular curves:

DEFINITION 2.6.

A piecewise-regular curve in R™ is a continuous function -~y :
[a,b] — R™ with a partition, a =ty < t1 < -+ < t, = b, such
that the restriction, v,, of v to each subinterval [t;,t;11] is a regular
curve. It is called closed if additionally v(a) = ~(b), and simple if
v is one-to-one on the domain [a,b). It is said to be of unit speed
if each ~y; is of unit speed.

In other words, there might be finitely many times at which ~ is only
continuous but not smooth. The definition of “closed” does not require the
derivatives of v to agree at a and b; this allows the possibility that t = a
might correspond to one of the nonsmooth points.

A piecewise-regular simple closed plane curve - is called positively ori-
ented if Rgo(v/(t)) points toward the interior for all values of ¢ that cor-
respond to smooth points (all values except the partition endpoints), as in
Fig.2.6. Otherwise, it is called negatively oriented.

Let v : [a,b] — R? be
a piecewise-regular plane curve
with partition denoted by a =
tg < t1 < -+ < t, =0b. Each
nonsmooth point ~(t;) is called
a corner of «. At this corner,
there are two velocity vectors,
coming from the left- and right-
hand limits:

FIGURE 2.6. A positively oriented
piecewise-regular simple closed plane

curve
- Yt +h) =) _
ti) = 1 =1 ),
v (t) = lim o tirfl;7()
ti+h)—y(t:)
()= tim 2 Y tim (¢
v =l T Jim ()

By the regularity hypothesis, neither is zero. The signed angle at ~(t;),
denoted by a; € [—m, ], is defined such that its absolute value equals the
smallest determination of the angle between v~ (¢;) and v*(¢;). The sign of
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«a; is defined to be positive if vT(;) is a counterclockwise rotation of v~ (¢;)
through this angle (and to be negative if it is clockwise); see Fig.2.7. Notice
that reversing the orientation of v would change the sign of the signed angle
at each corner, but would not affect the absolute value.

FIGURE 2.7. A piecewise-regular plane curve with three corners

The corner v(t;) is called a cusp if v (¢;) is a negative scalar multiple
of v~ (t;). The specification of whether the signed angle at a cusp equals =
or —7 is easiest to describe when ~ is simple, closed, and positively oriented.
Under these added hypotheses, «; = 7 if v~ (¢;) points toward the exterior, or
a; = —m if v (¢;) points toward the interior; see Fig. 2.8. The sign convention
is the opposite if v is negatively oriented.

If 4 is closed and 4'(a) # ~'(b), then «(a) counts as a corner, and
the corresponding signed angle is defined exactly as above, but with v~ (a)
replaced by v (b).

FIGURE 2.8. The sign convention at a cusp

THEOREM 2.7 (Generalized Hopf’s Umlaufsatz).

Let v : [a,b] — R? be a unit-speed positively oriented piecewise-reqular
simple closed plane curve. Let ks denote its signed curvature function,
and let {«;} be the list of signed angles at its corners. Then

b
/ ks(t) dt+ E a; = 2.
@ i
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Here “ f; ks(t) dt” is shorthand for -, ( ftt_”l Ks(t) dt), which means the

sum of the integral of k4 over the smooth segments of ~.
If ~ is regular (no corners) and @ denotes a global angle function of -,
recall from Sect. 6 of Chap. 1 that x; = 6', so

b b
/ oo () dt = / 0'(t)dt = 0(b) — 0(a) = 27 - (rotation index).

So in this case, Theorem 2.7 says that the rotation index equals 1, which we
knew from Theorem 2.1.

When ~ has corners, it is still possible to define an “angle function” 6
that has a jump discontinuity at each corner by an amount equal to the cor-
responding signed angle, and that elsewhere satisfies k, = 6’. The expression
f: ks(t)dt + 3", a; equals the net change in this (discontinuous) angle func-
tion. The proof of Theorem 2.7 involves smoothing the corners so that this
angle function becomes continuous:

Proor IDEA. The visual idea of the proof is to smooth - in neighbor-
hoods of the corners, as illustrated in Fig.2.9. If 4 denotes a smoothed ver-
sion of v (in which neighborhoods of the corners have been replaced with the
dashed lines shown in the figure), and & is the signed curvature function of
4, then our original version of Hopf’s Umlaufsatz says that f: Rs(t)dt = 2.
Although we will not discuss the analytic details, it is visually believable that
the smoothing can be constructed such that

/ab/ss(t) dt+Zai = /ab,%s(t)dt = 2r.

O

The above proof helps explain our previous definition of the signed an-
gle at a corner. The definition was essentially contrived to match the net
change in the angle function after smoothing; in other words, «; is the net
counterclockwise rotation of the smoothed corner (interpreted as clockwise if
«; is negative), in the limit as the smoothing occurs in a smaller and smaller
neighborhood of the corner. This description applies equally well at a cusp.

FI1GURE 2.9. Hopf’s Umlaufsatz is generalized by smoothing
the curve at the corners
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It is sometimes convenient to rephrase the previous theorem in terms
of interior angles. Let ~ : [a,b] — R? be a piecewise-smooth simple closed
plane curve with signed angles denoted by {«;}. The ith interior angle of
v, denoted by §; € [0,2n], is defined as in Fig.2.10. Notice that changing
the orientation of 4 would change the sign of each signed angle, but would
not affect the interior angles. Interior angles are related to signed angles as
follows:

= m—q; if 7 is positively oriented,
! T+ «; if 7y is negatively oriented.

In Fig. 2.8, for example, f; = 0 and 8y = 27.

FIGURE 2.10. Interior angles

In Theorem 2.7, v is assumed to be positively oriented, so the theorem
becomes

b
/ k() dt =36 = (n -2,

where n is the number of corners. If the smooth segments of « are straight
line segments, then this becomes

ZB,- = (n—2)m,

which is a well-known formula for the sum of the interior angles of a polygon.

EXERCISES

EXERCISE 2.1. Prove that the two conditions in Definition 2.2 are equiv-
alent, as claimed. HINT: Using the existence of a tubular neighborhood, prove
that Roo(~'(t)) either points to the interior for all t € [a,b] or points to the
exterior for allt € [a,b], so it suffices to consider a single value of t. Choose
the value corresponding to the point labeled “p” in Fig. 2.2.

EXERCISE 2.2. Prove Proposition 2.3. HINT: Use a compactness argu-
ment to divide [a,b] into finitely many subintervals, on each of which the
image of £ is completely contained in one of the following four half-circles:
top, bottom, right, left. Define a local angle function on each subinterval.
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Working from left to right, add the correct integer multiple of 21 to each
local angle function so they match to form a global angle function.

EXERCISE 2.3. Let f : [a,b] — S* be a continuous function with f(a) =
f(b), and let p € S*. If the degree of f equals n, what is the minimal possible
size of the set {t € [a,b) | f(t) = p}?

{1
2. Convexity and the Four Vertex Theorem (Optional)

In this section, we describe one of the earliest global results in differential
geometry, which provides a restriction on the number of vertices of a simple
closed plane curve.

DEFINITION 2.8.

Let v : I — R? be a regular plane curve. A point, v(t), on its trace is
called a vertex if the signed curvature function has a local maximum
or local minimum at t.

This definition is independent of parametrization (Exercise 2.5). As cal-
culated in Exercise 2.4, an ellipse has exactly four vertices, two at which kg
is maximal and two at which K, is minimal. The polar coordinate graph of
r = 1 — 2sin(f) has exactly two vertices; see Fig.2.11. Two is the smallest
number of vertices that a closed curve could have, because the signed curva-
ture function must achieve its global maximum and global minimum on its
compact domain (according to Corollary A.25 on page 356 of the appendix).
Notice that every point of a circle qualifies as a vertex that is both a local
maximum and a local minimum, so a circle has infinitely many vertices. For
the same reason, so does a straight line.

The main theorem of this section says that a simple closed plane curve
must have at least as many vertices as an ellipse has.

THEOREM 2.9 (The Four Vertex Theorem).

Every simple closed plane curve has at least four vertices.

This section is devoted to the proof of this theorem, but only in the
special in which the curve is convezx:

DEFINITION 2.10.
A simple closed plane curve is called convex if its trace lies entirely
on one closed side of each of its tangent lines.

The term “closed side” means that the tangent line itself is considered
part of either “side” into which it divides the plane, since of course the tangent
line at p intersects the trace at p (and possibly also at nearby points if the
trace is a straight line segment in a neighborhood of p); see Fig. 2.12.
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Ks Min
Ks Max Ks ax
Ks Min
)= ) Ks min
~(t) = (acost,bsint -
a>b>0 (7’(9):1—251110)

FIGURE 2.11. An ellipse has four vertices (left), while a
nonsimple curve can have two (right)

og

convex ) (not convex)

FIGURE 2.12. A convex curve lies on one closed side of each
of its tangent lines

WEe'll require the following consequence of convexity:

LEMMA 2.11.
Let C' be the trace of a simple closed convex plane curve, and let L be a line.
(1) If L is tangent to C at two distinct points, then C contains the
entire segment of L between these two points.
(2) If C N L contains more than two points, then it contains the entire
segment of L between any pair of these points.

PRrOOF. Part (1) is left to the reader in Exercise 2.7 (with hints). For
part (2), suppose that L N C contains at least three points, and order them
{P1, P2, P3} so that ps is between p; and p3 along L. Notice that the tangent
line to C' at p must equal L, for otherwise, the other two points would lie on
opposite sides of this tangent line. Since L is now a tangent line, convexity
implies that C cannot cross L at either of the other two points, so L must be
tangent to C' at all three points. The result now follows from part (1). O
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The final ingredient that we’ll require for the proof is a formulation of
the familiar definition of signed curvature in terms of the separate x- and
y-components of the curve. For a regular plane curve ~v(t) = (z(t),y(t)),
recall that

v(t) = (@'(1),y'(t), a(t)=("(1),y"(t), Reo(v(t)) = (=¢'(t),2'(t)).

When -y is of unit speed, its signed curvature is defined by a(t) = ks(t)Rgo
(v(t)) (Eq.1.9 on page 33). The separate z- and y-components of this equa-
tion are

(2.1) 2'(t) = —rs ()Y (1), 9" (t) = ks ()2’ (2).

PrROOF OF THE FOUR VERTEX THEOREM FOR CONVEX CURVES. Let
~ be a simple closed convex plane curve and let C' denote its trace. Assume
without loss of generality that ~ is positively oriented. We can assume that
Ks IS not constant on any interval, since every element of such an interval
would correspond to a vertex, so C' would have infinitely many vertices. In
particular, we can assume that no segment of C' is a straight line segment.

If v had exactly three vertices, then two consecutive ones along C' would
be of the same type (both local maxima or both local minima). But this is im-
possible, because a non-locally-constant smooth real-valued function cannot
have two consecutive local extrema of the same type.

Now suppose that v has fewer than three vertices; in other words, its
only vertices are the point p € C' at which k, attains its global maximum
and the point q € C' at which k, attains its global minimum. Notice that
p # q, for otherwise, ks would be constant. Let L denote the line through p
and q. Lemma 2.11(2) implies that L intersects C only at p and q.

Choose an orientation-preserving unit-speed parametrization, ~ : [0,1] —
R2, such that v(0) = ~(I) = p and y(a) = q for some a € (0,1). Notice that
kL, <0 on (0,a) (since ks decreases from its maximum to its minimum) and
k% > 0 on (a,l) (since ks increases from its minimum to its maximum). We
can assume without loss of generality (by applying a proper rigid motion)
that p is the origin and L is the x-axis.

Write « in terms of its component functions: ~(t) = (z(t),y(t)). Notice
that y(t) changes sign only at t = a, since « lies above L on (0,a) and below
L on (a,l), or possibly vice versa, depending on whether p lies to the right
or left of q. In either case, notice that y(¢)x.(t) never changes sign; this
expression is either < 0 on all of [0,] or it is > 0 on all of [0, ]; see Fig. 2.13.

Furthermore, the expression y(t),(t) equals zero only when k/, = 0,
which does not occur on any interval of nonzero length. Thus, this expression
has a nonzero average value:

l
/0 y(t)kL(t) dt # 0.

However, integrating by parts and using Eq.2.1 together with the fact
that the functions involved are periodic (they have the same values at 0 and
1), we get
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FIGURE 2.13. Either y(¢)x(¢t) <0 (left), or y(t)x,(t) > 0 (right)

t=l

l = 1 1
/0 y(t)kL(t) dt = y(t)/is(t)‘t:; - /0 Kks(t)y' (t) dt=0+ /0 2 (t) dt=2'(t)| =0.

t=0
This contradiction shows that 4 must have at least four vertices. O

Since the concept of convexity is of independent importance, we end this
section with some equivalent formulations of its definition:

~

ProrosITION 2.12.
Let v be a simple closed plane curve. Let C denote its trace. Let T
denote its interior. The following are equivalent:

(1) ~ is convex; that is, C lies on one closed side of each of its
tangent lines.

(2) The line segment joining any two points of T lies entirely in
Z; see Fig. 2.1

(3) ks does not change sign; that is, either ks > 0 on the whole
domain or ks < 0 on the whole domain.

& &

(convex ) (not convex)

FIGURE 2.14. The line segment joining any two points of
the interior of a convex curve must lie entirely in the interior

PRrROOF. | (1) = (2) | (by contradiction): Suppose that ~ is convex yet
there is a pair p,q € Z such that the line segment joining them does not
lie in Z. The (infinite) line, L, containing p and q must intersect C in at
least three points (colored purple in Fig.2.15). Lemma 2.11(2) implies that
C' contains the corresponding segment of L, so p,q € C, contradicting the
fact that they are interior points.
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FIGURE 2.15. LNC could contain four points (left) or three
points (right), but no fewer

(2) = (1) | Exercise 2.9.

(3) = (1)| (by contradiction): Assume that x4 does not change sign

yet C lies on both sides of its tangent line at some point p = ~(ty9). The
vector n = —Rygg (v(tg)) is orthogonal to C at p. Consider the function

h(t) = (v(t) = v(to), m).

Intuitively, h(t) is the “height” of 4(t) above the tangent line to C at ~(to),
with n considered the “up” direction. Notice that h(tg) = 0. Since C lies on
both sides of the tangent line, h attains positive and negative values, so its
global minimum and maximum occur at time values, called ¢; and 5 respec-
tively, that are distinct from each other and from t¢y. It is straightforward
to show that the velocity vectors {v(tg), v(t1),v(t2)} are mutually parallel;
these velocity vectors are purple in Fig. 2.16.

Thus, some pair of these three
velocity vectors must point in the
same direction (rather than opposite
directions). It doesn’t matter which
pair, so let’s say that v(tp) and v(t2)
point in the same direction, as in the
figure. This means that a global an-
gle function, €, changes by an integer
multiple of 27 between times to and
to. By Hopf’s Umlaufsatz, 8 changes

FI1GURE 2.16. If C lies on both sides
of its tangent line at p, then the three
purple velocities vectors are parallel

by exactly +27 on the entire domain.
Since ks = 6" does not change sign,
0 does all of this changing monotoni-

cally. This is possible only if § is con-
stant (and hence C' is a straight line segment) on the segment of C' between
some pair of {~(to),v¥(t1),~v(t2)}. But this contradicts the fact that h has
different values at all three points.

(1) = (3)| (by contradiction): Assume that - is convex yet ks = 6’
changes sign. Then it is possible to choose nearby times t; # t5, between
which 6" changes sign, such that 6(¢1) = 0(t2), which means that v(¢;) and
v(ts) point in the same direction. By Hopf’s Umlaufsatz, there exists a
time t3 such that v(¢3) points in the opposite of this direction. The tangent
lines to C at the three points {t1,ts,t3} are parallel. If these three tangent
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lines were all distinct, then the middle one would contradict convexity, so
some two of them must coincide (here “middle” means with respect to their
positions as subsets of R?). Lemma 2.11 implies that the trace of ~ is a
straight line segment between these times. But « can’t be straight between
t; and t9, because 6’ changes sign between them. Nor can = be straight
between t3 and either other time, since # changes by 7 between them. This
is a contradiction. (]

EXERCISES

EXERCISE 2.4. Suppose p > ¢ > 0 and consider the ellipse v(t) =
(pcos(t),gsin(t)). The foci of this ellipse are the two points on the z-axis
with z-coordinates ++/p? — ¢2, colored purple in Fig.2.17.

(1) Prove that the sum of the distances from ~(t) to these two foci is
independent of ¢.
(2) Prove that the signed curvature function of the ellipse is
pq
.
(p?sin®(t) + ¢2 cos?(t))

(3) Prove that the critical points of the signed curvature function occur

at t € {O, 55, 37“} The corresponding points on the ellipse are its
intersections with the z- and y-axes.

ks(t) =

FIGURE 2.17. An ellipse is the set of points with constant
summed distance to its two foci

EXERCISE 2.5. Prove that the definition of wvertex is independent of
parametrization.

EXERCISE 2.6. Let f : (a,b) — R be a smooth function, and let v(t) =

(t, f(t)) be the natural parametrization of its graph. Prove or disprove:
(1) A critical point of f is a vertex of ~.
(2) A vertex of v is a critical point of f.

EXERCISE 2.7. Prove Lemma 2.11(1). HINT: Let p1,p2 denote the two
points at which L is tangent to C'. Let s denote the last point of L past py
that is contained in C (which could be py itself). If s comes before pa, show
that just past s, there would be a point, q, such that p1 and p2 lie on different
sides of its tangent line, contradicting convexity; see Fig. 2.18.
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C

O L
P1 P2
FIGURE 2.18. Moving away from p; toward po along L, as
soon as C' were to separate from L, there would be a point
q € C with p; and p2 on different sides of its tangent line.
Thus, C' cannot separate from L

EXERCISE 2.8. In the proof of the four vertex theorem, we chose an
orientation-preserving unit-speed reparametrization and a proper rigid motion.
Why did the reparametrization need to be orientation-preserving? Why did
the rigid motion need to be proper?

EXERCISE 2.9. Prove (2) = (1) in Proposition 2.12.

EXERCISE 2.10. Let 7 be a closed plane curve whose signed curvature
does not change sign (either ks > 0 on its whole domain or ks < 0 on its
whole domain). If the rotation index of v equals £1, prove that - is simple.

EXERCISE 2.11 (Convexity for a Piecewise-Regular Curve). Let
~ : [a,b] — R? be a positively oriented piecewise-regular simple closed plane
curve, with interior denoted by Z. Prove that the following are equivalent
characterizations of what it means for v to be convex:

(1) The line segment joining any two points of Z lies entirely in Z.
(2) ks > 0 and all signed angles are positive.

EXERCISE 2.12. Describe the history of the four vertex theorem and its
converse. Discuss the ideas behind the proof in the nonconvex case. An
excellent reference is [4].

{1

3. Fenchel’s Theorem (Optional)

It is natural to consider the total amount that a curve curves, measured
as follows:

DEFINITION 2.13.
The total curvature of a regular curve «y : [a,b] — R™ is defined as

b
total curvature =/ k()Y ()] dt.

a

The total curvature of v is unchanged by reparametrization, so we will
usually assume that = is of unit speed, in which case its total curvature is
2 k(t) dt.

In order for a curve to be closed, it must return to where it started. How
much total curvature does this require? The answer for a simple closed plane
curves is a quick consequence of some previous theorems:
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LEMMA 2.14.
The total curvature of a simple closed plane curve is > 21, with equality if
and only if it is convex.

PRrROOF. Let v be a unit-speed simple closed plane curve. The integral
of the signed curvature comes from Hopf’s Umlaufsatz:

b b
/ o (t) dt = / 0'(t) dt = 0(b) — 0(a) = 27 - (rotation index) — +2.

This is related to the integral of the unsigned curvature as follows:

/abn(t)dt—Lb|Hs(t)|dtZ /a”ﬂs(t)dt

with equality if and only if ks does not change sign, which by Proposition 2.12
occurs if and only if v is convex. O

= 2m,

The goal of this section is to prove the following generalization to curves
in R™:

THEOREM 2.15 (Fenchel’s Theorem).
The total curvature of a closed curve in R™ is > 2w, with equality if

and only if it is a simple closed convexr curve contained in a plane in
R™ (which means a translate of a two-dimensional subspace of R™ ).

The term “convex” was previously defined only for curves in R2, but it
also makes perfect sense for a curve contained in an arbitrary plane. For
simplicity, we will prove Fenchel’s theorem in the case n = 3. The general
case follows from essentially the same argument.

We will require some vocabulary and facts related to the geometry of the
sphere:

S% = {(z,y,2) € R® | 2% +¢* + 22 = 1}.
A “curve in S?” means a space curve whose trace is a subset of S2. A “great
circle” means the intersection of S? with a two-dimensional subspace of R3.
For example, the equator E = {(x,y,0) | 22 + y? = 1} is a great circle. If
p,q € S?, then pq will denote their intrinsic distance in S?, which means
the smallest possible arc length of a regular curve in S? between p and q.
We will require the following fact:

LEMMA 2.16.

If p,q € S? is a pair of distinct points, then Ppq < 7, with equality if and
only if p = —q. There exists a segment of a great circle from p to q with arc
length Pq, and this segment is unique if p # —q. The trace of every curve
in S% from p to q with arc length Pq is a segment of a great circle.

This lemma will be easily proven when we discuss shortest paths in gen-
eral curved surfaces in Chap. 5. For now, we’ll assume that it is likely familiar
to most readers. It essentially just says that segments of great circles are the
unique shortest paths in S?, as all transatlantic pilots know.

Most of the work of proving Fenchel’s theorem lies in proving the follow-
ing fact:
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LEMMA 2.17.

Let 3 be a regular closed curve in S2. If the trace of B3 intersects every great
circle of S?, then the arc length of B is > 2, with equality if and only if B
is a simple parametrization of a great circle.

PrROOF OF LEMMA 2.17. Assume without loss of generality that 3 :
[0,]] — S? is parametrized by arc length. Define p = 3(0) = B(I) and
q = B(1/2). Let B4, 3, denote the restrictions of 3 to the domains [0,1/2]
and [1/2,1] respectively.

If p = —q, then pq = 7, so B; and B, each have arc length > 7, with
simultaneous equality if and only the trace of each is half of a great circle.
Thus the arc length of 3 is > 2m, with equality if and only if the trace of
B equals two halves of great circles, which must be halves of the same great
circle because 3 is smooth.

If p # —q, then there is a unique great circle C' containing p and q.
Let G denote the great circle that is orthogonal to C' and equidistant to p
and q; see Fig.2.19. The trace of 3 intersects G at some point r (because it
intersects every great circle). Notice that Tp = —rq, because the 180-degree
rotation about the illustrated axis is a rigid motion mapping p — q and
r — —r. It follows that

rTp+rq=-rq+r1rq=nm.
Either 3, or B, travels between p and q via r, so its arc length must be
at least Tp + rq = 7. In fact, its arc length must be > 7 (because equality
would force the angle labeled 6 to equal 180° in order for B to be smooth,

contradicting the assumption that p # —q). Since this is half of 3, the full
arc length of B must be > 27, as desired. O

PROOF OF FENCHEL’S THEOREM FOR SPACE CURVES. Let «:[0,]] —
R3 be a unit-speed closed curve. Since - is of unit speed, its velocity function,
v, is a path in S? (visualized as in Fig. 1.17 from Sect. refch1:sec5 of Chap. 1).

We will use the fact that
~ is closed to prove that
the trace of v intersects ev-
ery great circle. For this,
let P C R?® be an arbi-
trary two-dimensional sub-
space, so that G = P N S?
is an arbitrary great circle.
Let n be a normal vector to
P. Notice that a point of
52 lies on G if and only if
it is orthogonal to n. Since
4 (7(),n) = (v(t),n), the
fundamental theorem of cal-

FiGURE 2.19. The proof of Lemma 2.17 culus gives
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!
/0 (v(t),n) = (v(1),n) — (7(0),n) =0 (because = is periodic).

Since the average value of (v(¢),n) equals zero, we must have (v(¢g),n) =0
for some ty € [0,]. Thus, the trace of v intersects every great circle. By
Lemma 2.17, the arc length of v is > 27.

Since « is of unit speed, x(t) = |v'(t)|, so we have

! !
(total curvature of ) = / K(t) dt = / |v'(t)| dt = (arc length of v) > 2.
0 0

If equality holds, then v must be a simple parametrization of a great
circle, say the great circle G = S?2 NP. Since v(t) = fot v(u) du + v(0), the
trace of v must lie in the plane {v(0) + z | z € P}. After applying a rigid
motion, we can assume that this plane is the zy-plane, so we can consider
~ to be a plane curve. Its velocity function v is a simple parametrization
of the unit circle S*. This implies that ~ has rotation index +1 and has a
monotonic global angle function (or equivalently, its signed curvature does
not change sign). Exercise 2.10 (on page 78) implies that + is simple, and
then Lemma 2.14 implies that ~ is convex. O

EXERCISES

EXERCISE 2.13. Let v : [a,b] — R? be a (not necessarily closed) regular
plane curve with v(a) = «(b). What is the minimal possible total curvature
of ~7

EXERCISE 2.14. Prove the n = 2 (plane curve) case of Fenchel’s theorem.
Hint: The n = 3 proof involved showing that v intersects every great circle
of S% (that is, it meets the intersection of S* with every two-dimensional
subspace of R?). The n = 2 analogue is that v intersects every pair of
antipodal points of S' (that is, it meets the intersection of S' with every
one-dimensional subspace of R?).

EXERCISE 2.15. Prove that every great circle of S? is the image of the
equator under a rigid motion.

EXERCISE 2.16. Prove that the length, L, of a regular closed curve in R™
with nowhere vanishing curvature satisfies

L> 27r7

K/max

where Kpmax > 0 is the global maximum of its curvature function.

4. Green’s Theorem (Calculus Background)

This section is devoted to Green’s theorem, a powerful global theorem
about vector fields on R?. As a consequence, we will prove in the next section
that a circle is the least-perimeter way to enclose a given area in the plane.
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For consistency with other sources, in the remainder of this chapter
we will sometimes use the term “curve” to mean the trace of a regular
parametrized curve, and the term “oriented curve” to mean such a trace
together with a choice of one of the two possible directions in which the trace
could be traversed. A more formal and precise way to formulate this no-
tion was discussed in Exercise 1.35 (on page 24), but the informal version is
sufficient for our purposes.

We begin with some basic facts about vector fields on R”, which is also
good preparation for our later study of vector fields on curved surfaces.

DEFINITION 2.18.

A wvector field on an open set U C R™ is a smooth function
F:U—R"

Thus, F associates to each point p € U a vector F(p), which should be
visualized with its tail drawn at p. For example, a vector field on U C R? will
have the form F(z,y) = (P(z,y),Q(x,y)), where P,Q : U — R are called
the component functions of F (we’ll write this as F = (P,Q)); see Fig.
2.20. Smoothness of F means that the component functions are smooth in
the sense that all partial derivatives of all orders exist. Similarly, a vector
field on U C R? has the form F(z,y,2) = (P(x,y,2),Q(z,y,2), R(z,y, 2)),
shorthanded as F = (P, Q, R).

PP ———— N NNN N 77777771 1114V ANNNNNANN
S S S ————~~NNANN 77777771 1110 ANANANNNANN
VA —_———~NNNANANN 77777771 11104 AANNANNANNYN
L L L s s - —-=~SNNNANNN S/ 7 7771 1] A ANANNANNNNN
VAV AV A AR AR A -~ SNSNANANAN SIS 777 71 1A A NN NN
L/ 4 1l s s e e m NN NNNAANA P a2 A A E E RN NN N NN NS
VA A A A A e N N L N Y P A N A RS F I Y TN N R A A
YA A A A A A A S N N N W W s ] VN N N N —m——
[ T B B R R I O S W W W ¥ O IS
| N LN N W O I | - e e ] e e e e e e ——
Vv v vy RO R R | T T T T T
VbV v vy s e 101111 S
VYV VY Y N s s r v 71111 ~~~m~massss e
"B R R R e r v r 717117 ~~~~SSSAA Vvl -
NN N NN NSNS s rr 27777 SNNNNNSNSNSNNDNN VMYt
NNN NN NS~ -7 7777 SNNNNNSNSNANN Myttt
NNNN NSNS~ V4 NNNNNNNNN VYV VSt s
NNNN SN~ s 777 NNNNNNNNN WV VY Yt
NNNNN —_—— P77 NNNNNNNN N WV VL Y Y Y S
NNN NN —— NNNNNNNNVN WV VLVt 7
F(z,y) = (-y,2) F(z,y) = (—z,9)

FIGUuRE 2.20. Two vector fields on R2?, with all vectors
drawn about one-tenth their correct lengths for legibility

In physics applications, a vector field often represents a force field; that
is, F(p) represents the force that would act on an object placed at position p.
The object might be a satellite acted on by gravitational forces of nearby
planets, a paperclip acted on by the forces of nearby magnets, or a piece of
tumbleweed acted on by wind currents. But the tumbleweed example is a
stretch, because wind currents tend to change with time, while vector fields
model forces that change only with position.
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When a constant (vector) force, F, moves an object along the displace-
ment vector D (which points from the starting to the ending position), the
work done is defined as

W = |F||D|cos(d) = (F, D).

To understand why this definition is reasonable, first imagine lifting a five-
pound statue three feet off the ground. This requires 15 foot-pounds of
work against gravity (F and D point in the same direction here—straight
up—so their inner product is their regular product). If you instead move
the five-pound statue along a diagonal line so that it ends up three feet up
and seven feet to the right, as in Fig.2.21, then F = (0,5) and D = (7, 3),
so W = ((0,5),(7,3)) =15. It’s not surprising that the answer stayed the
same—only the component of the displacement in the direction of the force
is relevant (the horizontal component of the displacement requires no work
against gravity). This is the same as saying that only the component of
the force in the direction of the displacement is relevant. In any case, this
example should help explain why our definition of work is reasonable.

FIGURE 2.21. W = |F||D|cos(d) = (F,D)

How much work is required to send the statue to the Moon? It would
need to travel a curved path, -y, along which the gravitational force vector, F,
would change as it moves farther from Earth’s tug and closer to the Moon’s
tug. In situations like this, the work is calculated with a line integral.

DEFINITION 2.19.
If C is an oriented plane curve parametrized as v : [a,b] — R? and F

s a vector field whose domain contains C, then the line integral of
F along C is defined as

b
/F'dVZ/ (F(v()),7' (1)) dt.
¢ a

When C' is a simple closed curve, the line integral is also denoted by
390 F - dv, and is called the circulation of F around C.
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EXAMPLE 2.20. Consider the vector field on R? defined as F(z,y) = (—y, x),
previously illustrated in Fig. 2.20. Let C' denote the counterclockwise circle of
radius 3 about the origin of R?. To compute fCF - dry, we first parametrize
C as v(t) = (3cos(t),3sin(t)), t € [0,27], and write

—— ——

z(t) y(t)
F = [ PE0.00). 0.0 0)
C 0

27 on
= / ((—=3sint,3cost),(—3sint,3cost)) = / 9 — 18~.
0 0

The line integral represents the work done by the force field F in moving
the object along the curve C. This interpretation is reasonable, because a
Riemann sum for the line integral has the form

Xi: (F(y(ta),~'(t:)) Aty = ZZ: <F(’Y(ti))a Nz/,(tli)Ati > )

where ¢; is a sample point from the ith subinterval into which [a, b] is parti-
tioned, and At; is the length of this subinterval. The restriction of 7 to each
such subinterval is a subarc of C. When At; is small, the forces along the
ith subarc are approximately constant at the sample value F(~(t;)), and this
subarc is itself an approximately straight displacement by +'(¢;)At; (because
this vector points in the right direction and has the right length). Thus, the
tth term of this Riemann sum approximates the work done in moving the
object along the ith subarc, so the entire Riemann sum approximates the
work done in moving the object along all of C; see Fig. 2.22.

F(v(t:))
5 v(t:) /(L) At
o+
“ ' b

FIGURE 2.22. A Riemann sum for [, F - dvy approximates
the work done by the force field F in moving the object
along C

If C is only a piecewise-regular curve, then fC F - dv is defined as the
sum of the line integrals of F along the smooth segments of C'. Line integrals
are unchanged by orientation-preserving reparametrizations (Exercise 2.17).
An orientation-reversing reparametrization would change the sign of the line
integral; that is, [ F-dy = — [, F - dvy, where “~C” represents C' with
opposite orientation (traversed in the opposite direction).
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If the vectors of F' (encountered along the way as C'is traversed) mostly
point in the direction of motion, then the line integral will be positive, and
is interpreted as the work done by F in moving the object along the curve.
This was the case in Example 2.20. If F mostly points against the direction
of motion, then the line integral will be negative, and its absolute value is
interpreted as the work required for some independent force to move the
object against F' along the curve.

If C is a small counterclockwise circle, you could think of F as modeling
the flow of a water current, and imagine C as the rim of a paddle wheel set
in the current. The circulation is roughly the force with which the current
spins the paddle wheel counterclockwise; see Fig. 2.23.

FiGURE 2.23. The circulation fc F - d~ is roughly the force
with which the current spins the paddle wheel counterclock-
wise

Notice that fc F - dv is defined for arbitrary paths and arbitrary vector
fields, which need not be related to each other. But the story becomes more
natural when there are no forces other than F. In this case, the path ~ is
completely determined by F and by the initial conditions {~(a),~'(a)}; see
Fig.2.24. The next example provides a physical interpretation of the line
integral in this situation.

EXAMPLE 2.21 (Line Integrals with No Other Forces). If F is the only
force, then Newton’s law says that F(~(t)) = ma(t) for allt € [a,b], where m
is the object’s mass. One could use this to solve for ~y, given initial conditions
and a formula for F, but instead we will use it here to derive a general
meaning for the line integral:

b , b m b d
[Fiv= [ ®aw. o= [ mao.voa=G [ Lo

m

b
— R = ™) — P v(a)?
=5 [ Gvord= FroPr - Fivar

Since an object’s kinetic energy is defined as "¢|v|*, we learn that [, F -dvy
equals the object’s net change in kinetic energy between times a and b.
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This physical interpre-

LS L ~
55?5? 'Q tation agrees with our dis-
v ryy N cussion earlier. If the force
Y2 N vectors are mostly in the di-
AR R | rection of motion, then they
N T e e e
NER AN GINN DDA A B g its kinetic energy.
NENINENININEN R A A A A4 If they are mostly against
NN sl S A the direction of motion, then
SAJIJIJIIIZIzoEzZZzZz2z2227272 they slow the object down,
NNSNSNSNSm—— e decreasing its kinetic en-

ergy. Since work and energy
FI1GURE 2.24. If there are no forces other than  are measured with the same

F, then the object’s path is determined by wunits, this also agrees with
its initial position and initial velocity; it flows the intuition that line inte-

with the current grals should represent work.

Another situation in which the line integral has a natural interpretation
occurs when the vector field is conservative.

r

DEFINITION 2.22.

Let U C R™ be an open set, and let f : U — R be a smooth function.
The gradient of f, denoted by V f, is the vector field on U whose ith
component function is the partial derivative of f with respect to the
ith input variable. A wvector field, F, on U is called conservative if
it is the gradient of some smooth function, f, on U. In this case, f
is called a potential function of F.

For example, the gradient of f : R* — Ris Vf = (fy, f,), where f, = %
and f, = %. Similarly, the gradient of f : R® — R is Vf = (fs, fy, f-). The

following should be familiar from multivariable calculus:

LEMMA 2.23.
If U C R™ is an open set, f : U — R is a smooth function, and v : I — U is
a regular curve, then for allt € I,
d
21 O0) = (VS (), 7'(2))
At a particular time ¢y € I, if we let pg = v(tg) and vo = v/(tg), this
derivative is denoted by dfp, (vo):

(2.2)

(23) Boo(v0) = S|, F(0) = (V1 (Do), vl

We call dfp,(vo) the directional derivative of f at po in the direction of
v (although some books reserve this term for for the case that v is of unit
length). Tt represents the initial rate at which f changes along any regular
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curve passing through pg with initial velocity vector vy. Notice that the value

% ‘t:to'f

(v(t)) depends only on the vectors V f(po) and vo = /(to). It does

not depend on " (¢y) or on any other higher-order derivative information.

Figure 2.25 shows a contour diagram (a collection of level curves) for the
function f(z,y) = —3x?+ 1y? together with its gradient V f(z,y) = (—=,y).
This figure illustrates the following general geometric relationship between
gradients and contour diagrams:

LEMMA

2.24.

If U C R™ is open, f: U — R is smooth, and p € U is such that Vf(p) # 0,

then:

(1)

(2)

(3)

Proor. For (1), since f(v(t)) is constant, 0 = %|t:0f('y(t))

(Vfp),

cos(f) has maximal value |V f(p)| occurring when the angle 6 between u an
V f(p) equals zero.

Vf(p) is orthogonal to the level set Sp ={q € U | f(q) = f(p)} in
this sense: if v is any regular curve with v(0) = p whose trace lies
in Sp, then (v'(0),Vf(p)) =0.

Vf(p) points in the direction of greatest increase of f. More pre-

cisely, the directional derivative dfp(u) is mazimized among all unit

; _ Vi)
vectors u by the choice u = MO

The norm of the gradient equals the rate of increase of f in this

mazimizing direction; that is, |V f(p)| = dfp(u), where u = %,

~—

~'(0)) . For (2) and (3), notice that dfp(u) = (Vf(p),u) = |Vf(p)|

Oa
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FIGURE 2.25. A contour diagram of f(z,y) = —%xz + %y2

together with its gradient Vf(z,y) = (—z,y). The line in-
tegral of Vf along either v, or 7, equals 2 — (—3) =5 (the
net change in f)
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The following proposition says that the line integral of a conservative
vector field equals the net change of its potential function, as illustrated in
Fig. 2.25:

PROPOSITION 2.25.
If U C R™ is open, f : U — R is smooth, and ~ : [a,b] = U is a
parametrization of the piecewise-reqular oriented curve C, then

/C Vf-dy = f(v(b) — F(v(a).

In particular, this line integral is path-independent—it would have
the same value if C'" were replaced by any other piecewise-reqular ori-
ented curve in U with the same starting point y(a) and the same
ending point y(b).

Proor. We will prove this proposition in the case that C' is smooth (the
piecewise-regular case follows easily from this case). For this, we combine
Eq. 2.2 with the fundamental theorem of calculus:

b , b d
Lvrav= [ @raw. ey = [ Lrawa= 160 -rew).
U

If 4 is a closed path, then v(a) = ~(b), so fc Vf-dy =0. In fact, we
have this:

r

PROPOSITION 2.26.
The following are equivalent properties for a vector field F on an open
path-connected set U C R™:
(1) F is conservative.
(2) fc F.dv = 0 for every piecewise-reqular closed curve C' in U.
(3) Line integrals of F are path-independent; i.e., if Cy,Cs are
piecewise-reqular curves in U with the same start and end
points, then fCl F.dy= f62 F-dvy.

Proor. Exercise 2.18. O

We can now justify the term “conservative”—these are the vector fields
for which there is a conservation of energy law.

EXAMPLE 2.27 (Conservation of Energy). Suppose that F =V f is a con-
servative vector field. Physicists call p = —f the “potential energy function.”
If there are no forces other than F, then the curve v that an object will follow
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is determined by the object’s initial position vy(0) and its initial velocity 4’ (0).
In this case, Example 2.21 combines with Proposition 2.25 to yield

m m
| By =BOP - Fiv@P = o) + p(a).
c
Thus, the total energy (kinetic plus potential) is the same at times a and b:
m m
DV (@l + pla) = B VO + plb)

In summary, for a conservative vector field, it is possible to define a position-
dependent “potential energy” that obeys a conservation law: potential energy
gets traded off against kinetic energy as an object moves under the influence
of only the field.

ExXAMPLE 2.28 (Gravity). According to Newton’s law, the magnitude of the
gravitational force between two objects (with masses denoted by m and M)
equals T%, where 1 is the distance between their centers of mass, C' = mMG,
and G is the universal gravitational constant.

Consider a large object (such as the Earth) with mass M centered at
(0,0,0). Let F(p) denote the force it exerts on a small object (such as a
grapefruit) with mass m centered at p = (x,y, z). Since F(p) has magnitude

c

o and points in the direction of the center-pointing unit vector —ﬁ, we

have o
-3/2
F(p) =~ 5p=—C (7 +v*+2) " wy.2)
To demonstrate that F is a conservative vector field on its domain, R3 —
{(0,0,0)}, we must construct a smooth real-valued potential function f on
this domain such that F =V f. Trial and error suffices to come up with

C —1/2
f(p):H—K:C’(x2+y2+z2) ?_K,
where K € R is an arbitrary constant. Therefore, p(p) = —f(p) = K — %
is the potential energy function. It is often convenient to choose K such that
the potential energy equals zero on the surface of the Earth. The conservation
law for this situation says that the total energy

1 C
—m|v* + K — —
2 , p|

kinetic potential

remains constant for an object under the influence of only gravity (no air
resistance, no smashing into the Earth’s surface, etc.).

Now look back at the graph of the vector field F(z,y) = (—y,z) in
Fig.2.20. How could you verify that this vector field is not conservative?
Visually, you could observe that the line integral is not zero around a circle
centered at the origin (as confirmed in Example 2.20). Or algebraically, you
could use the following:
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LEMMA 2.29.
If F = (P,Q) is a conservative vector field on an open set U C R?, then
Qu = P, at every point of U.

Proor. Since F = V f, we have P = f, and () = f,. Since mixed partial
derivatives commute,

O
Thus, two things are true for a conservative vector field on R2. First, the
quantity (), — P, vanishes, and second, the circulation around closed curves

vanish. The following definition hints at the relationship between these two
things:

DEFINITION 2.30.
The infinitesimal circulation of the vector field F = (P, Q) is the
real-valued function defined as Qu — Py on the domain of F.

This (nonstandard) term is appropriate because the infinitesimal circu-
lation equals the limit circulation around smaller and smaller circles:

COROLLARY 2.31.
IfF is a vector field defined in a neighborhood of p € R?, and C, denotes the
counterclockwise circle of radius r centered at p, then

(Qz — Py)(p) = hm%fc F-d~y.

This result is labeled a corollary because Green’s theorem will be required
to prove it. Nevertheless, the geometric meaning of Green’s theorem will
be easier to comprehend after understanding the content of this corollary.
Returning to the paddle-wheel metaphor, Corollary 2.31 roughly says that
the infinitesimal circulation at p measures the counterclockwise force (per
unit of paddle-wheel area) of the current on a small paddle wheel placed at
p. Why might you expect the expression (), — P, to measure such a thing?
This expression is positive when @ is positive and P, is negative. Both cause
counterclockwise spin. @), > 0 means that the y-component of F increases
as x increases, so the current has more upward push against the right side of
the paddle wheel than the left, causing counterclockwise spin. And P, < 0
means that the z-component of F decreases as y increases, so the current
has more rightward push against the bottom side of the paddle wheel than
the top, again causing counterclockwise spin. These two phenomena (the
spin caused by vertical variations in the horizontal component of force, and
the spin caused by horizontal variations in the vertical component of force)
are separated out in the top two vector fields displayed in Fig.2.26, while
these phenomena combine additively in the bottom vector field. Is it visually
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believable that a paddle wheel placed at any position in any of these three
vector fields will experience the same force spinning it counterclockwise?

F(I7 y) = (071‘) F(il?7y) = (7:’/7 0)

ro- (4)

FIGURE 2.26. Three vector fields with constant infinitesi-
mal circulation equal to 1

THEOREM 2.32 (Green’s Theorem).

Let C be a positively oriented piecewise-regular simple closed curve in
the plane. Let D denote the interior of C. Let F = (P, Q) be a vector
field defined on an open set containing D U C. Then,

7{CF~d7=//D(Qm—Py)dA.

Green’s theorem says that the circulation of F around C' equals the inte-
gral over D of the infinitesimal circulation. So if the average value over D of
the infinitesimal circulation is positive (paddle wheels mostly spin counter-
clockwise), then the circulation around C' is positive (the vectors encountered
while traversing the curve mostly align with the direction of motion).
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EXAMPLE 2.33. Green’s theorem provides an alternative way to compute the
line integral of Example 2.20. Since the infinitesimal circulation of the vector
field in this example is constant at 2, we have

j{F-d'y:// 2dA =2 Area(D) = 18,
c D

where D is the interior of C.

PRrROOF OF COROLLARY 2.31 USING GREEN’S THEOREM. Let D, denote
the interior of C... If r is sufficiently small, then (Q, — P,) is approximately
constant over D, at the sample value (Q, — P,)(p). Green’s theorem gives

fc F.-dvy= // T(Qz — P,))dA = area(D,)((Qz — P,)(p)),

from which the result follows. O

We will next prove Green’s theorem in the special case that C'is a rectan-
gle, and then give a nonrigorous indication of how the general case follows.

PROOF OF GREEN’S THEOREM WHEN C Is A RECTANGLE. Suppose
that D is the region {(z,y) € R? | a < 2 < b,c < y < d}, and C is its
boundary. Denote the four segments of C' as in Fig.2.27, so C = Cp + Cgr —
Cr—Cf.

Cr

c, D Ch

a b

FiGure 2.27. C=Cp+Cgr—Cpr —C}p,

We parametrize each segment of C in the most natural manner. For
example, we parametrize Cg as v(t) = (¢,¢), t € [a, b], so that

b b b
[ rar= [ Fao1y)a= [C(peo,euwo) o= [P

After similarly expressing the line integrals along the other three segments,
we get

d b
(2.4) /CF-d'y:/ (Q(b,t)—Q(a,t))dt—i—/ (P(t,¢) — P(t,d)) dt..

'[CR F'd'Y_ch F-dy .ch F'd'Y_.ch F.dy
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On the other hand,

//D(Qz—Py)dA://DdeA—//DPydA
([ [ ([ )

Applying the fundamental theorem of calculus to both inner integrals turns
this last expression into the expression in Eq. 2.4. O

We now provide a (nonrigorous) indication of how the general case of
Green’s theorem follows from the rectangle case. The idea is to find a collec-
tion of rectangles, { Ry, Ra, ..., Ri}, whose union closely approximates D (as
in Fig.2.28), so that the following is a good approximation:

(Qz — Py)dA~ (Qu — P)dA =" (Q. — P,) dA.
D R1UR,U--URy, 3 R;

/ S .
1=
/ -l
L 7~
C

interior edges cancel

N

\

'

Q

[
L=
 ~

~

FIGURE 2.28. An “Etch A Sketch” approximation of C

Denote the boundaries of these rectangles by {Cy,Cs,...,Ck}, all ori-
ented counterclockwise. Let C' denote the outer edge (which is colored light
blue in the figure and looks like something drawn on an Etch A Sketch). Tt
is possible to ensure that the following is a good approximation: fo F-dy~
féF - dvy. We won’t prove this, but think about why you believe it; the
arc lengths of C' and C' will not become close to each other as the picture
is refined using more and more smaller rectangles, so why should the line
integrals become close to each other?

Notice that -, §. F -dy = §4 F - dv, because all interior edges cancel.
In other words, each interior edge receives opposite orientations from the two
rectangles that share it. Since Green’s theorem holds on each rectangle, we
have
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]{CF-dﬂyzy{éF-d'y:Z}{CiF-d'y:Z//Ri(Qz—Py)dAz//D(Qz—Py)dA.

This completes our proof-sketch of Green’s theorem.

We end this section by discussing the alternative flux version of Green’s
theorem. We begin with the concept of flux. Let C be a simple closed plane
curve parametrized as v : [a,b] — R?. Let D be the interior of C. Let F be
a vector field defined on an open set containing D U C. For each t € [a, ],
let n(¢) denote the outward-pointing unit-length vector orthogonal to v(t),
which is purple in Fig. 2.29.

DEFINITION 2.34.
The flux of F across C is defined as

b
fluz = / (F(y(1)), n(t) |v(t)] dt.

The flux of F across
F C is independent of the
parametrization of C. For a
unit-speed parametrization,
it is simply the integral of
(F,n) along ~; see Fig. 2.29.
So the flux is positive if
the vectors of F encountered
while traversing C mostly
point outward. The flux is
negative if they mostly point
inward. For this reason, the
flux is sometimes called the
“net outflow” of F across C'.
Here is an imperfect but use-
ful metaphor: if C is a net, and F represents the velocity vectors of a school
of small fish, then the flux is roughly the net rate at which fish are escaping
from the net. The flux would be negative if fish were mostly swimming into
the net.

FIGURE 2.29. The flux measures the net out-
flow of F across C'

DEFINITION 2.35.
The divergence of the vector field F = (P, Q) is the real-valued func-
tion defined as Py + Qy on the domain of F.

The analogy with Definition 2.30 would be tighter if “divergence” were
instead called “infinitesimal flux,” because of its geometric meaning:
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COROLLARY 2.36.
IfF is a vector field defined in a neighborhood of p € R?, and C, denotes the
circle of radius r centered at p, then

1
(P +Qy)(pP) = hr% — (fluz of F across C..).
—
The proof of Corollary 2.36 using the flux version of Green’s theorem
(which we are about to state) is essentially identical to our previous proof of
Corollary 2.31 using the original version of Green’s theorem.

THEOREM 2.37 (Flux Version of Green’s Theorem).

Let C be a simple closed curve in the plane. Let D denote the interior
of C. Let F = (P, Q) be a vector field defined on an open set containing
DuUC. Then,

(flur of F across C) = // (Pp+Qy) dA
D

Thus, the flux of F across C equals the integral of the divergence over D.
Returning to the fish metaphor, the divergence at a point roughly measures
the extent to which fish are swimming away from that point (diverging from
that point), so the theorem roughly says that net outflow of fish across a net
equals the integral of the rate at which fish are diverging from all the points
inside the net.

The following proof of Theorem 2.37 can be summarized as “rotate all
of the vectors 90° and then apply Green’s theorem.”

PROOF. Let 7 : [a,b] — R? be a unit-speed positively oriented parame-
trization of C. Denote the components of v by v(t) = (z(t),y(t)). Notice
that

n(t) = —Roo(v(t)) = (' (1), =2’ (1))

Let F denote the vector field obtained from F by rotating all individual
vectors 90° counterclockwise; that is, F = Rgo(F) = (—Q, P). We have

b b
flux / (F(v(t)), n(t)) di = / (P(Y(), Qv(1)), (¥ (£), =/ (1)) dt

P(x(1))), (2'(t),y'(t))) dt
< )>dt
AR // +Q)a
C

apply Green’s theorem to F

/b
/
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This completes the proof, but notice that the proof’s heart can be con-
cisely rewritten by expressing the integrand as

(F,n) = (F, —Roov) = (RooF, — R2)v) = (RooF,v) = <Fv>

Here we're using the fact that the rotation map Rgg : R? — R? is a rigid
motion with the property that Rgg o Rgg = —(the identity map). O

EXERCISES

EXERCISE 2.17. Prove that line integrals are unchanged by orientation-
preserving reparametrizations.

EXERCISE 2.18. Prove Proposition 2.26.

EXERCISE 2.19. What is the escape velocity of a rocket on the Earth’s
surface (the upward velocity needed to escape the planet’s gravity, so that it
will never be pulled back to the planet, neglecting air resistance and other
forces)?

EXERCISE 2.20. For the vector field F(z,y) = (z,y + 2):

(1) Calculate directly the line integral along the top half of the unit
circle from (1,0) to (—1,0).

(2) Calculate directly the line integral along the straight line from (1, 0)
to (—1,0).

(3) Recalculate the above line integrals by finding a potential function
for F and applying Proposition 2.25.

EXERCISE 2.21. For the vector field F(z,y) = (2y + 3, x):

(1) Calculate the line integral along the top half of the unit circle from
(1,0) to (—1,0).

(2) Calculate the line integral along the straight line from (1,0) to
(—1,0).

(3) Calculate the line integral around the loop that first traverses the
top half of the unit circle from (1,0) to (—1,0) and then traverses
the straight line from (—1,0) to (1,0). Solve this by subtracting the
previous two answers, and also solve this using Green’s theorem.

EXERCISE 2.22. Let pg € R™ and let f : R — R denote the “distance
to po” function; that is, f(p) = dist(p, po).

(1) If p € R™ with p # py, verify that V f(p) = é:ig‘.
(2) Suppose that C is a simple closed curve in R" with py ¢ C. If p € C
is the point of C that is closest to pg, prove that p— pg is orthogonal

to the tangent line to C' at p.

EXERCISE 2.23. With and without Green’s theorem, show that a con-
stant vector field has zero line integral around every circle in R2.
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EXERCISE 2.24. With and without Green’s theorem, calculate the line
integral of F(x,y) = (zy,x?) around the triangle with vertices (1,1), (1,5),
and (3,4).

EXERCISE 2.25. Prove the following partial converse to Lemma 2.29: If
F is a vector field whose domain is all of R? with the property that Q,(p) =
P,(p) for all p € R?, then F is conservative.

EXERCISE 2.26. Consider the vector field F with domain R? — {(0,0)}
defined as F(z,y) = (x?;fy‘“ %ﬂfz)
(1) Verify that @, — Py, = 0 at every point of this domain.
(2) Verify that the line integral of F is not zero around a circle centered
at the origin.
(3) By Green’s theorem, around what types of loops must the line in-
tegral of F' equal zero?
EXERCISE 2.27. Prove Green’s theorem (Theorem 2.32) as a corollary of
the flux version of Green’s theorem (Theorem 2.37).

{]
5. The Isoperimetric Inequality (Optional)

In this section, we prove the classic isoperimetric inequality in the plane
as an application of Green’s theorem.

We begin with a corollary of Green’s theorem that is useful for computing
area:

COROLLARY 2.38.
Let C' be a positively oriented simple closed plane curve parametrized as
~(t) = (x(t),y(t)), t € [a,b]. The area of the interior, D, of C equals

b b
Area(D) = / z(t)y (t)dt = —/ y(t)x' (t) dt.

Proor. To obtain these two formulas for area, apply Green’s theorem
separately to the two vector fields Fy(z,y) = (0,2) and Fa(z,y) = (—y,0).
Each of these vector fields has constant infinitesimal circulation of 1 and is
illustrated in Fig.2.26 on page 91. O

The vector field F(z,y) = (0, ), which was used in the above proof, is
also illustrated in Fig.2.30. As you look at this image, think about how you
could design a mechanical device that measures the area inside C' when it is
pushed around C'. To measure the arc length of C' would be much easier—
a wheel on a stick with an odometer would suffice, like the one shown in
Fig.2.30 (left). But it should also be mechanically possible to measure the

area by measuring §, F1-dy = fab z(t)y'(t) dt. The wheel and odometer would
need to be modified to be sensitive only to the vertical component of motion,
with sensitivity proportional to the distance to the y-axis. Exercise 2.33 dis-
cusses a planimeter, which is a mechanical device that uses Green’s theorem
to measure area (although not exactly in the manner suggested above).
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F(z,y) = (0,2)

FIGURE 2.30. Area= ¢, F-dy= ff z(t)y'(t) dt

You can check that the length I and area A of a circle of any radius are
related by the equation [? = 47 A (here we’re using “length” as an abbrevia-
tion for “arc length,” which is also often called “perimeter”). The remainder
of this section is devoted to proving that every other simple closed curve has
larger length than the circle that encloses the same area. More precisely, we
have the following theorem.

THEOREM 2.39 (The Isoperimetric Inequality).
Let C be a simple closed plane curve. If I denotes the length of C' and
A denotes the area of the interior of C, then

12 > 47 A,
with equality if and only if C is a circle.

Thus, if C is not a circle, then its length is greater than the length of a
circle with the same area as C. You could also read the theorem this way:
if C' is not a circle, then its area is less than the area of a circle with the
same length as C. This second viewpoint justifies the term “isoperimetric”
which means “same perimeter”—among all curves with the same perimeter,
the circle has the largest area.

Proor. Take two vertical lines that do not intersect C' and move them
together until they first touch C, so that C becomes tangent to both lines
and lies between them. Let S' be a circle that is also tangent to both of
these lines. Its radius, r, equals half the distance between the lines. Assume
without loss of generality that the origin is the center of S'. Figure 2.31
shows C and S' as nonintersecting, but the vertical position of S* will be
irrelevant for the proof.
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v (to) €

B(to) B(0)

F1GURE 2.31. The proof of the isoperimetric inequality

Let v(t) = (z(t),y(t)), t € [0,], denote a parametrization of C by arc
length such that (0) is the intersection of C' with one of the vertical lines,
and ~v(to) is the intersection with the other for some ¢y € (0,1). We will
choose a parametrization of S, denoted by 3 : [0,{] — R?, contrived so that
for all t € [0,1], the z-coordinates of v and 3 agree; that is, we will traverse
S1 so as to remain vertically aligned with someone who is traversing C at
unit speed. This is achieved by defining B(¢t) = («(¢), §(¢)), where

g(t) = £4/12 — x(¢)?,

with the sign depending on whether ¢ € [0,¢0] or ¢t € [to,l]. Notice that
B is not necessarily a regular parametrization, but this will not affect the

calculations that follow.
By Corollary 2.38, the area of C'is A = fé z(t)y'(t) dt, while the area

of St is 7r? = —fol g(t)z'(t) dt (check that this is valid even though the
parametrization of C' is not necessarily simple or regular). Adding these
areas together (and suppressing the input variable) yields
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1 1 1
A+ qar? = / (zy —ga') dt < / |zy" — ga’| dt = / \/ (zy’ — ga)? dt
Jo 0 J0

l
— / \/x2y12 — 2zy' G’ + §Px’ di
0

!
— [ V@A @ -
0

l
< [ VETE e
0
l
= / Va2 + g2 de because =y is unit-speed
0
l l
:/ |ﬁ(t)|dt:/ rdt=1Ir  because B(t) = (m(t),i r2—x(t)2>.
0 0

In summary, A+7r? < lr. We now use the fact that the geometric mean
of two positive numbers is bounded below by the arithmetic mean:

VAVTr? < %(A +7r?) < %lr.

This gives that {2 > 47 A, as desired.

It remains to discuss the equality case in which [> = 47 A. In this case,
all inequalities above become equalities. In particular, (za’ + gy')? = 0.
Therefore,

0=z’ + ij/ = <(x,:lj), (x/,y/)) = </67'7/> :

Since |3 is constant, we also know that <ﬁ,ﬂ/> = 0. Since both 3’ and ~/
are orthogonal to 3, they must be parallel to each other. But since they have
identical first components (namely z’), this implies that they are equal to
each other, at least when their common first component z’ is nonzero.

In summary, B'(t) = 4/(t) for all ¢t € [0,1] at which 4/(¢) is not vertical.
By continuity, the same must be true at isolated times when «'(¢) is vertical.
In fact, all such times must be isolated, for otherwise v would be vertical on
an interval, so 3 would have zero speed on that interval, yet would have unit
speed everywhere it did not have zero speed, contradicting the continuity of
its speed.

Thus, B'(t) = v/(t) for all t € [0,1]. Since antiderivatives are unique up
to an additive constant, ¥ = 3 + w for some constant vector w € R2. In
other words, C is a translation of the circle. O

EXERCISES

EXERCISE 2.28. If [, A € R are positive numbers for which [? > 47 A,
prove that there exists a simple closed plane curve with length [ and area A.
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EXERCISE 2.29. For p > ¢ > 0, consider the ellipse y(t) = (pcost, ¢gsint),

exactly as in Exercise 2.4 on page 77. Let A denote its area and [ its length.
(1) Use Green’s theorem to calculate A in terms of p and g.

(2) Set ¢ = 1, and use a computer algebra system to plot the graph

of 4?2‘4 as a function of p. COMMENT: a computer is necessary

because the arc-length integral does not evaluate to an elementary

closed-form expression for general p.

Exercise 2.30. Use Green’s theorem to find area of the region bounded
by the z-axis and the trace of the curve

~(t) = (¢t —sin(¢),1 — cos(t)), te€[0,2x].
COMMENT: This curve is called a “cycloid” and is illustrated in the next
section.
EXERCISE 2.31.

(1) Show that the line integral of F(z,y) = (—y,x) along the line seg-
ment from (z1,y1) to (z2,y2) equals x1ys — Tay;.

(2) If C is a polygon with vertices denoted by (z1,41),. .., (Tn,yn) (or-
dered counterclockwise), prove that the area A of the polygon is
given by

2A = (z1y2 — x2y1) + (X2ys — x3y2) + - -+ (Tn—1Yn — TnYn—1) + (TnY1 — T1Yn)-

EXERCISE 2.32. Describe the history of isoperimetric problems including
alternative proofs. An excellent reference is [3].

EXERCISE 2.33. A planimeter is a mechanical drafting instrument used
to determine the area enclosed in a region; see the figure on page 61. Describe
how these devices work and how their function is related to Green’s theorem.

]

6. Huygens’s Tautochrone Clock (Optional)

For the major countries of Europe, the seventeenth and eighteenth cen-
turies represented an era of naval exploration. The main impediment to
navigation at sea was the longitude problem—while it was relatively easy
to establish one’s latitude at sea, there was no effective known method to
determine one’s longitude. This limitation resulted in countless maritime
disasters. As the lost life and lost gold piled up, several countries offered
prizes and established observatories and scientific centers devoted to solving
the problem. For example, in 1714, the British government established a
Board of Longitude and offered a longitude prize of 20,000 pounds, writing:

The discovery of the longitude is of such consequence to
Great Britain for the safety of the navy and merchant
ships as well as for the improvement of trade that for want
thereof many ships have been retarded in their voyages,
and many lost. ..
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Potential solution methods based on astronomical observations were
championed by Galileo, Newton, Halley, and others. Work in this direc-
tion led to several key scientific discoveries including the speed of light. The
main alternative approach involved attempting to build a better clock. If a
clock could be constructed that maintained accurate time during long voy-
ages at sea, then longitude could be determined each day from the exact time
of sunrise or high noon.

Christiaan Huygens is credited with inventing pendulum clocks, which
could keep accurate time on land but not at sea. The motion of waves rocking
a ship would render a pendulum erratic—on some swings, the pendulum bob
would traverse a wider circular arc than others. A wider swing takes slightly
more time than a narrow one, eventually leading to inaccurate readings.

In fact, Huygens was the first to prove that a circular arc is not quite
isochronous (wide swings take slightly more time than narrow swings). The
best way to model this phenomenon is to forget about the string. Pretend
that the circular arc traced by the pendulum bob is an actual physical track
(colored blue in Fig.2.32) and that the bob is a frictionless object sliding
down the track. Huygens proved that the time to reach the bottom increases
when the bob begins higher up the track. This might sound obvious, but
it’s not true of every track shape. He discovered a track shape with the
property that the time to reach the bottom is independent of the object’s
staring position on the track. He called this shape a tautochrone curve
(Greek for “same time”).

circular arc tautochrone curve

FIGURE 2.32. On the circular arc, the higher object takes
the most time to slide to the bottom. On the tautochrone
curve, all objects take the same amount of time

Huygens’s next idea was to build bumpers against which the pendulum
string would wrap, causing the pendulum bob to traverse a tautochrone curve
rather than a circular arc; see Fig.2.33. He constructed a tautochrone
clock based on this design, with hopes of solving the longitude problem. He
believed that his clock would keep accurate time at sea because all pendulum
swings would take the same amount of time, even though the waves would
cause some swings to be wider than others. Unfortunately, his clock did not
function as accurately as he hoped on its trial voyage. Perhaps the added
friction of the string against the bumpers offset the theoretical advantages,
or perhaps the storms were severe enough to cause the bob to jerk about.
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The longitude prize was eventually awarded to John Harrison for designing
a seaworthy clock based on springs and balances.?

bumper

circular arc tautochrone curve

FiGURE 2.33. The pendulum string wraps against the
bumpers, causing the bob to traverse a tautochrone curve

Although Huygens failed to win the longitude prize, the mathematics he
invented to design his tautochrone clock survived and later found other in-
teresting applications. The remainder of this section is devoted to discussing
this mathematics and some of these applications.

The mathematical story begins with the cycloid. Imagine a wheel of
radius 1 initially centered at (0, 1), so it is tangent to the x-axis at the origin.
Imagine marking this point of tangency on the wheel with a chalk mark
and then letting the wheel roll without slipping along the x-axis. The curve
traced by the chalk mark is called the cycloid; see Fig.2.34. Parametrizing
the cycloid is a simple matter of adding together the two purple vectors:

(2.5) ~(t) = (t,1) + (—sin(¢), — cos(t)) = (¢ — sin(¢), 1 — cos(t)).

The cycloid is regular on the domain (0, 27), which corresponds to the portion
shown in Fig. 2.34.

F1GURE 2.34. A cycloid is the path traced by a chalk mark
on the edge of a wheel that rolls along a straight line

2We recommend [7] for the history of the longitude problem and John Harrison’s story.
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The cycloid is turned upside down by the rigid motion (z,y) — (z, —y).
The resultant inverted cycloid is parametrized as 4(t) = (¢t — sin(t),
cos(t)—1). Huygens proved that this is a solution to the tautochrone problem:

THEOREM 2.40.
The inverted cycloid, 4(t) = (t — sin(t),cos(t) — 1), t € (0,27), is a

tautochrone curve.

Proor. Consider an object beginning at 4(tp) = (xo,yo) and sliding
under the influence only of gravity (without friction) to the bottom of the
curve 4 (7). We must show that the time required is independent of ¢y. Since
the right half of the curve is the mirror image of the left, it suffices to assume
that to € (0, 7).

Our first job is to relate the following variables that change as the curve
is traversed: t,z,y,s,T. Here, s is the arc-length parameter defined as s(t) =
fti |4/ (t)| dt, while T is the time parameter, so that T(t) denotes the time
required to slide from position (tp) to position 4(t). Notice that

dy

(iz)? -| & T (Z)z + (2)2 — (1—cos(£))?+(—sin(t))? = 2 — 2 cos(t).

Kinetic energy is traded for potential energy such that the following is always
true:

1

(2.6) §mv2 =mg(yo — ),

where g is the Earth’s gravitational constant (Exercise 2.35). Here v is the
object’s speed, measured as

ds
T ==V 29(yo — y)-

{ds _ ds  dT
dt — dT  dt -’

dT _ (%) _ V2 —2cos(t) V2 — 2cos(t)

dt (&) V29w —y) a V/29(cos(to) — cos(t))
So the time required to reach the bottom is

T(w):/t: (dT)dt T V2-2eos(dt 1 [T | 1—cos(t)

dat ) to \/Zg(cos(to)fcos(t)):% to cos(to) — cos(t)

The chain rules says tha Solving for % gives

Using integration tricks or computer assistance, this final integral can be

shown to be independent of tg, and it evaluates to 7, so we have T'(7) = Z-.

NG
(]

Bernoulli and Euler later proved the converse: every tautochrone curve
is a segment of the inverted cycloid (possibly resized or translated).
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B() Huygens’s second mathematical

ke problem was to determine the shape of

8(0) = ~(0) B(t) the bumpers. For this, let 8 : [0,{] —
X R? be a parametrized plane curve (the

\ B bumper curve) and let v : [0,1] — R2

be the induced parametrization of the

”’ path that the pendulum bob will follow.
It is simplest to imagine that initially at

t = 0, the string is completely wrapped

o€ () along the bumper curve, ending at 3(0),
and is about to begin unwrapping. So
the initial position of the pendulum bob
is v(0) = B(0). Since the trace of ~
willdepend only on the trace of 3, we
can assume that 3 is parametrized by
arc length. At every ¢ € [0,!], the length of unwrapped string equals ¢, so
the bob’s position has distance ¢ from B(t) in the direction of —3'(t); see

Fig.2.35. That is, | v(t) = B(1) — t8'(1) |
The following definition slightly generalizes the above discussion by al-
lowing an initial tail of unwrapped string with length Ag.

FIGURE 2.35. G is an involute of
B with (Ao =0)

DEFINITION 2.41.

Let B be an oriented plane curve with nonzero curvature. An involute
of B is a plane curve G that has a parametrization v : (0,1) — R? of
the form

(2.7) Y(t) = B(t) — (t+ X)B'(1),
where B : (0,1) — R? is a unit-speed parametrization of B, and \g € R
is a constant with Ao ¢ (—1,0).

Notice that v/ (t) = —(t+Xg)3" (t), which is nonzero because \g ¢ (—I,0)
and because B has nonzero curvature, so = is regular. For example, the
nonzero curvature hypothesis does not allow B to be a straight line, because
then G would be a single point. The case Ay > 0 corresponds to an “unwrap-
ping string,” as was previously illustrated in Fig.2.35. The case A\g < —I
corresponds to a string that is wrapped along B.

If 3:(0,1) — R? is a regular (not necessarily unit-speed) parametrization
of B, one can avoid reparametrizing it by arc length by replacing Eq. 2.7 with

B(t)
1B8'(1)]

(2.8) () = B(t) = (s(t) + Xo)

where s(t) = fot |3’ (u)| du is the arc-length function.
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Huygens really needed to solve the inverse problem: find the bumper
curve B whose involute is the tautochrone curve G. He solved this by un-
derstanding the inverse relationship between involutes and evolutes. Here is
a more precise formulation of Eq. 1.8 on page 30:

DEFINITION 2.42.

Let G be an oriented plane curve parametrized as v : (0,1) — R2.
Assume for all t € (0,1) that k(t) # 0 and k'(t) # 0. Let n denote
the unit normal to v. The evolute, B, of G is the plane curve with
parametrization 3 : (0,1) — R? given by

Bt) =~() + ! n(t) = the center of the osculating circle of G at ~(t).

K(t)

You can check that G'(t) = —:;ggn(t), so the hypothesis that ' is
nonvanishing ensures that 3 is regular. For example, this hypothesis does
not allow G to be a circle, because then B would be a single point—its center.
The variable choices have already hinted at the following inverse relationship
between involutes and evolutes:

PROPOSITION 2.43.

(1) With the assumptions of Definition 2.41, B is the evolute
of G.

(2) With the assumptions of Definition 2.42, G is an involute
of B.

Before beginning the proof, we
mention a visual reason to believe
claim (1) that B is the evolute of G
in Fig. 2.35. If the string were pinned
to B(t) at time ¢, then the pendulum
bob would begin traversing the circle
of radius t + Ao centered at B3(t), col-
ored green in Fig. 2.36. This circle ap-
proximates G well at ~(¢) (in fact, it
is the osculating circle) because sec-
ond derivatives don’t detect the dif-
FIGURE 2.36. Pinning the string to ference between pinning and not pin-
ning. This suggests that B(t) is the
center of the osculating circle of G

G

B(t) at time ¢ makes the pendulum
bob begin traversing the osculating
circle of G at ~(t) at y(t)-

PROOF OF PROPOSITION 2.43(2). To prove part (2), let G be an ori-
ented plane curve parametrized as v : (0,1) — R? and assume that its
curvature function satisfies x(t) # 0 and &'(t) # 0 for all t € (0,1). We will
consider the case that ' is strictly negative (the other case, that k' is strictly
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positive, is handled similarly). The evolute of G is the curve B parametrized
as

1
2.9 t) =yt —n(t).
(2.9 Blt) = (t) + —n(t)
As previously mentioned, 3'(t) = —:éggn(t) In particular, % = n(t);
see Fig. 2.37. Thus, Eq. 2.9 can be rewritten as
1 A
v(t) = B(t) - :
k() 16'(t))]

Comparing to Eq. 2.8, to prove that G is an involute of B, it will suffice to
verify that

-

t) = S(t) + )\0

= fg |3 (u)| du is the arc-length function of

K

~—

for some Ao ¢ (—1,0), where s(t
3. For this, observe that

d 1 K (t) K (t)

= st) ) =5 1B = ——55

dt \ k(t) K(t) K(t)
Thus, ﬁ —s(t) is a constant, and by considering the time ¢ = 0, one confirms
that this constant is > 0.

o
K(t)?

The proof of part (1) is left to the reader in Exercise 2.44. d
B
sy L
NWAlE0
n) 7

t
V(> w0

7'(t) G

FIGURE 2.37. B is the evolute of G; therefore, G is an in-
volute of B

In light of Proposition 2.43, Huygens could choose his bumper curve to
be the evolute of the tautochrone curve (the inverted cycloid). Figure 2.38
zooms out to show more of the curves G and B from Fig. 2.33, leading one
to guess the following:
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PROPOSITION 2.44.
The evolute of the inverted cycloid is a translation of the inverted

cycloid.

Proor. Exercise 2.46. g
.. B
® G

F1GURE 2.38. The evolute, B, of G is a translation of G

The intended interpretation of Proposition 2.44 should be clear from
Fig.2.38. But to be pedantic about satisfying the hypotheses of Defini-
tion 2.42, we should restrict the inverted cycloid to the domain (0,7); in
other words, we should consider only the left half of one period of the in-
verted cycloid, in which case its evolute is a translation of the right half.

Huygens’s tautochrone clock did not win the longitude prize, but the
underlying mathematics has found other interesting applications through the
centuries. For example, evolutes are important in the field of optics. To
understand the relevance, consider an alternative method of illustrating the
evolute of the inverted cycloid G. Figure 2.39 (left) shows G together with
its normal line (the line in the direction of n) at 40 points along G. These 40
purple lines intersect in a pattern that tricks your eye into seeing the curved
shape of the evolute, B, of G. If the purple lines are light rays, then B
is a curve of focused brightness called a caustic (Latin for “burn,” because
focused sun rays can burn). Intuitively, the normal lines of G should focus
along B because G is well approximated at each point by its osculating circle,
whose normal lines all focus on its center.

To describe this focusing more precisely, let F denote the family of all
normal lines (not just at 40 points, but at all points of G). Then B is called
the envelope of F, which means the unique curve whose tangent lines are
all members of F. In computer graphics, modern ray-tracing software is
capable of rendering envelopes as bright caustics. In Fig.2.39 (right), the
bright caustic is the envelope of a certain family, F, of lines emanating from
the curved mirror. In contrast to our cycloid example, these lines are not
normal to the mirror, but rather point in the directions that appropriately
model how light rays from a single source would bounce off the mirror.



6. HUYGENS’S TAUTOCHRONE CLOCK (OPTIONAL) 109

B
4 s
ZZ/7 L RN
i NN
= T T T e S

FIGURE 2.39. Left: the evolute, B, of G is the envelope of
its normal lines. Right: the bright caustic is the envelope of
the light rays reflected off the curved mirror

Another application involves the shape of gears. Old-fashioned gears
with triangular or rectangular teeth clanged against each other with excessive
vibration and noise. To solve this problem, FEuler invented “involute gears”
whose edges have the shape of a segment of an involute of a circle. This shape
ensures that a pair of interlocking teeth meet each other at a single contact
point that varies along a straight line as the gears turn, greatly reducing
vibration and wear. Most gears in use today are involute gears.

We hope that the illustrations in this section were helpful, but don’t
settle for still images. It is easy to find online animated illustrations of
these concepts. We particularly recommend the animations found on the
Wikipedia pages for “cycloid,” “tautochrone curve,” “involute,” “evolute,”
and “involute gear.” Also check out the animated tautochrone clock on the
Wolfram MathWorld “Tautochrone Problem” page.

EXERCISES

EXERCISE 2.34. The cycloid in Eq. 2.5 can be generalized as

v(t) = (at — bsin(t), a — bcos(t))
for arbitrary constants a,b > 0.

(1) Interpret in terms of the path of a chalk mark on (not necessarily
the edge of) a rolling wheel.

(2) Use a computer graphing application to plot the graph for several
choices with a < b and several choices with a > b.

ExerCISE 2.35. How can Eq.2.6 be derived from the conservation of
energy law in Example 2.28 on page 897

EXERCISE 2.36. Verify the claim after Definition 2.42 that 3'(t) = —:E%
n(t).
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EXERCISE 2.37. Definition 2.42 defines only the evolute of a plane curve.
The evolute of a space curve v : (0,I) — R? can be defined by the same
formula: B(t) = ~(t) + %t)n(t). Modify the formula for @'(t) from the
previous exercise to make it valid for space curves. Describe the general
condition under which 3 is regular for space curves. Determine the evolute
of the helix from Example 1.3 on page 2.

ExERrCISE 2.38. Let B : (0,1) — R? be a unit-speed plane curve with
nonzero curvature. Let v : (0,1) — R? be a regular plane curve such that
for all ¢ € (0,1), v(t) meets the tangent line to 3(t) at a right angle (that is,
the tangent line to the trace of 3 at B(¢) contains ~(¢) and is orthogonal to
~'(t)). Prove that ~ is an involute of 3.

EXERCISE 2.39. Prove that the evolute of the parabola y = z? is the
graph of y = % +3 }%‘2/3, illustrated in Fig. 2.40.

FIGURE 2.40. The evolute of the parabola

EXERCISE 2.40. Let p > ¢ > 0 and consider the ellipse ~(t) =
(pcos(t),gsin(t)), t € [0,2n]. prove that its evolute is an astroid (defined
in Exercise 1.12 on page 8.)

EXERCISE 2.41. For the parabola and ellipse from the previous two exer-
cises, construct a graph similar to Fig. 2.39 showing a family of normal lines
intersecting to form the shape of the evolute.

EXERCISE 2.42. Describe an infinite family of plane curves that all have
the same evolute.

EXERCISE 2.43. Use a computer graphing application to plot several
involutes of a circle of radius 1.

EXERCISE 2.44. Prove Proposition 2.43(1).

EXERCISE 2.45. If the string of Huygens’s tautochrone clock is length-
ened, will the bob still traverse a tautochrone curve?

EXERCISE 2.46. Prove Proposition 2.44.

EXERCISE 2.47. An epicycloid (respectively hypocycloid) is the path
followed by a chalk mark on the rim of a circle of radius b that rolls with-
out slipping outside (respectively inside) a circle of radius a, as illustrated
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in Fig.2.41. Find formulas for these curves and use a computer graphing
application to plot them for several choices of the constants a,b with b < a.

FIGURE 2.41. An epicycloid (left) and a hypocycloid (right)
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