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Abstract Despite 30 years of Electronic Design Automation, analog IC layouts are

still handcrafted in a laborious fashion today due to the complex challenge of consid-

ering all relevant design constraints. This paper presents Self-organized Wiring and
Arrangement of Responsive Modules (SWARM), a novel approach addressing the

problem with a multi-agent system: autonomous layout modules interact with each

other to evoke the emergence of overall compact arrangements that fit within a given

layout zone. SWARM’s unique advantage over conventional optimization-based and

procedural approaches is its ability to consider crucial design constraints both explic-

itly and implicitly. Several given examples show that by inducing a synergistic flow

of self-organization, remarkable layout results can emerge from SWARM’s decen-

tralized decision-making model.

Keywords Integrated circuits ⋅ Electronic design automation ⋅ Analog layout ⋅
Constraint-driven design ⋅ Parameterized cells ⋅ Self-organization

1 Introduction

Microelectronic products are increasingly controlling, connecting, and changing our

world, and today, market demands for low-cost, multifunctional, and densely inte-

grated circuits (ICs) drive the trend to systems-on-chip with both analog and digital
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content. But while the task of digital IC design follows highly automated synthesis

flows based on optimization algorithms, Electronic Design Automation (EDA) is still

struggling to apply such approaches in the analog domain. For over three decades,

such attempts have repeatedly failed to find industrial acceptance and thus, most

design steps are manually accomplished by expert designers with very little support

by automation. In particular, the step of layout design, where a circuit schematic

has to be turned into a graphical description of the detailed circuit geometries—

needed for the photolithographical manufacturing of the IC—remains a laborious

and severely time-consuming bottleneck in the design flow.

This paper presents a novel layout automation approach for analog IC design: Self-
organized Wiring and Arrangement of Responsive Modules (SWARM) [1]. To our

knowledge, SWARM is the first approach to address the design problem by imple-

menting a multi-agent system, in which the individual agents are layout modules that

interact with each other. Steered by a supervising control organ, the self-interested

modules autonomously move, rotate and deform themselves inside an increasingly

tightened layout zone, vying for the available space. By inducing a synergistic flow

of self-organization, the decentralized decision-making of the modules is supposed

to provoke the emergence of compact layout arrangements.

The presented approach is especially interesting in two aspects. First, it joins ideas

from several different disciplines such as cybernetics, game theory, biology, geome-

try, and electrical engineering. Second, SWARM addresses a serious practical prob-

lem which could not yet be satisfactorily solved with layout algorithms equivalent

to those that are successfully used for digital circuit designs—despite a substantial

amount of EDA work. In contrast to these achievements, SWARM’s decisive asset is

that it facilitates an explicit and implicit consideration of crucial design constraints,

as both are essential for achieving the degree of layout quality that is uncompromis-

ingly demanded in the analog domain. Since SWARM is an interdisciplinary and

quite extensive approach, this paper focuses on providing (1) an elementary introduc-

tion to the problem of IC layout design, (2) a presentation of the SWARM approach

cast in the light of multi-agent systems, and (3) a couple of examples demonstrating

what results can be achieved with SWARM.

The paper is organized as follows. Section 2 gives a basic introduction to the

problem of IC layout design. Section 3 discusses existing works on analog layout

automation, discerning algorithmic and generator approaches. Then, Sect. 4 covers

the multi-agent system of SWARM from a high-level point of view, not going into all

details. Section 5 exemplifies the application of SWARM and shows some achieved

results. Section 6 finishes the paper with a summary and an outlook.

2 The Problem of Integrated Circuit Layout Design

As shown in Fig. 1, any IC layout design problem expects three inputs: (1) a set

of design rules, inherently given by the semiconductor technology, (2) a structural

description of the circuit, i.e., a schematic diagram or a netlist, and (3) a set of
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Fig. 1 The problem of IC layout design: turn a circuit into a physical representation

circuit-specific design constraints. Sought is a physical representation describing

the detailed chip geometries of the circuit’s devices and their interconnections on

all process layers, used as photolithography masks in the manufacturing process.

To ensure manufacturability and functionality, such a layout must (1) adhere to the

design rules, (2) match the given circuit, and (3) satisfy all design constraints.

In terms of problem complexity, one has to discern digital from analog design. In

digital design, with its primary objective to cram more and more components (nowa-

days millions and billions of logic gates) onto a chip—a desire referred to as More
Moore [2]—the design problem is mainly a matter of quantity. In contrast, the major

difficulty in the continuous-valued analog domain is to maintain signal integrity in

the face of nonlinearities, parasitic effects, thermal gradients, high voltages, external

physical influences and other More than Moore [2] challenges. This makes analog

design complexity rather an issue of quality, and thus, obtaining a functional layout

involves many, diverse, and correlated design constraints.

Analog layout design includes several tasks. As detailed in Table 1, the main tasks

are: floorplanning (to specify positions, aspects ratios, and pin positions for the top-

level layout blocks of a chip), placement (to set the position, orientation, and layout

variant of all electronic devices, e.g., transistors, resistors, capacitors, inside a lay-

out block), and routing (creating electrical wires, using so-called vias to connect

wires across different metal layers). Overall, layout design is an optimization prob-
lem defined by restrictions (e.g., minimal wire widths and spaces, given by the design

rules) and objectives (usually: reducing area and wirelength). For each specific layout

problem, function-relevant restrictions and objectives are captured by the respective

design constraints. This set of constraints (and thus, a definition of the optimization

problem itself) in turn depends on a multitude of attributes, including the chosen

semiconductor technology as well as the type, application, mission profile, and par-

ticular reliability requirements of the circuit.

While some design constraints relate to high-level aspects, e.g., the available

layout space, most constraints deal with low-level details, in particular to achieve

electrical symmetry for layout modules that perform critical electrical functions.

This so-called matching usually requires equal sizes and consistent orientations of

the module devices in a compact, interdigitated, common-centroid placement [3].

Such restrictions reduce the degrees of freedom, but—as shown by the examples in

Fig. 2—they typically still leave much layout variability. This is a characteristic trait

of analog design which often has to be exploited to satisfy all requirements.
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Table 1 The main tasks in analog layout design: floorplanning, placement and routing

(a) Floorplanning (b) Placement (c) Routing

Considered

components

Circuit blocks (with

sub-hierarchy)

Basic devices (atomic

primitives)

Wire segments + Vias

(to cross metal layers)

Quantities to be set by

the design task

Block positions Device positions Wire paths, segment

Aspect ratios Device orientations Layers and widths +
Pin positions Layout variants Via positions and sizes

Typical restrictions Layout boundary Layout boundary Available metal layers

Maximum distances Space for routing No wires above

devices

Primary objectives Minimize total area Device matching Minimize number of

vias

Minimize wirelength Overall symmetry Homogenize wire

density

Fig. 2 Different variants of an analog layout module with equal electrical function

In today’s flows of manual layout design, two basic forms of constraint consider-

ation are found: high-level constraints usually need to be explicitly formulated to be

really taken into account, while low-level matching requirements are often implicitly
taken care of by experienced layout engineers. But as will be explained in Sect. 3, so

far no automatism supports both forms of constraint consideration.

3 State of the Art in Analog Layout Automation

Although EDA research has put forth a rich variety of analog layout automation

approaches over the past decades, these can be divided into two fundamental cat-

egories [4]: optimization algorithms (Fig. 3a, Sect. 3.1) and procedural generators

(Fig. 3b, Sect. 3.2). They follow entirely different automation strategies, while

SWARM (Fig. 3c, Sect. 4) is an attempt to conflate the two paradigms.
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(a) (b) (c)

Fig. 3 Layout automation strategies: a algorithmic, b procedural, c SWARM

3.1 Optimization-Based Layout Automation Algorithms

Referring to [5], the use of optimization algorithms in EDA largely concentrates on

a canonical form depicted in Fig. 3a, where a single candidate layout is repeatedly

refined in a loop of solution space exploration and solution evaluation. For exam-

ple, the most widely used algorithm for analog placement is Simulated Annealing

[6] where exploration is done via a random modification of the current candidate

placement, while every evaluation rates the new placement according to a formal

cost function and validates if it satisfies all design restrictions. As an example for

routing, the exploration-evaluation style of optimization is particularly apparent in

techniques that rip-up and reroute existing wires as in [7].

For layout automation, a particular strength of such approaches is their ability to

take into account formal expressions of high-level design constraints. However, opti-

mization algorithms work by translating the optimization problem into an abstract

mathematical model, in some cases based on a physical analogy (in the case of

SA: the annealing of solids), and specifically optimize just the modeled aspects.

This implies, that all relevant solution requirements and optimization goals must
be explicitly expressed in a formal, comprehensive, unambiguous, and consistent

representation of constraints that can be processed by the algorithm.

In analog layout however, it is tremendously intricate and still not possible today

to efficiently and sufficiently describe the entire diversity, various impacts and cor-

related dependencies of all crucial design constraints in an explicit fashion due

to the More than Moore complexity (see Sect. 2). The inherent quality loss is the

major reason for the rejection of optimization-based automation in practice. Another

shortcoming is that most of these approaches are not deterministic, thus yielding

nonreproducible solutions. Furthermore, algorithmic layout automation typically

concentrates on just one particular design step (e.g., placement or routing), although—

in practice—these steps are heavily interrelated with each other.

In spite—or because—of these issues, analog EDA research continues to work

on a vast range of topics in the context of optimization algorithms. These include

(a) the consideration of different constraint types such as boundary, fixed-outline, or

symmetry-island [8] constraints, (b) topological floorplan representations like SKB-

trees [9], (c) performance improvements as in [10], (d) the simultaneous execution
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Fig. 4 PCell instance and implicitly considered placement and routing constraints

of different design tasks [11], and (e) constraint propagation [12]. Please note that

the given references are not comprehensive, but merely representative. Approaches

beyond the canonical form of Fig. 3a will be covered in Sect. 3.3.

3.2 Procedural Generators (Parameterized Cells, PCells)

The predominantly manual design style in practice employs an entirely different

kind of automation at the lowest design levels: procedural generators, also called

Parameterized Cells (PCells). A PCell is an instantiable library component: instan-

tiated in a design, it takes a set of parameter values and follows a predefined,

successive sequence of commands to produce a customized layout result inside.

Primarily, PCells automate the layout creation of primitive devices (e.g., transis-

tors), but recently, industrial flows can be observed to pursue an advancement of

PCells towards more powerful hierarchical modules which generate entire analog

basic circuits (e.g., current mirrors). For such circuits, feasible layout variants are

often already known from practical experience, and PCells simply represent instru-

ments that embody this invaluable expert knowledge as layout generators. For exam-

ple, Fig. 4 shows a “Quad” PCell instance that creates a differential pair layout for

two transistors A and B, split into a cross-coupled AB/BA array.

In academia, PCells have been of little interest as they merely replicate a human

expert’s best practice: they generate a layout result, but the actual solution was pre-

conceived by the design expert who implemented the PCell (Fig. 3b). However, this

trait gives module PCells the advantageous ability to consider design constraints

implicitly, i.e., without the need to formalize them. For example, as pointed out in

Fig. 4, the Quad module innately takes care of all requirements crucial to achieve a

high matching, without having been explicitly told to do so.

In contrast to the weaknesses of optimization algorithms mentioned before, PCells

elude the need for abstract models and formal floorplan representations, work fast

and deterministic, and can naturally do both placement and routing (as in Fig. 4).

These assets are based on the fact that every PCell targets one specific type of device

(or module), but the immanent downside is the effort required to implement a PCell
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for each desired type, and the inability to consider constraints explicitly. Due to this

tradeoff, the use of PCells in industrial environments has not yet shown to be prof-

itable enough above the level of analog basic circuits.

Amongst other topics, PCell-related work deals with (a) implementing higher-

level layout modules as in [13], (b) developing advanced tools for PCell program-

ming [14], (c) circuit PCells [15], and (d) auxiliary concepts such as hierarchical

parameter value editing [16]. Again, the given references are only representative.

3.3 Other Approaches

After 30 years of EDA, research on layout automation still keeps a strong focus

on the single-candidate style of optimization in Fig. 3a. However, population-based

approaches using a pool of candidate solutions have also been applied, including

genetic algorithms (e.g., for floorplan area optimization in [10]) and methods of

swarm intelligence (such as the hybrid ant colony and particle swarm optimization

algorithm in [17]). Still, existing approaches are not as sophisticated as optimization

techniques found for example in computer science, e.g., the combination of multi-

objective evolutionary learning and fuzzy modeling in [18] and the random forest

based model of [19]. Compared to layout automation, a much richer spectrum of

optimization techniques has been used for circuit sizing [20]. Fuzzy logic, despite

gaining popularity in various types of applications (e.g., for the tuning of servo sys-

tems in [21]), has been of almost no interest for IC layout design so far, with just

very few exceptions such as the placement approach [22].

One might argue, that many layout automation tools incorporate both algorith-

mic and procedural aspects (in the sense of approaches described in Sect. 3.1 and

Sect. 3.2, respectively). That is right, but on closer examination, such tools always

reveal a clear emphasis on one of the two automation strategies and the respective

form of constraint consideration, which is either explicit or implicit. The same is

true for template-based approaches such as [23] that extract implicit design knowl-

edge from existing layout designs. Although this looks like a hybrid approach, the

design knowledge is in fact turned into a formal representation and processed by a

conventional optimization algorithm in a purely explicit fashion.

It can be said, that there is no layout automation approach which facilitates a

balanced consideration of both explicit and implicit constraints, although today’s

manual design style suggests that both forms are indispensable to cope with the More
than Moore design complexity in the analog domain. This is exactly where the multi-

agent approach of SWARM is supposed to make a difference. Here, it should be

noticed, that SWARM is not a method of swarm intelligence (in the algorithmic

sense), for it does not employ a pool of candidate solutions. Instead, every agent

in SWARM is a layout module and—as such—a part of the solution. This should

become clear from the discussion of SWARM that follows in Sect. 4.
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4 The Multi-agent System of SWARM

Although layout algorithms (again, referring to the prevalent, canonical form of opti-

mization from Sect. 3.1) and procedural generators (as covered in Sect. 3.2) follow

entirely different EDA strategies, both share a common drawback: to work in a totally

centralized fashion. Either the algorithm must solve the entire design problem, or the

solution must be completely preconceived by the design expert who develops the

generator. SWARM addresses this problem by implementing a multi-agent system

in which module PCells for analog basic circuits interact with each other to consti-

tute an overall layout block in a flow of self-organization. This decentralization not

only breaks down the complexity of the design problem, but allows low-level design

constraints to be implicitly considered by each PCell, while high-level constraints

can be explicitly considered during the interaction.

After referring some relevant agent-related works in the next subsection, the

remaining subsections first give an overview of the SWARM system and its flow of

PCell interaction, and then delve into some detailed features. Although the approach

cannot be covered in its entirety here, the subsequent discussion should illustrate that

SWARM is a relatively elaborate multi-agent system—mainly due to the following

aspects: the interaction territory continually changes throughout the flow (Sect. 4.2),

the agents don’t obey a simple payoff function (Sect. 4.3), and the agents’ potential

actions always depend on their current situation (Sect. 4.4). Some notes on the design

and application of SWARM are also given (Sect. 4.5).

4.1 Related Work

The SWARM approach is encouraged by the observation that multi-agent systems

can outperform classical approaches in handling complexity [24]. For the design of

such systems, principles of self-organization (like the edge of chaos [25]) can be

accounted for to obtain operating points that are both stable and dynamic enough to

effectively stir up emergent behavior. This phenomenon of emergence [26], which

can be observed in many natural processes (e.g., crystallization), but also in artificial

systems such as Conway’s cellular automaton Game of Life [27], has become a topic

of interest in many fields of science, philosophy, and art.

SWARM’s idea of PCells that perform areal movements across a geometrical

layout plane, is closely related to Reynold’s Boids [28]. Both approaches feature

a vivid biological analogon: while Boids simulates the motion of a flock of birds,

SWARM imitates the roundup of an animal herd. As will be shown, the interaction

in SWARM is not one of direct communication, but of stigmergy [29]—the kind of

indirect coordination found among animal societies such as ant colonies. Existing

agent simulators are discarded by SWARM due to its specific purpose so instead,

the system has been conceived and implemented from the ground up.
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Fig. 5 Control flow in the multi-agent system SWARM for analog layout automation

Fig. 6 Exemplary depiction of SWARM’s PCell interaction and self-organization flow

4.2 Overview of SWARM and Its Interaction Flow

Due to conceptual limitations, PCells cannot access their design context. So, to use

PCells as agents (as in Fig. 3c), SWARM enhances their native, “introversive” pur-

pose (i.e., creating an internal layout) with an “extroversive” behavior by which a

PCell can take an action (move, rotate, or deform itself) in response to changes of its

environment. On this basis, SWARM allows a set of such responsive PCells to inter-

act with each other and arrange themselves inside a given rectilinear zone. SWARM

also implements a supervising control organ that recursively tightens the zone to

steer the interaction towards a compact layout arrangement without depriving the

PCells of the leeway needed to organize themselves. The overall flow of control in

such a so-called SWARM run is depicted in Fig. 5 and exemplarily illustrated in

Fig. 6. A more algorithmic presentation is given in [1].
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Given a set of responsive PCells, SWARM takes an initial constellation (that may

be template-based, handcrafted or randomly created) and centers the user-defined

zone Z on it. Next, the supervising control organ enlarges Z so its area is significantly

greater than the sum of the PCell areas. Then, the self-organization starts with a

round of interaction, where each PCell (subsequently called a participant) performs

an action. Multiple rounds are executed until no participant moves within one round.

If the constellation, denoted as a settlement because the participants have settled, is

viable (i.e., all participants are in a legal and satisfying position), then Z is tightened

to induce another settlement (otherwise, the SWARM run failed and is aborted). The

tightening-settlement cycle continues until Z reaches the user-defined size. The last

settlement ends the SWARM run and represents the final solution. Regarding the

biological analogon of Sect. 4.1, the PCells can be thought of as sheep, with the

control organ being the shepherd.

4.3 A Participant’s Condition and Its Influencing Factors

In terms of game theory, SWARM can be considered a noncooperative, infinitely-

repeated, imperfect-information game in extensive form, with an unknown number

of stage games [30]. In each stage game (here: a round of interaction), every par-

ticipant acts in a self-interested, utility-theoretic way to improve its personal situa-

tion (here: the participant’s condition). But unlike typical utility functions that map

an agent’s preferences to a real number, SWARM implements a more sophisticated

decision model composed of several influencing factors which affect a participant’s

condition and thus stimulate its actions, as illustrated in Fig. 7.

The currently implemented influencing factors largely rely on the fact that all

participating PCells are geometric objects with a rectangular bounding box and thus

have an area, in contrast to dot-like particles found in some other systems. A partic-

ipant P is forced to take an action if it suffers at least one of the following factors:

Fig. 7 A participant (PCell agent) is influenced by five factors with several subfactors
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protrusion (overhang beyond the zone boundary), noncompliance (violation of con-

straints), or wounds (regions on P which repeatedly overlapped with other partici-

pants in previous rounds of interaction). Further factors, which can (depending on

their magnitude) provoke an action, are interference and turmoil.
Interference is a sum of troubles, each of which is caused by an overlap of P with

another participant P∗
. As detailed in Fig. 7, each trouble again involves several sub-

factors. One of these is the aversion of P towards P∗
. Like wounds, aversions are

inflicted (or aggravated) by overlaps and can be seen as concepts of memory. Aver-

sion has a long-term effect that hinders a perpetual interference of two participants,

while a wound has an immediate impact and is more effective for preventing mar-

ginal interferences. Both are essential aspects of the decision model and a careful

balance of these is crucial for a fluent progress of interaction.

Turmoil is a concept relevant if participants should move close to each other

because they need to be electrically connected afterwards, thus minimizing the total

wirelength. Turmoil is a sum of tensions, with each tension penalizing the distance

between the acting participant P and another one to which it is directly connected.

Like trouble, tension involves multiple subfactors as Fig. 7 points out. For some

tasks, turmoil is essential (e.g., for the floorplanning task in Fig. 10), but for oth-

ers it may be ignored (as in the place-and-route problem of Fig. 11).

4.4 How a Participant Determines and Performs an Action

Many classes of problems, to which multi-agent systems have been applied, involve

agents whose possible actions are simply given as a predefined, discrete, limited set

of alternative options, from which the agent has to choose one. In SWARM, the

situation is more complicated because the participants can freely move across a con-

tinuous layout plane. So, to take an action, a participant must first determine its set

of possible actions depending on the current constellation. A participant’s decision-

making always follows a common action scheme which consists of the following four

measures: (1) assessing the participant’s condition, (2) perceiving its so-called free
peripheral space, (3) exploring and evaluating all possible actions, and (4) executing

the preferred action (or staying idle). Each of these measures, exemplarily illustrated

in Fig. 8, will be subsequently described.

Fig. 8 A participant’s actions follow an action scheme consisting of four measures
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Considering a constellation of six participants as in Fig. 8 (1), assume that it is

participant P’s turn to take an action. Following the action scheme, P begins by

assessing its condition. While P is not in a state of protrusion nor noncompliance
here, P detects interference with another participant. For that reason, P is said to be

discontented and strives for an action that improves its condition.

To do so, P perceives the vacant area around it, since most of a participant’s

possible actions are based on this so-called free peripheral space SFP. As shown

in Fig. 8 (2), SWARM determines SFP as a rectangle obtained by extending each

of P’s four edges in its respective direction until another participant—or the zone

boundary—is encountered. Surely, other definitions of SFP are also conceivable.

Next, as indicated in Fig. 8 (3), P explores all actions available in the current sit-

uation. Although a participant could implement its own actions, SWARM provides

nine different elementary actions that are automatically explored (see [1]). Six of

these actions (called centering, budging, evasion, yielding, re-entering, and linger-
ing) only affect the acting participant itself (or none at all), while three actions (called

pairing, swapping, hustling) also involve other participants. For the latter class of

actions, only translational moves are considered. Otherwise, rotations and deforma-

tions are also explored. In this context, deformation means to assume another layout

variant with equal electrical behavior (such as in Fig. 2).

The actions are evaluated so the one which improves P’s condition the most can

be chosen and executed. In Fig. 8 (4), the executed action is even synergistic: P trades

places with another participant and both get rid of their interference.

4.5 Final Remarks About the Design and Application
of SWARM

The participants’ desire to improve their condition and the repeated layout zone tight-

enings are the driving forces behind SWARM’s self-organization. It should again be

emphasized that the participants act in a utilitaristic way and that each tightening rep-

resents just a stigmergic change of their environment. So, the inherent optimization

of the overall layout solution is not incited directly (like with a global cost func-

tion, as is typical for EDA algorithms), and is thus not actively pursued via collab-
orative agents but emerges from their competitive interaction. This effect can also

be observed in nature, where animals within a population seek cover behind other

conspecifics to not get caught: such behavior inevitably leads to aggregations with

reduced predation risk (see selfish herd theory [31]). To yield suchlike emergent

behavior, SWARM requires a well-balanced taring.

One the one hand, there is the basic SWARM system itself (the overall flow, the

model of influencing factors, the action scheme, the elementary actions, etc.). It has

been developed in cooperation with layout experts from the industry, but also reflects

several principles of self-organization such as the edge of chaos [25] (addressed with

wounds and aversion), Ashby’s law of requisite variety [32] (i.e., exploiting a PCell’s
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layout variants during the interaction), and the reduction of friction [24] (by inducing

synergistic moves as in Fig. 8 (4)). That basic system is supposed to be generally

feasible, independent of the particular layout problem.

On the other hand, the system involves numerous actuating variables which allow

a layout designer to fine-tune SWARM when applying it to a specific problem.

These variables, described in detail in [1], mostly pertain to the influencing factors

(Fig. 7) and the zone tightening. They can thus be used to adjust the participants’

decision-making (between tentative and vivid) and to set an adequate tightening pol-

icy (between relaxed and aggressive). A more sensitive approach would be to make

the tightening—and also the participants’ behavior—adaptive so it changes during

the interaction. Going one step further, this might even be achieved using an overlay

network of synchronized agents as presented in [33].

Such advanced techniques, as well as the dependence of the self-organization on

the actuating variables, on the initial module constellation, and on the order in which

the participants act, are subject to further investigation. Another idea not exam-

ined so far is to equip the participants with different attitudes (between dominant

and subordinate). In these regards, SWARM provides many opportunities for future

enhancements. Still, remarkable results can already be achieved with the current

implementation of SWARM, as will be demonstrated in Sect. 5.

5 Implementation and Examples

With the exclusive aim of layout automation, targeting the IC design framework

Cadence Virtuoso®
, SWARM has been implemented from scratch in Virtuoso’s own

script language SKILL, using PCell Designer [16] for developing the PCells.

Figure 9 has a theoretic example with eight participants (PCell agents) inside a

rectangular zone (a) disregarding PCell connections. The PCells are just symbolic

(i.e., they contain no real layout) and perform only translational movements (b),

(c). The final constellation (d) demonstrates, that—without having knowledge of

the overall placement problem—the agents are, in principle, able to find even the

optimal solution (from which this example was initially constructed from).

(a) (b) (c) (d)

Fig. 9 Example of applying SWARM to a hypothetical analog layout design problem. a Initial

SWARM constellation. b Intermediate constellation. c Intermediate constellation. d Final constel-

lation
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(a) (b) (c)

Fig. 10 Example of applying SWARM to a practical IC layout floorplanning problem. a Section

of an IC to be floorplanned. b Initial SWARM Constellation. c Final constellation

Figure 10 uses SWARM for floorplanning a mixed-signal chip section (a) with

digital and analog blocks. Each block is realized as a simple “hull” PCell, leav-

ing the internal layout to subsequent layout steps. As indicated in Table 1 (a), the

aspect ratios of such blocks may cover full variability (not discrete variants as in

Fig. 2) and furthermore, the layout zone can be rectilinear (not just rectangular).

SWARM supports both, and also takes block distances into account here. In the ini-

tial constellation (b), 19 out of 30 connections violate a maximum-length constraint

(see patterned lines). In the compact arrangement of SWARM’s final constellation

(c), these constraints are all satisfied (solid lines) and all blocks lie inside the given

layout zone. In floorplanning, the final routing of the blocks is usually done in layers

above them, so no space has to be reserved between them.

The ‘dead’ space and runtime (quantitative criteria that stem from digital design

automation) are comparable to other works, but more importantly, SWARM sur-

passes existing approaches in a qualitative way, reflecting the notion of quantita-

tive and qualitative complexity in the digital and analog IC domain (Sect. 2): to our

knowledge, SWARM is the first floorplanner that (1) minimizes both area and wire-

length, (2) supports nonslicing floorplan structures, (3) allows for fully variable block

dimensions, (4) pays respect to a user-definable rectilinear outline, and (5) works

completely deterministic because no randomization is involved.

The primary purpose of SWARM is placement and routing (Table 1 (b), (c)).

As an example, Fig. 11a shows the schematic of an amplifier circuit found in high-

precision automotive IC designs. It consists of several analog basic circuit modules

for which a desired arrangement (b) is defined via constraints to even out parasitic

effects with overall layout symmetry. The final layouts show SWARM’s results for

a square zone (c) and for a 4:1 boundary (d). By allocating additional space around

every participating module during interaction, electrical wires are created between

the participants via a subsequent PCell-based routing step [34].

For the differential pair (1), the layout is created by the “Quad” PCell known from

Fig. 4. Modules (2)–(5) are different types of current mirrors, each of which is also

covered by a respective (and responsive) PCell agent. In fact, the flow is closer to that

in manual design: first, the circuit’s primitive devices are instantiated in the layout,

and then the PCell agents are imposed on them as so-called governing modules which

manage the devices by placing and routing them [1].
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(a)

(d)

(b) (c)

Fig. 11 Example of applying SWARM to a practical place-and-route layout problem

Table 2 Comparison of SWARM with algorithmic and procedural layout automation

Algorithmic (Optimizer) Procedural

(Generator)

The SWARM approach

(Multi-agent system)

Layout

solution

Found by the engine Preconceived by

human expert

Emerges from Interaction of

PCell Modules (= Agents)

Constraint

considera-

tion

Explicit (formalized) Implicit

(nonformalized)

Explicit and implicit

(formalized and nonformalized)

Paradigm “Top-down” “Bottom-up” “Bottom-up Meets Top-down”

This example displays SWARM’s qualitative asset: while existing approaches are

bound to either an explicit or implicit consideration of constraints, SWARM supports

both. So, high-level requirements, such as the zone boundary and desired arrange-

ment are explicitly enforced during interaction. Also, in this example the Quad mod-

ule (1) is explicitly prevented from changing its AB/BA layout into a single-row vari-

ant. Furthermore, the Blocking Cap obeys a following move to mimic the actions of

current mirror (2) and thus obtain overall layout symmetry. Simultaneously, each

PCell module implicitly takes care of all detailed low-level matching restrictions and

objectives, such as those listed in Fig. 4 for the Quad.

Besides all of these technical merits, Table 2 evaluates SWARM from a more

strategic point of view. While algorithmic and procedural layout automatisms (in

the sense of Sects. 3.1 and 3.2) follow different paradigms referred to as top-down
and bottom-up automation [4], SWARM can be regarded as a combination of the

two. And in the long run, such bottom-up meets top-down approaches may be one

essential key to finally close the automation gap in analog layout design.
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6 Summary and Outlook

The novel layout automation approach SWARM implements a multi-agent system

where autonomous module PCells interact with each other to attain compact arrange-

ments inside a recursively tightened layout zone. In contrast to optimization algo-

rithms and procedural generators, the decentralized decision-making in SWARM

allows it to consider design constraints both explicitly and implicitly.

Our approach is currently being implemented and tested in an industrial IC design

environment, and early assessments indicate that SWARM is much closer to a human

expert’s manual design style than existing automation strategies. As shown in sev-

eral given examples, remarkable layout results can emerge from the aggregate PCell

interaction by inducing a synergistic flow of self-organization.

The presented results have been achieved with the very first implementation of

SWARM. So, considering that the approach is still in its infancy, there is enor-

mous potential for further developments. Future work on SWARM includes (a) the

realization of multiple concurrent control organs, (b) adaptive control policies,

(c) hierarchically nested interaction flows, (d) modules with learning aptitude, (e)

improvements of convergence and robustness, (f) parallelization of module activity

via multi-threading, and even (g) real-time human intervention.
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