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Abstract

There has been great progress in the management and patient outcome in
multiple myeloma due to the use of novel agents including immunomodulatory
drugs and proteasome inhibitors; nonetheless, novel agents remain an urgent
need. The three promising Achilles heals or vulnerabilities to be targetted in
novel therapies include: protein degradation by the ubiquitin proteasome or
aggresome pathways; restoring autologous antimyeloma immunity; and target-
ing aberrant biology resulting from constitutive and ongoing DNA damage in
tumour cells. Scientifically based therapies targeting these vulnerabilities used
early in the disease course, ie smouldering multiple myeloma, have the potential
to significantly alter the natural history and transform myeloma into a chronic
and potentially curable disease.

Keywords
Multiple myeloma - Targetted therapies . Immune therapies - Protein
degradation

1 Introduction

Advances in biology, genomics, epigenetics, and immunity have transformed our
understanding of the etiology and pathogenesis of multiple myeloma, allowing for
delineation of those mechanisms both intrinsic to the tumor cell and in the host
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whereby monoclonal gammopathy of undetermined significance progresses to
smoldering multiple myeloma and to active myeloma. Within myeloma, an
unprecedented level of genetic heterogeneity and genomic instability has been
defined, as well as clonal evolution underlying progression of disease [6, 33, 36].
The parallel development of in vitro and in vivo models of myeloma in its bone
marrow milieu has facilitated the identification of mechanisms mediating myeloma
cell homing to the bone marrow, growth, survival, and drug resistance, as well as
egress to extramedullary sites [26, 28]. Taken together, these advances have
allowed for the identification and targeting of Achilles heals or vulnerabilities in
myeloma, directly leading to a transformation in therapeutic efficacy and patient
outcome [4, 5, 12]. In the future, we will treat earlier in the disease course, at a time
when patients are asymptomatic, to prevent the development of active disease using
well-tolerated drug combination therapies targeting these Achilles heals. Myeloma
will then be transformed to a chronic illness and ultimate cure.

2 Excess Protein Production

The first example of an Achilles heal in myeloma is due to their synthesis of excess
monoclonal protein, which can either be degraded via the proteasomal or aggre-
somal cascade or secreted [25]. The development of the proteasome inhibitor
Bortezomib demonstrated that primarily targeting the constitutive chymotryptic
activity could achieve clinical responses in relapsed refractory myeloma, and it is
now a standard component of initial and maintenance treatments. Furthermore,
delineation of its mechanism of action has shown that it targets the tumor cell,
tumor-host interaction, as well as bone marrow milieu and accessory cells [24].
Importantly, preclinical studies have informed the rational use of combination
therapies, such as bortezomib with lenalidomide to trigger both intrinsic and
extrinsic apoptotic signaling [38].

Bortezomib has already provided the framework for the development of second
generation proteasome inhibitors carfilzomib [45, 46, 49], ixazomib [10, 30, 39], and
marizomib [7, 9, 15], and also led to ongoing current efforts to target the ubiquitin
proteasome cascade upstream of the proteasome with inhibitors of deubiquitylating
enzymes [11, 48] or of the proteasome ubiquitin receptor to overcome proteasome
inhibitor resistance. These preclinical and clinical studies have validated targeting
the ubiquitin proteasome cascade for therapeutic application in myeloma.

When the proteasomal degradation pathway is inhibited, there is a compensatory
upregulation of the aggresomal degradation pathway [25]. The latter can be blocked
by either pan histone deacetylase inhibitors [17, 43] or by histone deacetylase six
selective inhibitors [44], since the ubiquitinated misfolded protein binds to histone
deacetylase 6, which in turn binds to the dynein tubulin carrier complex, thereby
shuttling the protein load to the aggresome for its degradation. Already broad class
I/IT histone deacetylase inhibitors vorinostat [17] and panobinostat [43] have been
combined with bortezomib to block the aggresomal and proteasomal degradation of
protein, respectively. While the response rates and progression free survival are



Vision Statement for Multiple Myeloma: Future Directions 17

prolonged with combination therapy, side effects of the broad acting histone
deacetylase inhibitors preclude their use for long-term benefit. Ricolinostat is a
histone deacetylase 6 selective inhibitor with a more favorable tolerability profile
[44] and therefore can be readily combined with proteasome inhibitors to allow for
long-term blockade of both aggresomal and proteasomal degradation pathways.

3 The Host Immunosuppressive Environment

A second Achilles heal in myeloma is the immunosuppressive environment in the
host. In this case, targeting the vulnerability consists of strategies to restore host
anti-myeloma immunity. There are five strategies, which when combined will
markedly improve patient outcome: immunomodulatory drugs, monoclonal anti-
bodies, checkpoint inhibitors, vaccines, and cellular therapies.

Lenalidomide and other immunomodulatory drugs target cereblon [29, 35] and
trigger the degradation of alios and ikaros gene products, thereby upregulating
transcription of interleukin 2 and interferon gamma genes [18]. They upregulate
cytolytic T cell, natural killer cell, and natural killer cell-T cell anti-MM immunity,
while at the same time inhibiting aberrant increased regulatory T cell function in
myeloma [20, 23]. Lenalidomide is now incorporated into initial, salvage, and
maintenance therapies worldwide.

The search for therapeutic monoclonal antibodies in myeloma has been ongoing
for decades, and is now coming to fruition. For example, elotuzumab targets
SLAMEF-7 on the multiple myeloma surface, mediating complement dependent and
antibody dependent cellular cytotoxicity [47]. This antibody also targets natural
killer cells and enhances their activity. Although single agent clinical trials of
elotuzumab saturated SLAMF-7 sites on tumor cells, only stable disease and no
clinical responses were observed. Importantly, preclinical studies showed that
lenalidomide augments antibody dependent cellular cytotoxicity [47], and combi-
nation lenalidomide elotuzumab therapy of relapsed myeloma has markedly pro-
longed progression free survival in patients with relapsed myeloma [34, 40],
providing the basis for its regulatory approval.

The second antibody example is anti-CD38 monoclonal antibodies daratu-
mumab [16, 31] and SAR650984 [27]. CD38 was originally described as T 10
antigen expressed on activated T, B, natural killer, myeloid, and monocytoid cells,
as well as endothelial cells and hematopoietic progenitor cells. Due to its broad
expression, it was not developed therapeutically based on fears that there may not
be an acceptable therapeutic window or index. Remarkably, anti-CD38 monoclonal
antibody daratumumab achieves responses as a single agent in relapsed refractory
myeloma; and as with elotuzumab, the combination of daratumumab with
lenalidomide markedly augments clinical response.

Checkpoint inhibitors are the third immune targeted treatment approach in
myeloma. Myeloma cells express PD-L1, as do plasmacytoid dendritic cells [8, 37]
and myeloid-derived suppressor cells [21, 22] which both promote myeloma cell
growth and drug resistance as well as downregulate host immune response. T,
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natural killer, and natural killer-T cells in myeloma express PD-1. Checkpoint
blockade with anti-PD-L1 monoclonal antibody may therefore have broader effects
than anti-PD-1 monoclonal antibody. Recent preclinical data shows that lenalido-
mide downregulates PD-L1 on myeloma cells, plasmacytoid dendritic cells, and
myeloid derived suppressor cells; as well as downregulates PD-1 expression on
immune effector T, natural killer, and T-natural killer cells [22]. Importantly, the
combination of checkpoint inhibitors and lenalidomide markedly augments cyto-
Iytic response, another example of combination immune therapies.

The fourth example of immune therapies is vaccines. In myeloma two examples
are peptide-based vaccines being evaluated to prevent progression of patients with
smoldering multiple myeloma to active myeloma [1-3]; and myeloma-dendritic
cell-based vaccines now in clinical trials to treat minimal residual disease post
autologous stem cell transplant and improve patient outcome [41, 42]. In both
cases, vaccines have achieved immune responses in patients against their own
myeloma cells. The addition of lenalidomide in preclinical studies can augment this
response [22], and the combination of vaccine with lenalidomide strategy is cur-
rently under evaluation in both settings. Moreover, checkpoint inhibitor therapy can
similarly augment response to vaccination [3], setting the stage for combination
vaccine, lenalidomide, and checkpoint inhibitor clinical trials, with the goal of
achieving central and effector memory cell autologous anti-myeloma immunity.

Finally, adoptive cellular therapies represent a fifth immune strategy, exempli-
fied by CART cells. The strategy of genetically activating host T cells to target
tumor specific antigens, expanding them ex vivo, and transfusing them back to the
patient has already achieved remarkable responses in leukemias and lymphomas. In
myeloma, the optimal antigens are not defined; BCMA, SLAMF-7, and CD19 are
among those under evaluation. A single patient with high-risk relapsed myeloma
refractory to all known therapies has recently achieved a molecular complete
response after CD19 CART therapy [19]. As a further example of combination
therapy, she is receiving lenalidomide to prevent T cell exhaustion.

Thus the second Achilles heal in patients with myeloma is immunosuppression,
which can be overcome by these and other related strategies. The ability in par-
ticular to achieve memory cell immunity in patients against their own myeloma is
very promising, given the ability of host immunity to potently, selectively, and
adaptively target ongoing genomic evolution underlying myeloma progression.

4 Genomic Abnormalities

The third Achilles heal in myeloma is predicated upon genomic analyses [6, 32, 33,
36]. To date, profiling of myeloma genomics and epigenomics has revealed a very
heterogeneous and complex baseline status, with many abnormalities and multiple
clones even at diagnosis. Moreover, further genomic and epigenomic changes and
clonal evolution underlie relapse of disease. Ongoing attempts are targeting
abnormalities with targeted single or combination agents; however, the lack of
predominant abnormalities in myeloma, coupled with the genomic instability and
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evolution, represents a major obstacle to these approaches. However, genomic and
epigenomic patient profiling analyses can identify those critical pathways which can
then be targeted to abrogate aberrant biology.

The first example stems from our recent genomic study showing that a subset of
patients with myeloma, leukemia, and lymphoma has decreased copy number and
expression of YAP-1 [13]. In myeloma cells with constitutive genomic instability
and DNA damage, a DNA damage response is initiated in which ABL-1 binds to
nuclear YAP-1, thereby triggering p73-mediated apoptosis of damaged cells in a
p53-independent process. Restoration of YAP-1 in vitro or in vivo can restore this
apoptotic signaling and response. Importantly, YAP-1 expression is inhibited in
these tumor cells by increased expression of STK4; and conversely, genetic
depletion of STK4 can upregulate YAP-1 and related p73-mediated apoptosis.
Efforts are ongoing at present to develop therapeutic STK4 inhibitors to treat this
subset of patients.

A second example of a genomically-based Achilles heal is in those patient
whose myeloma expresses very high levels of c-Myc [14]. In this patient subset,
there are two processes that represent vulnerabilities to be targeted. First, there is a
DNA damage response ongoing which can be targeted, i.e., with ATR inhibitors.
Second, there is an abundance of reactive oxygen species, which can be further
increased pharmacologically. We have shown that either inhibiting ATR or aug-
menting reactive oxygen species can trigger apoptosis in this subset of myeloma,
and that the combination induces synergistic cytotoxicity.

These examples therefore utilize genomic studies to define critical pathways for
therapeutic targeting.

5 Summary and Future Directions

There has been a paradigm shift in the treatment and outcome of myeloma based
upon improved understanding of the biology of the myeloma cell in the host bone
marrow microenvironment. Already increasing genomic and epigenomic under-
standing in myeloma has identified Achilles heals to target therapeutically.
Importantly, multiple strategies for restoring host anti-myeloma immunity represent
overcoming an additional Achilles heal in the host. Ultimately, combination tar-
geted and immune therapies used early in the disease course offer the real potential
for long-term disease-free survival and cure.
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