Sesqui-Pushout Rewriting
with Type Refinements

Michael Lowe®)

FHDW Hannover, Freundallee 15, 30173 Hannover, Germany
michael.loewe@fhdw.de

Abstract. Sesqui-pushout rewriting is an algebraic graph transforma-
tion approach that provides mechanisms for vertex cloning. If a vertex
gets cloned, the original and the copy obtain the same context, i.e. all
incoming and outgoing edges of the original are copied as well. This
behaviour is not satisfactory in practical examples which require more
control over the context cloning process. In this paper, we provide such
a control mechanism by allowing each transformation rule to refine the
underlying type graph. We discuss the relation to the existing approaches
to controlled sesqui-pushout vertex cloning, elaborate a basic theoretical
framework, and demonstrate its applicability by a practical example.

1 Introduction

Sesqui-pushout graph transformation (SqPO) [2] is a relatively new variant in the
family of algebraic graph rewriting frameworks. It extends the double-pushout
(DPO) [4,5] and the single-pushout approach (SPO) [6,8] by mechanisms for
object cloning including the complete context of the object, which are all incom-
ing and outgoing edges in the case of graphs. Many practical examples, how-
ever, require more control over the cloning process. In many cases, only edges
of specific types shall be cloned. In this paper, we propose a new mechanism
for controlled object cloning by allowing each rule to refine the underlying type
graph in a way that is suitable for the cloning performed by the rule.

The paper is organised as follows: Sect. 2 recapitulates sesqui-pushout rewrit-
ing in a categorical set-up and presents major results that shall be valid in any
extension. The example in Sect. 3 motivates the mechanisms that are introduced
in Sect. 4. Section 5 formulates a categorical framework for the new approach and
shows that many results known from the standard approach carry over. Finally,
Sect. 6 discusses related work and future research.

2 Standard SqPO-Rewriting

In this section, we present sesqui-pushout rewriting in a categorical set-up. We
require that the underlying category C satisfies the following conditions:

C1 C has all finite limits and co-limits.

© Springer International Publishing Switzerland 2016
R. Echahed and M. Minas (Eds.): ICGT 2016, LNCS 9761, pp. 21-36, 2016.
DOI: 10.1007/978-3-319-40530-8 2

22 M. Lowe

A
— I\
c— [
—\X h B
o ~ B
Q¢—a— P g D+ J
A R
1 1 P N
S ¢+—i— R c g
e N N
zJY h\ k,/B
D

Fig. 1. Final pullback complement and commutative cube property

C2 Every pair (a: P — Q,b: Q — S) of morphisms with monic b has a final
pullback complement.

C3 Pushouts along monomorphisms are van-Kampen: In a commutative cube
as in Fig. 1, where ¢’ is monic, (', k') is pushout of (f’,¢’), and (g,a) and
(f,a) are pullbacks of (¢',b) and (f’,d) resp., we have: (h,d) and (k,b) are
pullbacks of (h/,c) and (¥, ¢) resp., if and only if (h, k) is pushout of (f,g).

A pair (¢ : P — R,d: R — 95) as in the left part of Fig.1 is final pullback
complement (FPC) of the pair (a : P — Q,b: Q — 5), if (a,c¢) is pullback of
(b,d) and for each collection of morphisms (z,y, z,w), where (z,y) is pullback
of (b,2) and a o w = z, there is a unique w* with dow* = z and cow = w* o y.
Note the following special cases of final pullback complement situations:

F1 For every morphism f: P — @, (idp, f) is FPC of (f,idg) and vice versa.

F2 In a commutative cube as in the right part Fig. 1, where (b, k') is FPC of
(k,c), (f,g) is pullback of (k, h), and (d, h) is pullback of (¢, h’) the following
compatibility condition between pullbacks and final pullback complements
holds: (a, f') is FPC of (f,d), if and only if (f’, ¢’) is pullback of (k’, h’).!

Final pullback complements possess the following composition and decomposi-
tion properties (for proofs compare [11]):

F3 Horizontal composition and decomposition: Let cok = k' ob and bog = ¢g’'oa
in the right part of Fig.1 and let (b, k") be FPC of (k,¢): (a,g’) is FPC of
(g,b), if and only if (a,k’ o g') is FPC of (ko g,).

F4 Vertical composition: If (g,b) and (k, ¢) are FPCs of (a, ¢’) and (b, k') respec-
tively in the right part of Fig. 1, then (ko g,c¢) is FPC of (a, k" o ¢').

Condition C3 guarantees:?

F5 Pushouts in C preserve monomorphisms.

! For a proof of the if-part see [9].
2 Compare [4,7].

Sesqui-Pushout Rewriting with Type Refinements 23

F6 Pushouts along monomorphisms are pullbacks.

For a compact notion of sesqui-pushout rewriting, we pass over from C to the
span category C of C. A concrete span is a pair of C-morphisms (p : K —
P,q: K — Q). Two spans (p1, q1), (p2,g2) are equivalent, if there is isomorphism
¢ with p; 04 = py and q; 0@ = ¢o; [(p, ¢)]= denotes the class of spans equivalent
to (p,q). The category of abstract spans C—— has the same objects as C and
equivalence classes of spans as morphisms. The identity for an object A € C—
is defined by id§ = [(ida,ida)]=. And composition of [(p,q)]= and [(r,s)]
such that codomain(q) = codomain(r) is given by [(r,s)]= cc—— [(p,q)]

[(poc1’,s0cq)]—= where (r',q") is a pullback of (¢,r). A span composition is
strong, written [(r, s)]_ o [(p, ¢)]—, if (¢, r) is final pullback complement of (', q).
Note that there is the natural and faithful embedding functor ¢ : C — C——
defined by identity on objects and (f: A — B) — [idya : A — A, f : A — B]
on morphisms. In the following, the composition of a span (p,q) € C~ with
a morphism m € mathcalC, i.e. (p,q) om (or mo (p,q)), is the span defined
by (p,q) o t(m) (resp. t(m) o (p,q)). By a slight abuse of notation, we write
[d: A — A f: A — B|] € Cifdis an isomorphism. Direct derivations in
sesqui-pushout rewriting are special strong compositions of spans.

Definition 1 (Standard Rule and Derivation). A rewrite rule p is a mor-
phism in C~ 7, i.e. p = (I: K — L, r: K — R). A match for p is a monic
C-morphism m : L ~— G. The direct derivation with p at match m is constructed
i two steps, compare Fig. 2:

1. (m{(l),l1(m)) is final pullback complement of (I,m).
2. (m(p),r{(m)) is pushout of (m(l),r).

In a direct derivation, G is the source, pQm is the target, the span p(m) =
(L{m),r (m)) is called the trace, and m (p) is also referred to as co-match.

Remarks. A derivation is determined up to isomorphism by the match. This
is due to the fact that FPCs and pushouts are unique up to isomorphism. Since
pullbacks preserve monomorphisms, m (l) is a monomorphism and Fact F5 pro-
vides monic m (p). Due to Condition C2, rules are applicable at every match. The
direct derivation in Fig.2 constitutes a special commutative diagram in C~ 7,
i.e. m (p) @ p = p(m) e m, with pullback (I,m (I)) of (I {(m),m).

Since traces are morphisms in C~ 7, they can be used as rules and, by Fact
F4 and the composition property of pushouts, we immediately obtain:

L L K - R
mI (1) Im(l) (2) Im(p)
G = K(m) v p@Qm,

Fig. 2. Direct transformation

24 M. Lowe

Proposition 2 (Standard Derived Rule). If p (m) is the trace of a deriva-
tion with rule p at match m and n is match for p(m), then (p(m))(n) =

p(nom) and (nom)(p) = n(p(m)) om(p).

Since rules are spans, they can be composed and decomposed. Condition C3
guarantees that rule composition and decomposition carries over to derivations.

Proposition 3 (Composition of Standard Derivations). If m is a match
forp"op, (p op)(m) =p'(m(p))op(m) and m (p"op) =m(p) (p').

The proposition is a direct consequence of Theorem 7 in [11]. Together with
Proposition 2, it provides the fundaments for a rich theory.?

3 Example: Version Management

As an example that demonstrates the power of SqPO-rewriting, we present a
model for version management of decomposed components. It uses the category
G of graphs and graph morphisms or, more precisely, the slice category G | T of
all graphs wrt. a type graph T € G. A graph G = (V; E;s,t: E — V) has a set
V of vertices, a set F of edges, and source and target mappings s and t. A graph
morphism h : G — H is a pair (hy : Gy — Hy,hg : Gg — Hg) of mappings
with sy ohg = hy o sg and tgy o hg = hy o tg. G satisfies Conditions C1-C3.%

The left part of Fig.3 depicts the type graph for the version management
system. The right part shows a sample instance graph.® The sample contains

..components_
Component O [
edits successors

Fig. 3. Version management: model and instance

3 Compare for example [11].

4 Given arbitrary morphism a : P — Q and monomorphism b : Q ~— S, the final
pullback complement (¢: P — R,d: R — S) is constructed as follows, compare [2]:
Vertices: Ry = Py ¥ (SV — bv(Qv)), cy = idpv7 dy = bv(av(’v)) if v € Py and
dy = ids, otherwise. Edges: R contains P and an edge “copy” (v, e,v’) for every
edge e € Sg—br(Qr) and pair of vertices v,v" € Ry with ss(e) = dv(v) and ts(e) =
dy (v') with the following structure: sg(v,e,v’) = v and sg(e) = sp(e) if e € Pg,
tr(v,e,v’) = v and tr(e) = tp(e) if e € Pg, cg = idpy, and dg(v,e,v’) = e and
dE(e) = bE(aE(e)) if e € Pg.

5 The typing is indicated by the graphical symbols.

Sesqui-Pushout Rewriting with Type Refinements 25

® O & |®-=o
integrate: g/ <—@/4 —>®/

Fig. 4. Evolution of decomposed components

5 components, the components a, b and c are elementary and the components
d and e are decomposed into a and b respectively d and c. In the example,
only component ¢ has an editable version, namely c3. Decomposed components
evolve by integrating successor versions of their components. The corresponding
rule is depicted in Fig. 4.

If a new editable version x’ of a component x is created, it shall integrate
the same components as x. Here the copy mechanism of sesqui-pushout rewriting
shall be applicable. But it is not, since x’ shall only have copies of the outgo-
ing components-edges of x but neither of the incoming components-edges nor
of outgoing or incoming successor-edges. A similar problem arises, when an
editable version x’ gets ready to be published. Then it shall become successor
of the version x it has been spun off and of all predecessor versions of that x.
This means that the successor-relation shall be transitive, for example to skip
some versions in component integration, compare Fig. 4. Here, we do not need a
complete copy of x, we only need a copy of all successor-edges pointing to x.

icManager
Component () |-1--swsseseeeens 9
1 M -®
anager
edits] P! g ({43
X
successors > P yagero &

a{é b{
s I

Fig. 5. Refined version management: model and instance

Problems of this type can be tackled by using a refined type graph. The left
part of Fig. 5 shows a suitable refinement for the problems described above. The
right part of the figure shows the instance of Fig. 3 in the refined version. The
trick is that we provide internal structure to each component by two one-to-one
relations. Now, we have a port-object for every Component that handles incoming
successors-edges, namely a node the type of which is PredecessorsManager,
and a port that handles outgoing components-edges, namely a node of type

26 M. Lowe

' @ ® T
edit: & i |~ & i - o]
o ®

59 52 P
publish: ﬁ o) P ©) . ;

. ® of

X X X
4 4 4

Fig. 6. Rules for editing and publishing

ComponentsManager. Having these structures at hand, we can formulate the
rules for the creation of a new and for the publication of an existing editable
version, compare Fig. 6.5

Although this approach works quite satisfactory, there are a lot of drawbacks
of such a global type graph refinement. First of all, the model gets more complex
and many additional consistence conditions come into play, like the one-to-one
relations in Fig. 5, that have to be preserved by all rules. Thus, rules get more
complex as well, even those rules that had no need for a refinement. E.g. the
rule in Fig. 4 must be reengineered in order to conform to the refined model.

In order to tackle the problem of partial copies more adequately, we pro-
pose to stick to a simple global type graph and allow each rule to perform the
refinements which it needs locally. In such a framework, that is elaborated in
the following, a rule like integrate in Fig.4 is perfect while the edit- and the
publish-rules in Fig. 6 can use smaller more dedicated refinements. We will come
back to the example later.

4 SqPO-Rewriting with Local Type Refinement

In this section, we introduce the sesqui-pushout rewriting framework that allows
individual type refinements for every rule. Again, the set-up is purely categorical.
Besides Conditions C1-C3, we need:

C4 The underlying category C has epi-mono-factorisations.
C5 Pullbacks in C preserve epimorphisms.

By C~, we denote the arrow category over C.” And, for any given (type) object
T € C, C|T denotes the slice category of all objects under 7.8

5 Note the edit-rule copies the node labelled “6, 77 from the left- to the right-hand
side, and the publish-rule copies the node labelled “2, 3” from left to right.

" The objects of C™ are all morphisms of C and a morphism 4 from f : A — B to
g:C — Disapair (ia : A— C,ip : B — D) of C-morphism such that igof = goia.

8 C | T is the restriction of C~ to morphisms with co-domain 7. Note that every
category C in our set-up is equivalent to C | F, where F is the final object in C.

Sesqui-Pushout Rewriting with Type Refinements 27

Fig. 7. Rule

Definition 4 (Rule). Given an object T in C, a T-typed rewrite rule p =
((I:tg = tp,r:tg —tr),i:tg — tx) consists of a C | T-span (I,r) and an
epic® type refinement i € C~, compare Fig. 7.

A rule is applicable at a monic match morphism m : t;, — tg. The derivation
shall comprise 3 phases, namely (1) the refinement of the rule and the match to
the type T”, (2) the SqPO-rewriting with the refined rule at the refined match,
and (3) the abstraction of the derivation back to type T

Definition 5 (Derivation). The direct derivation with a rewrite rule p =
(litg = tr,r:tx > tr,i:tg — tg) at a monic match morphism m : ty, —
tg consists of the trace p(m) = (l (m) st my — ta, (M) tgmy — tp@m) and
the co-match m (p) : tg — tpam in C | T together with an epic type refinement
i{m): t’K,<m,> — L (m) which are constructed as follows, compare Fig. 8:

1. Refinement: Let (ir,t},) and (ig,t) be the pullbacks of (ir,tr) and (ir,tR)
resp. and ' and r' the morphisms making the diagram commute. Call p' =
(I',r") the i-refined rule of p = (I,7). Let (ig,ty) be the pullback (ir,tg) and
m’ the unique morphisms such that (ir,m’) is pullback of (ig,m).

2. Derivation: Let (I(m),,r(m),) : G — pQmyu be the trace and m(p), :
R — p@my the co-match of the sesqui-pushout derivation with p at m. Let
" (m'y,r" (m')) : G — p'@Qm’ be the trace and m' (p') : R’ — p'Qm/ the
co-match of the sesqui-pushout derivation with p’ at m’. And let i (m), and
ipam, be the morphisms into the final pullback complement of (I, m) and from
the pushout of (r',m' (I')) making the resulting diagram commute.

3. Abstraction: Construct (i (m),d) and (ipam,da) as epi-mono-factorisations
of i{m), and ipam,. Set l(m) = l(m), od. And, finally, let m (I}, r (m),
and m (p) be the diagonal morphisms making the diagram commute.

Although the construction for a direct derivation is rather complex, it pos-
sesses good properties that can lead to a rich theory and are investigated in the
following. The first result is obvious, namely that the new rewriting mechanism
subsumes simple sesqui-pushout rewriting.

9 Le. both components are epimorphisms.

Fig. 8. Direct derivation

Proposition 6. For a rule p = (l:tx — tr,r:tg — tg, (i7,ig) tgr — tg)
such that (i, tx) is pullback of (ir,tx), the traces and co-matches of the direct
derivations according to Definitions 1 and 5 coincide.

Proof. Tf (ig,tx) is pullback of (ir,tx), (ix,l’) becomes pullback of (ir,!)
in Definition 5, compare Fig.8. By Fact F2, (i(m),,l' (m’)) is pullback of
(I(m) 4 ,iq). Finally, Condition C5 provides that i (m), is epi- and d is iso-
morphism. g

The following lemma shows that the type refinement produces an effect on
the derivation’s left-hand side only. The right-hand side is a simple pushout.

Proposition 7. In Definition 5, (r (m),m(p)) is pushout of (m(l),r).

Proof. Since d 4 is monic, m (p) or = (m) om ().

If (r* : K{m) — X,m(l)" : R — X) is pushout of (m (I}, r), there is monic'®
dx : X — p@Qmy with dx or* =7 (m), od and dx om (I)* = m (p) , and there
isex : p’@m’ — X from the pushout object p’@m’ with ex or’ (m’) = r*oi (m)
and ex om’ (p/) = m ()" oig.

The morphism ex turns out to be epic: foex = goex implies foex o
r'(m') =goexor (m')and foexom' (p') =goex om' (p'). The first leads to
for*oi(m) =gor*oi{m)and (i) for* = gor*, since i (m) is epic. The second
leads to fom ()" oig =gom ()" oig and (ii) fom (I)" = gom (I)*, since ir
is epic. Properties (i) and (ii) provide f = g, since (r*,m (I)*) is pushout.

9 Morphism dx is monic, since decomposition of pushouts provides that (dx,r (m) 4)
is pushout of (r*,d), and pushouts preserve monomorphisms due to Fact F5.

Sesqui-Pushout Rewriting with Type Refinements 29

I ! K’
— P——
\» L . K / (eu om/)*

e Im ImU)A

——— —<
i’i/rG l(m)AK<m>A y D
ey om o | i i
Q" / ' * D"
G/ . - - K/<ml>

Fig. 9. Local derivation

Since dx oex om/ (p') = dx om ()" oip = m(p), 0ir = ipam, oM (p')
and dx oex or’ (m')y =dxor*oi(m)=r(m),odoi(m)=r(m),oi(m), =
ipam, o7’ (m'), we can conclude that dx o ex = ipam.,-

Therefore, (ex,dx) is an epi-mono-factorisation of i,am, which provides
X = p@m. Uniqueness of diagonals leads to r* =7 (m) and m (I)* =m (p). O

We conclude this section by an important observation, namely that a deriva-
tion in sesqui-pushout rewriting with local type refinements has local effects only.
For a rewrite, we do not have to refine the complete source object, it is sufficient
to refine the part that is in the image of the match.

Consider Fig.9. It depicts the left-hand side of a rule, namely [: K — L,
its refinement !’ : K’ — L', the match m : L — G, and the refined match
m' : L' — G’. While Definition 5 constructed the final pullback complement
(m! ("), (m")) of I” and m’ (grey in Fig.9), we now construct the “local” FPC
(mp : L' — G*,i} : G* — G) of the match m and the refinement of the
rule’s left-hand side, namely 4y,. Since (m/,ir) is pullback of (i, m), we obtain
morphism u which makes the diagram commute. By factorisation of u into epic
ey : G' — G" and monic m,, : G’ — G*, we construct a local refinement of G, i.e.
it om, : G” — G, and a locally refined match e, om’.*! Note that (idy/, e, om’)
is pullback of (m.,, mr-), since m,, is monic, and (idz,, m’) is pullback of (e, e, o
m’) by decomposition of pullbacks. Now, construct the FPC ((e, o m’)*,1*) of
(I, e, om') which provides the morphism i/, making the diagram commute.

We show that the epi-mono-factorisation (i), : D" — D, d: D K(m) 4) of this
morphism provides the same sub-object of K(m) 4 as the epi-mono-factorisation
of i (m) ,. The argument is straightforward, since there is the morphism ip~ :
K'(m’) — D" mediating between the “global” and the “local” FPC and making
the diagram commute. Since (idz,,m’) is pullback of (e,,e, o m'), (idg+,1’) is

11 Note that the object G” cannot be typed in the refined type of the rule, since it
contains unrefined parts, namely the parts outside m(L).

edit:

edits successors

successors
| P-Manager O|:
3 Component O

publish:

edits components i : @

Fig. 10. Rules for editing and publishing — refined version

pullback of (I’,idz/), and (m/ (') ' (m')) as well as ((e, om/)",1*) are FPCs,
Fact F2 makes sure that (ip~,l’ (m')) is pullback of (e,,!*) and Condition C5
guarantees that i’ is epimorphism. Therefore the pair (i}, o ip~,d) is epi-mono-
factorisation of i (m) 4, q.e.d.

Ezample 8 (Version Management — Refined Version). Using the mechanisms
introduced in this section, we can specify the rules for the version management
system described in Sect. 3: We use the standard type graph given in Fig. 3. The
rule for component integration is given in Fig. 4. It does not specify any type-
refinement and works as it is. The rules for editing and publishing are depicted
in Fig. 10. The edit-rule refines the type graph such that outgoing components-
relations of a component can be handled separately, compare middle object of the
rule span for edit in Fig. 10. The publish-rule uses a different type refinement
such that incoming successors-relations can be handled and copied separately.

5 The Category of Type-Refined Spans

In this section, we define a composition operator on rewrite rules which leads to
the category of type-refined spans. We show that rule composition and decom-
position carries over to composition and decomposition of direct derivations, i.e.
that theorems like Propositions 2 and 3 are also valid in the new framework.
Let T € C be a fixed type object. Two rules
pP1 = ((11 : tKl — tL,Tl : tKl — tR) s (iTl,il) : (tK{ : K{ — T/) — tK1> and
P2 = ((12 : tK2 — tL,TQ : th — tR) s (iT//,ig) : (tKé : Ké — T”) — th)
with common domain and co-domain are equivalent if there is a triple

(jx : Ko — K1,jg - Kb — K1, 47 : T" —=T)

of isomorphisms, such that the resulting diagram commutes, i.e. I; o jx = lo,
T10JKk = T2, tK, © JKk = tK,, i1/ © T = i1, JT O l)y = k) © jiv, and jg 0 iy =

Sesqui-Pushout Rewriting with Type Refinements 31

T (Ri=Ls):T
1 ly
ZT/ ’LT// ll / \ o
L1:T +—— K:T x (PB) . Ko:T — Ro:T
2 1
) . i \ / iz
T (PB) T M:T
i i+ KT’ KL:T"
T// T/ 7;]\4
T*
(I20i2)* (ri0ig)*

M T*

Fig. 11. Rule composition

i1 0 jg/. In this case, we write p; = po and denote the class of rules that are
equivalent to p by [p]=. Such a class is called abstract type-refined span. These
spans can be composed.

Definition 9 (Composition). Given two abstract typed-refined spans p; =
[((Li,71), (i17,11))] and pa = [((I2,72), (i7r,i2))] such that the co-domain of rq
coincides with the domain of ly, the composition ps o p1 of p1 and py is defined
by [((luols,ra0ry) (iqr 0 ik, ing))], where (i, « T* — T ik, « T* — T7),
(ri M — Ky, l5: M — Ky), and ((ry041)" : M — Kb, (I 0i9)" : M’ — K})
are the pullbacks of the pairs (ig/,ir), (la,71), and (I3 0ig,71 0d1) Tesp. and
tyy M — Tty : M — T*, and ipr : M’ — M are the unique morphisms
making the diagram commute, compare Fig. 11.

Note that the composition operator is defined independent of the choice of
representatives, since pullbacks of isomorphic diagrams are isomorphic. The com-
position is associative due to composition/decomposition properties of pullbacks.

T

The composition operator of Definition9 gives rise to the category C— 1~
of abstract type-refined spans under 7', which has the same objects as C | T
and abstract type-refined spans of type T as morphisms. The identity on A €
C | T is given by ida = [((ida,ida), (idT,ida))]. We call a type-refined span
p=[((l,7),4)] total, if | and 7 are isomorphisms and co-total if r is isomorphism.
Note that any morphism in C | T" one to one corresponds to a total morphism in
the category of abstract type-refined spans. With this categorical background, a
rewrite rule p is just a morphism, a match is a monic and total morphism, and
a direct derivation is a special commutative diagram.

Definition 10 (Refined Trace). Let p(m) be the trace, m (p) the co-match,
and i {(m) the type refinement in a derivation with rule p at match m as given in

T
Definition 5. Then the C—17 -morphism p (m) = (p(m),i (m)) is called refined
trace.

Proposition 11 (Direct Derivation). If p (m) and m (p) are trace and co-
match in a derivation with rule p at match m, then p(m)om = m (p) o p.

32 M. Lowe

Proof. In the construction in Definition 5, (I, m (I)) is pullback of (I (m),m) and
(m/ (I'),ik) is pullback of (m(l),i(m)). For the first statement, let m oz =
I{m)oy. Then mox = 1{(m), odoy and we get u such that [ou = = and
dom(l)ou = doy, since (I, m(l),) is pullback. But d is monic such that
m (l) ou = y. Since m (l) is monic, u is unique. The second statement is true,
since (ix,m’ (I')) is pullback of (i(m)a,m () 1), (idg(mry,3(m)a) is pullback of
(d,i(m)), and pullbacks can be decomposed. O

The commutative derivation diagrams have nice composition properties. The
derived rule property of Proposition 2 also holds in the category of type-refined
spans.

Theorem 12 (Derived Rule). If p(m) and m{p) are trace and co-match
in a derivation and n is match for p(m), then (p{(m)){n) = p(nom) and

(nom)(p) =n(p(m))om(p).

n(p(m})

r(m)(n)

Fig. 12. Derivation with derived rule

Proof. The situation is depicted in Fig.12: The rule p = (I,r,ix) has been
applied at match m resulting in trace (I{m})4 o dy,,7(m), €,,) and the co-match
m(p), where (e,,,d,,) is the factorisation of the morphism 4,, the mediator
between the two FPCs of the derivation p@m. The application of p(m) at
match n results in the trace (I* o d¥, o d*,r(m)(n}),e*) and co-match n{p(m)),
where (n{l(m))a,l* od,) is FPC of (I{m) = I{m)a o dy,n), (n’{I'(m')),1") is
FPC of (I'(m’),n’), and (e*,d*) is the factorisation of * which is the media-
tor between these two pullback complements. Due to Condition C2 and Fact
F3, we can decompose the pullback complement (n{l{(m))a,l* o d},) into two
FPCs, i.e. (n*,1*) and (n{l{m))a,d:,). Since FPCs preserve monomorphisms!?,
d’, is monic. By Fact F4, (n* om(l) 4,1*) and (n’{I"(m’)) om/{l'),I") are FPCs.
Thus, we obtain the mediator i,.,, which is subject to an epi-mono-factorisation

2 Compare [10].

Sesqui-Pushout Rewriting with Type Refinements 33

la

1 g ig lo io
ﬁ\ @ I \ y T :;\
< w | BN e

—
m

m’

m//
\6\2

ot

1
A :
d - /% dj

: T2
1

1% 11%
ll 12

Fig. 13. Derivation composition for co-total morphisms

in the derivation with p at n o m. Since 4pom and dj, o i* are two morphisms
into the FPC (n* o m(l) 4,1*) which coincide under postfix composition with [*
and prefix composition with n’{(I’{m’)) o m/(l'), we conclude ipom = df, o i*.
But then (e*,d¥, o d*) is the epi-mono-factorisation of ine.m, which results in
I*od!, od* =1l{nom) and n{l{m)) om(l) = (n om) (l). Finally, the composition
property of pushouts concludes the proof. a

For the proof of the horizontal composition property, compare Proposition 3,
we need to investigate some special cases first.

Lemma 13. Ifpoop; is composition of co-total morphisms, then (pa o p1) (m) =
p2 (m(p1)) o p1 (m) and m (p2 o p1) = m (p1) (p2), for every match m for p;.

Proof. Figure 13 depicts the situation. The black part shows the derivation with
p1 and pa, ie. p1 = (l1,i1), p2 = (l2,i2), p1 (m) = (If o dyi,e1), m(p1) = m,
p2 (M) = (I3 o da, e2), and T = M (p2) = m (p1) (p2). By constructing (I,1})
as pullback of (i1,l2) and (iz,i}) as pullback of (i},iz), we obtain py o p; =
(ll (¢] lz,ig OE)

The four morphisms 44,4}, 45, and i} with (iJ,7}) as pullback of (i4,4) are the
refinements of the left-hand side of p; and m’,m”, and m* are the refinements
of the match m, such that the cube under 44, i}, 4, and 4/ is a cube of pullbacks.
If (i4,4,) is constructed as pullback of (i%,4;) and I and I3 as well as I; and Iy
are the morphisms making the diagram commute, then I} o 14 is the refinement
of Iy oly and (h,1;) and (I{,4}) are pullbacks of (I1,i4) and (I},45) resp. and
(15 ,i%) is pullback of (l4,141).

34 M. Lowe

Constructing the four FPCs of (m, 1), (m/,1}), (m™,11), and (m”,1{) results
in (75, 77) being pullback of (r},r7) and 7} being a refinement wrt. the refined
type of po. The refinement 75 used in the derivation with ps can be constructed
as the pullback of diand 7. This provides €] making the diagram commute and
(e},7%) the pullback of (r2,e1). By Condition C5, €] is epic. o

Now the FPCs (dy, 13") of (I5,d1), (d%,1F) of (I4*,dy), and (m/,14™) of
(1%, m" ™) lead to the morphism 7™ with 75" o df = d{ orj and 75" o7} is the
morphism which has to be epi-mono-factored in the derivation with ps o p; at
match mﬁnceﬁn”: 11) is pullback of (', €}), we get e} with 15 "oe} = ejol)”
and e} om” = m oi}. We also get d} o e} = r] since both morphisms are into
a final pullback complement. And Fact F2 implies that (e}, 15 ") is pullback of
(€h, 15™) such that e} is epic due to Condition C5. But now (eg o e}, d o dy) is
epi-mono-factorisation of 75" o r]. |

Lemma 14. If py o p1 is the composition of a total morphism p1 and a co-
total morphism pa, then (paop1) (m) = pa(m (p1)) o p1 (M) and m{ps op;) =
m (p1) (p2), for every match m for p;.

Proof. The situation of this lemma is depicted in Fig. 14: (n,r1(m)) is pushout
of (ry,m), i.e. constitutes the direct derivation with rule p; at match m. The
co-total rule po is represented by (l3,i2). The pullbacks (I5,77) of (r1,l2) and
(T1,12) of (iz,r}) define the rule py o p; = (I3,77,42). The application of this
composition at match m is defined by the trace (I5(m) o d*,r}(m),i(m)) and
the co-match n(ps op1), i.e. i; is the FPC-mediator of the derivation, (i(m),d*)
its epi-mono-factorisation, and (3 (m),n{ps op1)) is pushout of (m(I3),r7). Let,
finally, ¢4 be the FPC-mediator of the derivation with py at n = m(p;).
Consider the cube defined by refinements iy, ic, iy, and i} . Its top, back,
front, and bottom faces are pullbacks and the right face is pushout and pullback
by Fact F6. Condition C3 implies that the left face is pushout and pullback. Now
consider the inner and outer cube in Fig. 14 defined by (I2,15, l2(n) 4,15 (m)) and
(15, 13", 15(n"), 13" (m')). In both cubes, the left face is pushout and pullback, the
top face is pullback, and the front and back faces are FPCs. By Condition C3
and Fact F2, their bottom faces are pullbacks and their right faces are pushouts
and pullbacks. Therefore, we obtain monic d, pushout (d, g') of (d*,r}(m}), and
i(n) with i(n) o7} = ri(m) o i(m) and i(n) o n'(l5) = n(ps o p1) o is. We know
doi{n) = 14, since both morphisms coincide under prefix composition with 7} and
n/(l5). A similar argument as in Proposition 7 shows that i(n) is epimorphism
and (i(n), d) is epi-mono-factorisation of 5. O

Theorem 15 (Composition). If m is a match for p’ o p, then (p’ op) (m) =
P {m(p)) o p(m) and m (p’ o p) =m (p) (p').
Proof. Consequence of Lemmata 13 and 14 and the fact that pushouts compose.

Theorems 12 and 15 demonstrate that the extension of sesqui-pushout rewrit-
ing presented in this paper is as well-behaved as the standard approach as far
as rule composition and decomposition is concerned. This provides a good fun-
dament for future research wrt. subrules, remainders and amalgamation.

Sesqui-Pushout Rewriting with Type Refinements 35

P > i
- - ropxt 1
///’, pe" m'(l3")
i3
7 m(l3
kT ogf ---» m(l3) A .
L5 T N N ig —=7 7T /,,/l
1 po-—= 777 , e
U, -
m e
71 -
Rt
m’ i, -”"/,—"‘
et I
&= e i
T - a*
- 1% (m) L
- —— n(l2) a
ks ig ¥ —
n g’
r1{m)
la(n)a
e
r1(m)’ n' ig e

Fig. 14. Derivation composition of total and co-total morphism

6 Related Work and Future Research

There are two major other approaches to controlled sesqui-pushout cloning,
namely rewriting on polarised graphs [3] and the AGREE framework [1]. Sesqui-
pushout rewriting of polarised graphs allows to specify for every vertex in the
middle graph K of arule (I : K — L,r : K — R) if it allows incoming edges only,
outgoing edges only, or incoming and outgoing edges. This specifies, whether a
copy of a vertex obtains the full context, the incoming context only, or the out-
going context only. Thus, SqPO-rewriting of polarised graphs is a special case
of the mechanism presented here. Polarisation of graphs can be represented by
passing from G | F, i.e. the comma category of all graphs under the final graph
(node with a singleton loop) to G | E where E is the graph with two vertices
connected by a singleton edge. F is a refinement of F' in our sense.

AGREE controls the cloning by a monomorphism ¢ : K — Tk from middle
object K of arule (I : K — L,r : K — R) typically into a subobject of the
partial arrow classifier K* of K. By interpreting a monic match m : L — G as a
partial arrow m’ = (m,idz) from the source object G and I’ = (¢,1) as a partial
arrow from T into the rules left-hand side, the cloning in AGREE is performed
by the pullback of m : G — L* and 1 : Ty — L* which are the totalisation

36 M. Lowe

of m’ and I’ into the partial arrow classifier L* of L. If t : K » Tk is the
complete partial arrow classifier, a complete copy is performed. By choosing T
as a proper subobject of K*, the copy process can be controlled very precisely. In
graphs for example, it can be specified that two cloned vertices possess the same
context wrt. third vertices but do not have cloned edges between themselves.
This is not possible in our approach, and has to be substituted by some sort of
polymorphism, compare [11]. Nevertheless, the introduced rewriting approach
is an interesting alternative to AGREE. On the one hand, it can simulate the
AGREE-effects at least wrt. unknown context (outside the image of the match).
And on the other hand, while there are very few theoretical results available for
AGREE (at least for the time being), the results wrt. vertical and horizontal
composition in this paper provide solid hints that the theory of standard SqPO-
rewriting can be generalised to SqPO-rewriting with local type refinement. Work
in this direction will be a major topic of future research.

References

1. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE — algebraic
graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B.
(eds.) ICGT 2015. LNCS, vol. 9151, pp. 35-51. Springer, Heidelberg (2015)

2. Corradini, A., Heindel, T., Hermann, F., Konig, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30-45. Springer, Heidelberg (2006)

3. Duval, D., Echahed, R., Prost, F.: Graph transformation with focus on incident
edges. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012.
LNCS, vol. 7562, pp. 156-171. Springer, Heidelberg (2012)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

5. Ehrig, H., Pfender, M., Schneider, H.J., Graph-grammars: an algebraic approach.
In: FOCS, pp. 167-180. IEEE (1973)

6. Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig,
H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph-Grammars and Their Application
to Computer Science. LNCS, vol. 532, pp. 490-504. Springer, Heidelberg (1990)

7. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. ITA 39(3), 511—
545 (2005)

8. Lowe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181224 (1993)

9. Léwe, M.: Graph rewriting in span-categories. Technical report 2010/02, FHDW-
Hannover (2010)

10. Lowe, M.: A unifying framework for algebraic graph transformation. Technical
report 2012/03, FHDW-Hannover (2012)

11. Lowe, M.: Polymorphic sesqui-pushout graph rewriting. Technical report 2014,/02,
FHDW-Hannover (2014)

2 Springer
http://www.springer.com/978-3-319-40529-2

Graph Transformation

8th International Conference, ICGT 2016, in Memory of
Hartmut Ehrig, Held as Part of STAF 2016, Vienna,
Austria, July 5-6, 2016, Proceedings

Echahed, R.; Minas, M. (Eds.)

2018, XV, 253 p. 109 illus., Softcover

ISBM: 978-3-319-405258-2

	Sesqui-Pushout Rewriting with Type Refinements
	1 Introduction
	2 Standard SqPO-Rewriting
	3 Example: Version Management
	4 SqPO-Rewriting with Local Type Refinement
	5 The Category of Type-Refined Spans
	6 Related Work and Future Research
	References

