Chapter 2
Fundamentals

This chapter briefly reviews the basics that are required for the theoretical investiga-
tions and the practical implementations in this monograph. That comprises funda-
mentals in kinematics and dynamics (Sect. 2.1), active control for compliant interac-
tion behavior (Sect.2.2), and details on the hardware and modeling assumption on
the wheeled humanoid robot Rollin’ Justin, which has been chosen as the platform
for the experimental validations (Sect.2.3).

2.1 Robot Kinematics and Dynamics

The following sections introduce some basic kinematic and dynamic matters of
special importance in the context of this work. For a complete and more detailed
version the reader is referred to the standard literature [Pau83, Cra89, Yos90, MLS94,
KDO02, SKO08].

Mostrobotic designs are based on revolute joints rather than prismatic joints. Thus,
one has to deal with torques instead of forces on joint level. In this book the term
Jjoint torque is mostly used, but the extension to generalized joint forces (including
forces and torques) can be made. By default, external loads are referred to as external
forces since physical contact usually occurs from contact surface to contact surface,
hence a force is more common. However, the extension to generalized external forces
(including forces and torques) can be made without loss of generality. The simplified
notations are used for the sake of brevity.

2.1.1 Forward Kinematics, Jacobian Matrices,
and Power Ports

A typical robotic system is described by ¢ € R" joint coordinates, where n
is the number of degrees of freedom (DOF). The operational space, e.g. the
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workspace of the end-effector, is usually described by m < n coordinates denoted
x(q, L) € R™. The kinematic parameterization £ is usually constant and disre-
garded in the notations. The robot is assumed to be rigid, the only relative motion is
along/about the n joint axes.

The most common representation of x(q) is in Cartesian coordinates. If m = n,
then the robot is called non-redundant w.r.t. the operational space with dimension
m. If m < n, then the manipulator is kinematically redundant and can execute
additional tasks by utilizing the (n — m)-dimensional null space while not disturbing
the operational space task.' The forward kinematics of the considered robot are
described by the mapping ¢ +— x, while the inverse kinematics x — ¢ in aredundant
robot is ambiguous and requires additional constraints to be resolved.

The differential and velocity relation between the joint space and the operational
space

0
Ax(q) = %Aq = J(@)4q. 2.1)
i(q.9) = J@)4q. 22)

necessitates a further quantity J(g) € R™*", the Jacobian matrix. The total time
derivative d{}/dt of a function {} is abbreviated as {} in this book. Based on the
geometric point of view (2.1) and (2.2), one can find a simple relation between
operational space forces F € R and joint torques 7 € R":?

T=J@)'F (2.3)

The application of joint torques with (2.3) is called a Jacobian transposed approach.
This concept is adopted here and constitutes a basic prerequisite for the methods
developed in the later chapters. The variables in (2.2) and (2.3) describe either a flow
(g or x) or an effort (7 or F). The associated terms build power ports, since they
define a power through ¢7 7 and 7 F, respectively. Via such a port, the system can
exchange energy with its environment. All relations are illustrated in Fig. 2.1.

2.1.2 Derivation of the Equations of Motion

Two basic formalisms are briefly reviewed that yield the dynamic equations of arobot.
These sections explain the derivation in a nutshell only. A more detailed version can
be found in the standard literature listed in Sect.2.1.

'Motions in the null space are also denoted internal motions.

Note that F may also contain torques, e.g. in the case of a full operational space wrench F & R®
with three forces and three torques. Furthermore, 7 may also contain force elements in case of
prismatic joints.
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Fig. 2.1 Relations between Configuration Space Operational Space
x, F,q,and T for a
redundant manipulator with
m<n
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2.1.2.1 Lagrange Formalism

The Lagrange formalism is an energy-based technique to obtain the dynamic equa-
tions. An n-DOF system with joint values g € R” and joint velocities ¢ € R” is
described by the so-called Lagrangian

Lg.9)=T(q.9 — Vg, (2.4)

which is given by the kinetic energy 7T (g, §) of the system minus its potential energy
V(q). Then the dynamic equations can be obtained by evaluating

d (0L(q.¢)\" (oL\" _
A G e e

The vector Q@ € R" contains the generalized joint forces 7 € R”, the external
loads T« € R", and non-conservative generalized forces such as friction. The main
advantage of the method is the simple analytical determination of the kinetic and
potential energy. But the computational burden of the method makes it unsuitable
for large systems with many DOF. The computational effort for an n-link robot is of
order O(n*) while it is only O(n) with the iterative Newton—Euler formalism. See
[Yos90] for a more detailed comparison.

2.1.2.2 Iterative Newton—-Euler Formalism
The iterative Newton—Euler algorithm requires the evaluation of Euler’s first and

second law for each link of the robot. All constraining forces have to be calcu-
lated explicitly. Finally, the equations of all links are combined and the constraining
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forces are eliminated again. The exact procedure will not be detailed here. Fore more
information refer to the literature listed in the beginning of Sect.2.1.

2.1.3 Rigid Body Dynamics

The dynamic equations of a rigid robot with n DOF can be written as

M(q)Gg+C(q.4)q +9(q) =T + Text- (2.6)

The symmetric and positive definite inertia matrix M (¢) € R"*" depends on the joint
configuration® ¢ € R". Gravity effects are contained in g(q) = (OVe(q)/0g)" € R,
where V,(¢q) denotes the gravity potential. Coriolis/centrifugal forces and torques are
represented by C(q, )¢ € R". The generalized forces* 7 € R" describe the control
inputs. Generalized external forces are denoted by 7. € R”". The matrix C(q, ¢)
is not unique in general, but it can be chosen according to the Christoffel symbols
[MLS94] such that it complies with the relation

M(q,§4) =C(q.9)+C(q. 9" (2.7)

which is in turn equivalent to the skew symmetry of M(q,§) — 2C(q, ). This
property is crucial for showing passivity of (2.6) w.r.t. input (7 + T¢) and output ¢
and the total energy %qTM (9)q + Vg (q) as the storage function. This representation
of the Coriolis/centrifugal matrix will be used by default in this book.

2.2 Compliant Motion Control of Robotic Systems

Featuring compliant behavior is an important requirement in many robotic applica-
tions. Consider task execution in unknown, dynamic, and unstructured environments
such as households, or the cooperation of humans and robots in the same workspace.
Whenever a physical contact between the robot and its environment occurs, the inter-
action behavior should be compliant or at least properly specified in terms of forces
and torques. Two fundamental approaches exist to realize compliance: active control
and the use of passive elements such as mechanical springs. Only the controlled
compliance will be addressed in this book, whereas passive compliance is a matter
of construction and mechanical design of the robot.

In the seminal work of Hogan [Hog85], the nature of physical systems is described
from the environment point of view. They appear either as admittances accepting
effort input (force) and yielding flow output (motion) or impedances accepting flow

3Positions for prismatic joints and angles for revolute joints.
“Forces for prismatic joints and torques for revolute joints.
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Fig. 2.2 Impedance control in the operational space x € R” withm < n

input (motion) and yielding effort output (force). His second fundamental statement
is that dynamic interaction between physical systems cannot be controlled by exclu-
sively commanding the position or the force. A controller has to incorporate the rela-
tion between these port variables as well. In this section the two classical approaches
of impedance and admittance control for active compliance are briefly recapitulated.
Especially impedance control [ASOHO7, OASKHOS] is of major importance in this
monograph since the theory and the implementation of various impedance-based
methods are addressed.

2.2.1 Impedance Control

The goal of impedance control is to alter the mechanical impedance of the robot,
that is, the mapping from (generalized) velocities to (generalized) forces [OttOS].
Since the environment can be physically described as an admittance [Hog85] that
maps forces to velocities, impressing an impedance behavior on the manipulator is
a proper choice to define the interaction behavior in contact.

Figure 2.2 depicts the impedance control regulation case with setpoint x 4.5 (des:
desired) in the operational space x € R” with m < n, for example in the Cartesian
coordinates of the end-effector. This desired value is sometimes also called the virtual
equilibrium. It is reached in the case of free motion, i.e. in the absence of external
forces. By feeding the robot motion back, one computes the necessary force Fcng
(cmd: command) to implement the prescribed impedance. A kinematic mapping via
the transpose of the Jacobian matrix J(q) = 0x/0q yields the required torque Tcmd.
The inner control loop realizes this torque by feedback of 7 under the influence of an
external force Fo € R™. The impedance causality is X — Fey, so repositioning
the robot in the operational space results in forces acting on the environment.

When considering the overall structure of the impedance control in Fig.2.2, one
can conclude that the inner torque control loop is compliant while the outer loop

3In general, an external torque Tex € R” acts on the robot. If the contact with the environment is
closed in the operational space, e.g. at the end-effector with coordinates x, the force Fey € R™
with m < n is sufficient to describe the external load.
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Fig. 2.3 Admittance control in the operational space x € R” withm < n

increases the stiffness of the complete system. The torque feedback in the inner loop
allows for good contact behavior for small and medium stiffness in the impedance
law. However, further increasing the stiffness will ultimately destabilize the system.
Another characteristic of the impedance is the absence of an integrator. The controller
has basically a PD structure. The inevitable steady-state error x ges — x for + — oo in
the presence of model uncertainties or external loads can be reduced by increasing
the stiffness. While the regulation case is depicted here, the tracking performance in
case of a desired trajectory xg4es(#) can be improved by adding a feed-forward term
taking ¥ 4.5 (#) and the corresponding reflected inertia into account.

Compliance control is a special case of impedance regulation control, where the
focus is put on the realization of a desired contact stiffness and damping [Ott08].
Compared to approaches based on the classical OSF [Kha87], where the perceived
inertia is actively modified, the natural inertia of the robot is preserved in compliance
control. The main advantage of the method is that the feedback of the generalized
external forces is not required, which is beneficial in terms of robustness, availability
of measurements, and the complexity of the implementation [OKNO8].

2.2.2 Admittance Control

A mechanical admittance is the inverse of a mechanical impedance, that is, the map-
ping from (generalized) forces to (generalized) velocities. In compliant admittance
control of robots, one employs a position or velocity controller in combination with
explicit measurement and feedback of the generalized external forces. Figure?2.3
illustrates the implementation of such an admittance with joint position control inter-
face. A typical example is Cartesian admittance control, where the external forces
F are measured at the tip of the end-effector by a six-axis force-torque sensor.
As a result, compliance will only be achieved at the end-effector after this sensor,
whereas the structure of the robot will react stiff in case of physical interaction.®

%0ne can also implement a compliant admittance controller on joint level via joint torque sensing,
which would then lead to compliance along the entire manipulator.
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The admittance subsystem yields a position X png or velocity X.mq to be com-
manded. Then an inverse kinematics algorithm has to be employed to resolve the
kinematic redundancy for m < n. The computed reference commands ¢ .4 O § .14,
respectively, are realized in the inner position or velocity control loop. Since the
admittance causality is Fey — Xcma, external forces result in a repositioning of the
manipulator.

When considering the overall structure of the admittance control in Fig.2.3, one
can conclude that the inner position control loop is stiff, while the outer loop is
responsible for the compliance. The inner-loop controller allows for high positioning
accuracy, especially for medium and high stiffness. However, decreasing the stiff-
ness will ultimately destabilize the system, which is a direct result of the admittance
causality. Another restriction on its compliant contact behavior is the non-collocated
feedback of the external forces in cases such as the Cartesian admittance control dis-
cussed above. The admittance-controlled system may involve substantial dynamics
between actuator and sensor, which can lead to contact instability [CH89]. Admit-
tance control is frequently used in robots which do not provide joint torque sensing
or direct motor current interfaces [Ott08].

2.3 Humanoid Robot Rollin’ Justin

The experiments in this book are mainly carried out on the wheeled humanoid robot
Rollin’ Justin’ [OEF+06, BOW+07, BWS+09], see Fig.2.4 (right). In Sect.2.3.1,
its hardware is presented as well as the underlying design principles. Section2.3.2
summarizes several modeling assumptions that have to be made with regard to the
implementation of the methods developed in this book.

2.3.1 Design and Hardware

The concept of Rollin’ Justin is based on the principles of modularity and integrated
design. In order to pass standard doorways, the overall width of the robot can be
reduced to about 0.9 m by adjusting the upper body configuration and retracting the
wheels. In terms of workspace, the robot is able to reach the floor as well as objects
up to a height of about 2.7m. The robot has an anthropomorphic structure which
facilitates the operation in human environment where furniture, tools, and objects
are optimized for the human anatomy. Another key feature of Rollin’ Justin is that
the robot can be operated without any cables that would restrict the mobility. It is
equipped with a battery and all electronic components and computers are located
onboard. Via WLAN and sensor feedback (speech recognition, visual information,

"The upper body of Justin was finished just in time for its first public presentation at the AUTO-
MATICA trade fair 2006 in Munich [OEF+06].
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© Active joint (pitch)
) Passive joint (pitch)
< Active joint (roll)

=— Passive joint (prismatic)

Two active joints
(steering, propulsion)

Fig. 2.4 Schematic (left) and picture (right) of the humanoid robot Rollin’ Justin. The hands
(12 actuated DOF each) are not specified in the sketch

force feedback), the robot has a permanent interface to the user and the environment
during autonomous operation.

The arms are slightly modified versions of the DLR lightweight robots (LWR) of
generation III [HSAS+02] with a total weight of 14kg each. All electronic compo-
nents are integrated in the arms. As with the human archetype, the arm has seven
DOF. They are arranged in a roll-pitch-roll-pitch-roll-pitch-pitch order as it can be
seen in the sketch in Fig.2.4 (left). A payload of 15kg can be lifted during slow
motions and about 7kg can be handled at maximum velocity. The hands of Rollin’
Justin are the DLR Hands II [BGLHO1] with four fingers and three actuated DOF
per finger. An additional actuator has been integrated in the palm to reconfigure the
alignment of the thumb, dependent on the application (power grasp, precision grasp).
The head of Rollin’ Justin is a pan-tilt unit that is equipped with several sensors, e.g.
cameras for stereo vision and scene analysis or an inertial measurement unit for equi-
librioception. The torso of Rollin’ Justin has three actuated DOF and a kinematically
coupled fourth one. The whole upper body weighs about 45kg. Except for the two
neck joints, all actuated upper body joints are equipped with link-side torque sensors
as well as position sensors. This full state feedback makes it possible to implement
various control techniques. The joint torque controller operates at a sampling rate of
3kHz and the main control loop® runs at 1 kHz.

The mobile base with about 150kg contains computers, battery, electronics and so
forth [BWS+09]. Rollin’ Justin has a variable footprint thanks to its extendable legs.
A parallel mechanism ensures that the height of the platform remains unchanged.

8The main control loop contains all algorithms above the joint level such as Cartesian impedance
control, self-collision avoidance, or online inverse kinematics.
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Table 2.1 Actuated degrees of freedom and available control interfaces on Rollin’ Justin

Subsystem DOF Control interface
Torso 3 Torque, position
Arms 2x7 Torque, position
Hands 2x 12 Torque, position
Neck 2 Position

Platform and legs 8 Position, velocity
Total sum 51

The leg extension DOF are not individually actuated, a reconfiguration is subject
to steering and motion of the respective wheel. The leg lengths can also be locked
mechanically. Due to the nonholonomy a dynamic feedback linearization is applied
to move the platform [GFASHO09]. This kinematic control method allows to realize
arbitrary motions in the two translational directions forward/backward and left/right,
and the rotation about the vertical axis. All actuated DOF of Rollin’ Justin are sum-
marized in Table?2.1.

2.3.2 Modeling Assumptions

Several assumptions concerning Rollin’ Justin have to be made so that the approaches
in this book can be applied to the robot.

Assumption 1 The motors can be considered as ideal torque sources.

The electrical time constants of the motors are sufficiently smaller than the mechani-
cal ones. Therefore, one can neglect the electrical dynamics and assume ideal torque
sources [Wim12, Ott08].

Assumption 2 The reduced apparent motor inertia of the torque-controlled manip-
ulator appears rigidly connected to the link inertia.

The assumption is based on a singular perturbation argumentation applied to the
flexible-joint model with large joint stiffness [Ott08, WO12, Wim12] and includes
the so-called “inertia shaping” (downscaling of the apparent motor inertia via torque
feedback) [OASK+04, ASOHO4]. A fast time-scale inner torque controller is embed-
ded in rigid body dynamics of slow time-scale. The apparent link inertia is modified
by active control and the singular perturbation argumentation allows to neglect the
dynamics between motor and link, resulting in a direct torque input available in the
link dynamics as in (2.6).
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Assumption 3 The robot structure is rigid. Motions are restricted to the joints.

The robot has a lightweight structure and is flexible in the links. Nevertheless, this
link flexibility is negligible compared to the joint flexibility which originates from
the Harmonic Drive gears and the strain-gauge-based torque sensors. Therefore, a
flexible-joint model with concentrated elasticity in the joints can be assumed instead
of an infinite-dimensional elastic-link robot model [Ott08].

Assumption 4 The joint stiffness originating from the Harmonic Drive gears and
the torque sensors in the joints is sufficiently high, such that the use of the motor
positions instead of link positions for the kinematics does not lead to any noteworthy
errors. The only exception concerns gravitational effects.

Although the joint stiffness is high, gravity leads to deflections between motor and
link. In order to compensate for gravity forces and torques properly, one has to take
that flexibility into account. That can be realized by employing a static equivalent
of the link position in the gravity model, which only depends on the motor position
[OASK+04, ASOHO7]. In order to remain in a passivity-based framework with col-
located feedback, the motor position is used in the feedback controller. Once gravity
is compensated as described, the dynamics between motor and link are neglected
so that the motor positions (instead of the link positions) can be used for any link-
side-dependent task definition or control task.

Assumption 5 The rigid body dynamics (2.6) approximate the equations of motion
of the flexible-joint model of Rollin’ Justin, where the motor positions and the motor
torques can be used instead of q and T, respectively.

The assumption of a direct torque input on link side is made possible by Assump-
tions 1 and 2, the assumption of rigid bodies is validated by Assumption 3, and the
use of motor positions as a substitute for link positions is covered by Assumption4.



2 Springer
http://www.springer.com/978-3-319-40556-8

Whole-Body Impedance Control of Wheeled Humanoid
Robots

Dietrich, A.
2016, XV, 187 p. 82 illus., 71 illus. in color., Hardcover
ISEM: 978-3-319-40356-8



	2 Fundamentals
	2.1 Robot Kinematics and Dynamics
	2.1.1 Forward Kinematics, Jacobian Matrices,  and Power Ports
	2.1.2 Derivation of the Equations of Motion
	2.1.3 Rigid Body Dynamics

	2.2 Compliant Motion Control of Robotic Systems
	2.2.1 Impedance Control
	2.2.2 Admittance Control

	2.3 Humanoid Robot Rollin' Justin
	2.3.1 Design and Hardware
	2.3.2 Modeling Assumptions



