CARAF: Complex Aggregates
within Random Forests

Clément Charnay®™?, Nicolas Lachiche, and Agnés Braud

ICube, Université de Strasbourg, CNRS, 300 Bd Sébastien Brant - CS 10413,
67412 Illkirch Cedex, France
{charnay,nicolas.lachiche,agnes.braud}@unistra.fr

Abstract. This paper presents an approach integrating complex aggre-
gate features into a relational random forest learner to address relational
data mining tasks. CARAF, for Complex Aggregates within RAndom
Forests, has two goals. Firstly, it aims at avoiding exhaustive exploration
of the large feature space induced by the use of complex aggregates. Its
second purpose is to reduce the overfitting introduced by the expressivity
of complex aggregates in the context of a single decision tree. CARAF
compares well on real-world datasets to both random forests based on the
propositionalization method RELAGGS, and the relational random for-
est learner FORF. CARAF allows to perform complex aggregate feature
selection.

1 Introduction and Context

Relational data mining, as opposed to attribute-value learning, refers to learn-
ing from data represented across several tables. These tables represent different
objects, linked by relationships. Many datasets from many domains fall into the
relational paradigm, leading to a much richer representation. The applications
go from the molecular domain, to geographical data, and any kind of spatio-
temporal data such as speech recognition.

The difference to attribute-value learning is the one-to-many relationship.
In particular, we focus on a two-table setting: one table, the main table, repre-
sents the objects we want to perform prediction on. This prediction, supervised
learning, task is either a classification task if the attribute to predict is categori-
cal, i.e. if it takes a finite number of values, or a regression task, is the attribute to
predict is numeric. The second table, referred to as the secondary table, contains
objects related to the main ones in a one-to-many relationship, which means sev-
eral secondary objects are linked to one main object. In practice, many datasets
are represented in this two-table setting: sequential data is represented as a main
table containing information on the sequence, while the secondary table contains
the elements of the sequence. The multi-dimensional setting is another use case,
where one is often interested in learning on one dimension based on the contents
of the table of facts, which are linked through a one-to-many relationship.

As an example, the relational schema for the Auslan dataset, an Australian sign
language recognition task, is given in Fig. 1. It is a classification task, where the aim

© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 15-29, 2016.
DOI: 10.1007/978-3-319-40566-7 -2

16 C. Charnay et al.

is to predict the sign associated to a record of hand motion. The main table, asso-
ciated to records, contains only the attribute to learn, i.e. the language sign asso-
ciated to the record, while the secondary table contains the samples of the records,
with a timestamp attribute and 22 attributes representing values from the channels
that monitor the hand motion through a glove.

0..N
1
element_id |[record_id [time|chanl]|. .. |chan22
1.1 1 1 -0.1 |...| 0.09
1.2 1 2 1-0.081... 0
1.3 1 3 1-0.06 |... 1
2.1 2 1 10.02|... 1
2.2 2 2 10.021...] 09
Main table - records
Secondary table - elements

Fig. 1. Schema of the real-world Auslan dataset.

Most relational data mining algorithms are based on inductive logic program-
ming concepts, and handle the relationships through the use of the existential
quantifier: it introduces a secondary object B linked to the main object A, B
usually meets a certain condition and its existence is relevant to classify A. For
instance, on the Auslan dataset, to discriminate between signs, a feature like the
fact that an element of the record has a value higher than 0.9 for channel 13 could
be useful. TILDE [2] is a relational extension of Quinlan’s C4.5 [11] decision tree
learner based on this idea. Other approaches use aggregates: they take all B
objects linked to A, and aggregate the set to one value, for instance by comput-
ing the average of a numeric property of the B objects. For instance, the average
value of channel 9 over the whole record may help discriminate between signs.
The propositionalization approach RELAGGS [9] introduces such aggregates.

One approach combines both, by filtering the B objects on a condition before
aggregating them. This approach is known as complex aggregation. As opposed
to simple aggregation, it consists in aggregating a subset of the B objects linked
to A, the subset being defined by a conjunction of conditions over the attributes
of the secondary table. For instance, a feature that may be useful to classify signs
could be the average value of channel 9 over record elements between timestamps
15 and 22.

However, the complex aggregates introduce two specific challenges: firstly,
the introduction of a condition prior to the aggregation increases exponentially
the size of the search space, which makes an exhaustive exploration intractable.
Secondly, the complex aggregates, being a very rich representation, are also
very specific and strict, which implies they are prone to overfitting. Especially,

CARAF: Complex Aggregates Within Random Forests 17

complex aggregate-based algorithms consider also the simple aggregates that
RELAGGS builds. Therefore, when a model introduces complex aggregates, it
means they have been found to increase the performance on the training set over
simple aggregates. If on test data, the complex aggregate-based model performs
worse than a simple aggregate-based one, there is overfitting.

In this paper, we propose the extension of the decision tree learner based
on RRHCCA to a random forest learner, introducing two faster hill-climbing
algorithms. The method to perform complex aggregate feature selection in order
to identify relevant families of aggregates is also presented.

The rest of the paper is organized as follows: in Sect.2 we briefly define the
concept of complex aggregates. In Sect. 3, we review the use of random forests
in the relational setting. In Sect. 4, we introduce CARAF (Complex Aggregates
with RAndom Forests), a new relational random forest learner implementing our
contributions. In Sect. 5, we present experimental results obtained with CARAF.
In Sect. 6, we present how to perform complex aggregate feature selection with
CARAF. Finally, in Sect. 7, we conclude and give some future work perspectives.

2 Complex Aggregates

In this section, we briefly define the concept of complex aggregates, which has
been thoroughly explained in [5].

In a setting with two tables linked through a one-to-many relationship, let us
denote the main table by M and the secondary table by S. We define a complex
aggregate feature of table M as a triple (Selection, Feature, Function) where:

— Selection selects the objects to aggregate. It is a conjunction of s conditions,

i.e. Selection = |\ «¢;, where ¢; is a condition on a descriptive attribute of
1<i<s

the secondary table. Formally, let S.A be the set of descriptive attributes of
table S, and Attr € S.A, then ¢; is:

e cither Attr € vals with vals a subset of the possible values of Attr if Attr

is a categorical feature,

o or Attr € [valy;vals] if Attr is a numeric feature.
In other words, for a given object of the main table, the objects of the sec-
ondary table that meet the conditions in Selection are selected for aggregation.

— Feature can be:

e nothing,

e a descriptive attribute of the secondary table, i.e. Feature € S.A.
Thus, Feature is the attribute of the selected objects that will be aggregated.
It can be nothing since the selected objects can simply be counted, in which
case a feature to aggregate is not needed.

— Function is the aggregation function to apply to the bag of feature values
for the selected objects. Aggregation functions we consider are count which
does not need an attribute to aggregate, min, maz, sum, average, standard
deviation, median, first quartile, third quartile, interquartile range, first decile
and ninth decile for numeric attributes, proportion of secondary objects with

18 C. Charnay et al.

attribute value for categorical attributes, the latter is defined as the ratio of
secondary objects linked to a given main object with a given value for the
attribute, over the count of all secondary objects linked this main object.

In the rest of the paper, we will denote a complex aggregate by Func-
tion(Feature, Selection). We will refer to the set of possible (Function, Feature)
pairs as the aggregation processes, i.e. the different possibilities to aggregate a
set of secondary objects.

The introduction of a condition on the objects to aggregate makes the fea-
ture space impossible to explore exhaustively. Heuristics have been proposed to
explore this space in a smart way. The refinement cube [14] is based on the idea
of the monotonicity of the dimensions of the cube. Indeed, the aggregation condi-
tion, aggregation function and threshold can be explored in a general-to-specific
way, using monotone paths: when a complex aggregate (a point in the refinement
cube) is too specific (i.e. it fails for every training example), the search does not
restart from this point. The approach introduced in [3] builds complex aggregate
features for use in a Bayesian classifier, guided by minimum description length
and a heuristic sampling. The RRHCCA algorithm [5] has been proposed to
explore a larger search space with a random-restart hill-climbing approach to
find the appropriate condition with respect to the aggregation process, still in
the context of a decision tree learner. However, the decision tree model with com-
plex aggregates often fails to outperform RELAGGS, which shows overfitting.
As a solution, we propose its extension to a Random Forest model.

3 Random Forests

Random Forest [4] is an ensemble classification technique which builds a set
of diverse decision trees and combines their predictions into a single output.
Considered individually, each decision tree is less accurate than a decision tree
built in a classic way. However, the introduction of diversity through the forest
improves the performance over a single decision tree, by solving the overfitting
problem induced by the latter approach. Algorithm 1 shows the building process
of a Random Forest. Diversity between the trees is achieved by two means:

— Bootstrapping: each tree is built on a different training set using sampling
with replacement from the original training set. In other words, each decision
tree is built using a training set with same size as the original one, but where
repetitions may occur. This corresponds to lines 5 to 8 of Algorithm 1.

— Feature sampling: to build each node of each tree, a subset of features is
used. If there are numFeatures available, vVnumFeatures are considered for
introduction in node split. This corresponds to lines 9 to 15 of Algorithm 1.

The use of Random Forests for relational data mining purposes is not new:
TILDE decision trees have been used as a basis for FORF (First-Order Relational
Random Forests) [13], which can, as TILDE, be used with complex aggregates.
However, the implementation suffers memory limitations, e.g. allocation failures

CARAF: Complex Aggregates Within Random Forests 19

Algorithm 1. BuildRandomForest

1: Input: train: set of training examples, feats: set of possible split features, target:
the target attribute, n: number of trees in the forest.

2: Qutput: forest: a random forest.

3: forest « InitEmptyForest()

4: for k =1 ton do

5: trainForTree «— InitEmptyInstances()

6: fori=1 to train.Size() do

7 trainForTree. Add(train.OneRandomElement())
8: end for

9: featsCopy « feats.Copy()

10: featsForTree « InitEmptyFeatures()

11: for j =1 to \/feats.Size() do

12: f « featsCopy.OneRandomElement()
13: featsCopy.Remove(f)

14: featsForTree. Add(f)

15: end for

16: tree « BuildDecisionTree(trainForTree, featsForTree, target)
17: forest.Add(tree)

18: end for

19: return forest

when the feature space induced by the language bias is too wide. Also, the logic
programming formalism makes the case of empty sets ambiguous. Indeed, the
failure of a comparison test on an aggregate can have two reasons: the comparison
can actually fail or the aggregate predicate can fail because it cannot compute
a result, generally because the set to aggregate is empty. In the implementation
of CARAF, we overcome this limitation by considering aggregation failure as a
third outcome of a test.

Another relational Random Forest algorithm is described in [1]. It uses ran-
dom rules based on the existential quantifier. However, it does not consider
aggregates.

4 CARAF: Complex Aggregates with RAndom Forests

In this section, we describe the main contributions brought by CARAF (Complex
Aggregates with RAndom Forests).

First is the use of random forests. The instance bootstrapping part is per-
formed the same way as Breiman does, by sampling with replacement from the
training set. The feature sampling is different, based on the complex aggre-
gates space structure. Let us denote by AggProc = |(Function, Feature)| the
number of aggregation processes, N; the number of secondary objects, and A
the number of attributes in the secondary table. The number of conjunctions
of conditions, i.e. the number of possible Selection grows like N2 for numeric
attributes. A good estimation for the number of complex aggregates is then

20 C. Charnay et al.

ComplAgg = AggProc-NA. As a subsampling method, we want to keep a search
space of size v/ComplAgg. We then keep \/AggProc aggregation processes and,
in each process, A/2 attributes to put conditions on. This gives us the desired
feature subsampling.

For instance, let us consider again the Auslan dataset. For sake of simplicity, we
consider count, minimum, mazimum and average as the possible aggregation func-
tion, and attributes time and channels 1 to 4. Table 1 shows an example of complex
aggregates subsampling on this dataset. Out of the 16 aggregation processes avail-
able, the square root will be considered at each node, i.e. 4, as shown in Table 1a.
For each aggregation process, half of the 5 secondary attributes will be kept for use
in the selection conjunction of conditions, i.e. 3 per aggregation process, as shown
in Table 1b.

Table 1. Subsampling of complex aggregates.

(a) Subsampling of aggregation processes.

Function |Attribute||Chosen
Count e

Minimum| Time
Minimum | Chanl
Minimum | Chan2 (b) Subsampling of secondary attributes.
Minimum | Chan3

.. Attribute||Chosen

Minimum | Chan4 -

- - Time X
Maximum| Time

. Chanl X
Maximum| Chanl

. Chan2
Maximum| Chan2 X

. Chan3 e
Maximum| Chan3 Chand
Maximum| Chan4

Average | Time X
Average | Chanl
Average | Chan2
Average | Chan3
Average | Chand X

The RRHCCA algorithm aims at exploring the complex aggregates search
space in a stochastic way. It uses random restart hill-climbing to find the best
conjunction of conditions Selection for a given aggregation process (Function,
Feature). The hill-climbing process used to search this space can be RRHCCA,
but we chose to simplify it to make it less time-consuming. We propose two
approaches to achieve that.

We first introduce the “Random” hill-climbing algorithm, for which pseudo-
code is given in Algorithm 2. Like RRHCCA, the aim is to look for an appropriate
conjunction of basic conditions for a fixed aggregation process. But instead of con-
sidering all neighbors of an aggregate at each step of hill-climbing, the Random
algorithm will consider only one, randomly chosen, neighbor, for split evaluation.

CARAF: Complex Aggregates Within Random Forests 21

Algorithm 2. Random Hill-Climbing Algorithm

1:

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:

Input: functions: list of aggregation functions, features: list of attributes of the
secondary table, train: labelled training set.
Output: split: best complex aggregate found through hill-climbing.

aggregationProcesses < InitializeProcesses(functions, features)
bestSplits « ||
bestScore «+— WORST_SCORE_FOR_METRIC
for all aggProc € aggregationProcesses do
iterWithoutImprovement < 0
for i = 1 to MAXITERATIONS and iterWithoutImprovement <
0.2*MAX_ITERATIONS do
hasImproved <« aggProc.GrowRandom(train)
if not hasImproved then
iterWithoutImprovement++
if aggProc.split.score > bestScore then
if aggProc.split.score > bestScore then
bestScore «+ aggProc.split.score
bestSplits «]
end if
bestSplits.Add(aggProc.split)
end if
else
iterWithoutImprovement « 0
end if
end for
end for
split < bestSplits.OneRandomElement()
return split

Algorithm 3. AggregationProcess.GrowRandom: Perform One Step of Hill-
Climbing for the Aggregation Process

1:
2:

=

Input: train: labelled training set.
Output: hasImproved: boolean indicating if the step of the hill-climbing has
improved the best split found in the current hill-climbing of the aggregation process.

allNeighbors <« EnumerateNeighbors(this.aggregate.condition)

neighbor « allNeighbors.OneRandomElement ()

aggregateToTry — CreateAggregate(this.aggregate.function,
this.aggregate.feature, neighbor)

spl «— EvaluateAggregate(aggregateToTry, train)

hasImproved <« UpdateBestSplit(spl)

return hasImproved

22 C. Charnay et al.

Algorithm 4. Global Hill-Climbing Algorithm
1: Input: functions: list of aggregation functions, features: list of attributes of the
secondary table, train: labelled training set.
2: Qutput: split: best complex aggregate found through hill-climbing.

3: aggregationProcesses <« InitializeProcesses(functions, features)
4: bestSplits « |]
5: bestScore «— WORST_SCORE_FOR_METRIC
6: conjunction < InitEmptyConjunction()
7: iterWithoutImprovement «— 0
8 for i = 1 to MAXITERATIONS and iterWithoutlmprovement <
0.2*MAX_ITERATIONS do

allNeighbors <« EnumerateNeighbors(conjunction)
10: neighbor « allNeighbors.oneRandomElement()

©

11: hasImproved «+ false

12: for all aggProc € aggregationProcesses do

13: aggregateToTry «— CreateAggregate(aggProc.function, aggProc.feature,
neighbor)

14: spl «— EvaluateAggregate(aggregateToTry, train)

15: if spl.score > bestScore then

16: if spl.score > bestScore then

17: bestScore «— spl.score

18: bestSplits « ||

19: hasImproved «+ true

20: end if

21: bestSplits.Add(spl)

22: end if

23: end for

24: if hasImproved then

25: iterWithoutImprovement « 0

26: else

27: iterWithoutImprovement++

28: end if

29: end for

30: split « bestSplits.OneRandomElement()
31: return split

This corresponds to the function GrowRandom shown in Algorithm 3. If the cho-
sen neighbor improves over the original aggregate, the search resumes from this
neighbor. The neighbors are defined as in Algorithm 5: from a current aggregate,
they are obtained by adding a random basic condition to the conjunction, remov-
ing a condition from the conjunction, and modifying one.

The hill-climbing has two possible stopping criteria: when a maximum num-
ber of hill-climbing steps have been performed, or when a certain number of
neighbors of a given aggregate have been considered without improvement, this
number has been arbitrarily fixed to 20% of the maximum number of hill-
climbing steps. In other words, if 20% of the maximum number of iterations

CARAF: Complex Aggregates Within Random Forests 23

Algorithm 5. EnumerateNeighbors

1: Input: conjunction: aggregation conjunction of conditions.
2: Output: allNeighbors: array of aggregation conjunctions, neighbors of conjunction.

w

allNeighbors « ||

4: for all attr € secondary attributes not present in conjunction do
nextConjunction « conjunction obtained by adding one randomly initialized
condition on attr to conjunction
allNeighbors.Add (nextConjunction)

end for

o

for all attr € secondary attributes already present in conjunction do
nextConjunction <+ condition obtained by removing the condition on attr present
in conjunction

10: allNeighbors.Add(nextConjunction)

11: end for

12: for all attr € secondary attributes already present in conjunction do

13: for all move € possible moves on the condition on attr present in conjunction
do

14: nextConjunction < aggregate obtained by applying move to conjunction

15: allNeighbors. Add(nextConjunction)

16: end for

17: end for

18: return allNeighbors

have passed with no improvement, the search stops. This aggregation process-
wise hill-climbing loop corresponds to lines 8 through 22.

This hill-climbing search is then performed once for each aggregation process
available, starting from an empty conjunction of conditions, without a restart.
This corresponds to the loop from line 6 to line 23.

Following the idea of the Random hill-climbing algorithm, we propose to
invert the loops of hill-climbing and aggregation process, materialized in the
“Global” hill-climbing algorithm. In practice, only one hill-climbing search is
performed, which aims at finding the best conjunction of conditions for all aggre-
gation processes available. For a given conjunction of conditions, all aggregation
processes are used to form aggregates and splitting conditions, and the con-
junction is evaluated according to the best score achieved over all aggregation
processes. The pseudo-code is given in Algorithm 4. This time, the aggregation
process loop (from line 12 to line 23) is enclosed in the hill-climbing loop (from
line 8 to line 29).

An additional feature is the use of ternary decision trees instead of binary
decision trees. Each internal node of the tree has three sub-branches: one for
success of the test, one for actual failure, and one for the unapplicability of the
test, e.g. if the value of the feature involved in the test cannot be computed for
the instance at hand. This is a way of dealing with empty sets in the context
of complex aggregates. Indeed, imposing conditions on the secondary objects to
aggregate can result in the absence of objects to be aggregated, i.e. aggregating

24 C. Charnay et al.

an empty set. This is a problem for most aggregation functions, e.g. the average.
We choose to tackle this issue by considering this as a third possible outcome of
the test.

5 Experimental Results

In this section, we compare CARAF using the 3 different hill-climbing approaches
to RELAGGS used in combination with Random Forest in Weka [8], and to
FORF. All random forests were run to build 33 trees. We consider seven real-
world real datasets.

Auslan is a task of recognition of the Australian language sign.

— Diterpenes [7] is a molecule classification task.

— Japanese vowels is related to recognition of Japanese vowels utterances from
cepstrum analysis.

— Muskl and Musk?2 [6] are molecule classification tasks.

— Mutagenesis [12] is about predicting mutagenicity of a molecule with respect
to the properties of its atoms. In out two-table setting, we use the so-called
“regression-friendly” subset of the dataset, and consider a molecule as a bag
of atoms, i.e. we do not consider the bond information between atoms.

— Opt-digits deals with optical recognition of handwritten digits.

— Urban blocks [10] is a geographical classification task. This dataset is a clean

version of the one used in [5] in the sense that duplicate urban blocks were

removed.

A description of the datasets is given in Table 2.

The accuracy results are reported in Table 3. It is test set accuracy when a
test set is available for the dataset or out-of-bag accuracy on the training set
when there is no test set. Out-of-bag error is defined as follows: as mentioned
previously, each tree in a Random Forest is trained using a subsample of the
original training set, i.e. for each tree, there is a fraction of the training set that
has not been actually used to build the tree. The out-of-bag accuracy for the tree
is the error made by the tree on this set of unseen examples, called the out-of-bag
examples. Any error metric can be used. For classification tasks, error rate will
be most likely used, while for regression tasks root mean squared error could
be used. By extension, out-of-bag accuracy is defined as the complementary to
1 of the out-of-bag classification error rate. The figures in bold indicate that
the difference with RELAGGS is statistically significant with 95 % confidence,
while the underlined figures indicate a significant difference with FORF. The
run of FORF on the Auslan dataset resulted in an unknown error and cannot
be reported.

We observe that CARAF with the original RRHCCA hill-climbing algo-
rithm is always performing better than both RELAGGS and FORF, the dif-
ference being significant in 3 cases out of 8 over RELAGGS, and 4 out of 7 over
FORF. The Random and Global hill-climbing approaches also perform better

CARAF: Complex Aggregates Within Random Forests

25

Table 2. Characteristics of the datasets used in the experimental comparison.

Dataset Instances Classes | Secondary objects | Secondary attributes
Auslan 2 565 96 146 949 23

Diterpenes 1 503 23 30 060 2

Japanese vowels | 270 4+ 370 9 9 961 12

Musk1 92 2 476 166

Musk2 102 2 6 598 166

Mutagenesis 188 2 4 893

Opt-digits 3823 +1797|10 5 754 880

Urban blocks 591 6 7692

Table 3. Results of CARAF with different hill-climbing heuristics on different datasets
(out-of-bag accuracy or test set accuracy).

Dataset RELAGGS |FORF |RRHCCA |Random Global
Auslan 94.19 % ERR |96.53% 95.91 % 94.66 %
Diterpenes 89.09 % 90.49 % | 92.95 % 85.06 % 93.35 %
Japanese vowels | 93.78 % 94.86 % | 95.41 % 97.30 % 97.03 %
Musk1 80.43 % 78.26 % | 89.13 % 84.78 % 80.43 %
Musk2 76.47 % 75.49% | 81.37% 85.29 % 82.35%
Mutagenesis 88.30 % 87.77% 190.43 % 91.49 % 92.02%
Opt-digits 22.37% 76.57 % | 95.94 % 94.60 % 92.77%
Urban blocks 83.42% 75.81% | 84.94% 83.76 % 84.60 %
8(3)-7(4)|7(8)-6(2)]75(3)-7(3)

than RELAGGS and FORF in a majority of cases, some cases also being statisti-
cally significant. These two approaches, considering less complex aggregates, also
have the advantage of speed over RRHCCA. As shown in Table 4, the runtimes
of both Random and Global are lower by a factor at least 4 than the runtimes of
RRHCCA, Global being faster than Random. The loss in accuracy performance
is tiny: RRHCCA outperforms Random 5 times, the difference being statistically
significant only once. RRHCCA outperforms Global 4 times, significantly twice.
The Random and Global approaches are then good performers too. Therefore,
our recommendation is, if runtime is not a problem for the dataset at hand, to
use RRHCCA. If time is critical, then Random is the best option, followed by

Global.

26 C. Charnay et al.

Table 4. Runtime of the algorithms (in minutes).

Dataset RRHCCA | Random | Global
Auslan 921 250 146
Diterpenes 4 1 1
Japanese vowels | 13 1 1
Musk1 98 8 5
Musk2 733 71 55
Mutagenesis 6

Opt-digits 35 9

Urban blocks 4 1 1

6 Aggregation Processes Selection with Random Forests

Random Forests can be used to perform feature selection, as introduced by
Breiman in [4]. The aim is to first check which families of complex aggregates
are the most promising, to learn a model afterwards using only these useful
families.

Our goal is to perform feature selection, i.e. to assess the importance of
an input feature for prediction of the output attribute. This achieved using
permutation tests. For a given tree, we first measure the out-of-bag error. The
second step is to permute among the out-of-bag examples the value for the
input feature we want to measure the importance. This gives a new out-of-bag
examples set, for which we compute an after-permutation out-of-bag error. The
importance of the feature at the tree-level is the increase in error between the
after-permutation out-of-bag set and the original out-of-bag set. The final feature
importance is then obtained by averaging tree-level feature importances over the
whole forest.

In a relational context where complex aggregates are being used, this method
needs adaptation. Indeed, the size of the complex aggregates search space implies
that a given complex aggregate is rarely used twice in the same model. However,
the structure of the complex aggregates allows us to define families of complex
aggregates, and to measure importance of the families rather than specific com-
plex aggregates.

Families of complex aggregates can be defined according to two elements:

— Aggregation processes: Complex aggregates sharing a common aggregation
process will belong to the same family.

— Attributes in selection conjunctions: Complex aggregates whose selection con-
junctions of conditions have a condition on a common attribute will belong to
the same family.

These two elements can be combined to define more specific attributes, e.g.
complex aggregates with the same aggregation process whose conjunctions of
conditions have a condition on the same given attribute.

CARAF: Complex Aggregates Within Random Forests 27

As an example, we use the urban blocks dataset from Sect.5. We consider
count, minimum, mazimum and average as the possible aggregation functions.
Block-wise features are area, elongation, convexity and density, while building-
wise features are area, elongation and convexity.

If we define families of complex aggregates at the aggregation process level,
we obtain as many families as aggregation processes, 10 in this example. Thus,
following aggregates will fall into the same family, since they are all based on
the same aggregation process, the average area of buildings:

— average(area, buildings, true)
— average(area, buildings, elongation > 0.7)
— average(area, buildings, convexity < 0.5)

If we define families based on one common attribute in the conjunction of
conditions, we have as many families as attributes in the secondary table, 3 in
this example. Thus, following aggregates will fall into the same family, since their
conjunctions of conditions all have a condition on elongation of buildings:

— average(area, buildings, elongation > 0.7)
— maximum(convexity, buildings, elongation < 0.6)
— count(buildings, elongation < 0.8 A area > 100)

Both can be combined to create families based on the aggregation process
and a common attribute in conjunction of conditions, 30 in this example. For
instance, following aggregates will belong to the same family, sharing both the
aggregation process of average area of buildings and a condition on elongation
of buildings:

— average(area, buildings, elongation > 0.7)
— average(area, buildings, elongation < 0.9 A convexity > 0.7)
— average(area, buildings, elongation > 0.5 A area < 100)

The permutation of values of complex aggregates has then to be performed.
Since we are not permuting the values of a single feature, but of a whole family,
we have to keep some coherence: each training example has one value for each
aggregate in the family, and they should not be separated by the permutation. An
example that obtains the value of a second example for a first aggregate, should
not obtain the value of a third example for a second aggregate, but rather the
value of the second example. In other words, for a given family of aggregates, only
one permutation of examples has to be found, since a set of aggregate values for
a given example should be conserved through permutation. We achieve this by
permuting groups of secondary objects, i.e. the set of secondary objects related
to one example will be assigned to another example. By doing this, all aggregate
values are transferred from one example to another.

The family importance is then computed as described above: for each tree
we obtain the error gain between before and after the permutation, and the gain
average over all trees gives the final importance.

28 C. Charnay et al.

Table 5. Importance of main features and aggregation processes in urban blocks.

Feature Score
Area 0.039
Elongation 0.003
Convexity 0.005
Density 0.157
Count 0.027
Minimum Area 0.062

Minimum Elongation | 0.034
Minimum Convexity |0.028
Maximum Area 0.111

Maximum Elongation | 0.054

Maximum Convexity |0.038
Average Area 0.177
Average Elongation |0.061

Average Convexity 0.039

As an example, the importances of blocks main features and buildings aggre-
gation processes are reported in Table 5. Importances were obtained using a for-
est of 100 trees built using the “Random” hill-climbing heuristic to find complex
aggregates.

We observe that the 3 most important features for urban blocks classification
are the average area of buildings, the density of blocks, and the maximum area
of buildings.

7 Conclusion and Future Work

In this paper, we presented CARAF, a relational random forest learner based on
complex aggregates. The hill-climbing algorithms to explore the search space per-
form better than RELAGGS with Random Forests and FORF on most datasets.
The basic random hill-climbing algorithms to explore the complex aggregates
search space yield a considerable speed up while not suffering performance loss.

Future work will consist in exploring database technologies that are suitable
for learning from relational data. Indeed, most relational algorithms have not
been designed to handle big data, and there is an increasing trend towards rele-
vant representation of relational data and the technologies, potentially NoSQL-
based, fitted for relational data mining.

CARAF: Complex Aggregates Within Random Forests 29

References

10.

11.

12.

13.

14.

Anderson, G., Pfahringer, B.: Relational random forests based on random relational
rules. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009,
pp. 986-991 (2009). http://ijcai.org/papers09/Papers/IJCAI09-167.pdf

Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1-2), 285-297 (1998)

Boullé, M.: Towards automatic feature construction for supervised classifica-
tion. In: Calders, T., Esposito, F., Hiillermeier, E., Meo, R. (eds.) ECML
PKDD 2014, Part I. LNCS, vol. 8724, pp. 181-196. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-662-44848-9_12

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001). http://dx.doi.org/
10.1023/A:1010933404324

Charnay, C., Lachiche, N., Braud, A.: Construction of complex aggregates with
random restart hill-climbing. In: Davis, J., et al. (eds.) ILP 2014. LNCS, vol. 9046,
pp. 49-61. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23708-4_4
Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
problem with axis-parallel rectangles. Artif. Intell. 89(1-2), 31-71 (1997).
http://dx.doi.org/10.1016/S0004-3702(96)00034-3

Dzeroski, S., Schulze-Kremer, S., Heidtke, K.R., Siems, K., Wettschereck, D.,
Blockeel, H.: Diterpene structure elucidation from 13CNMR spectra with induc-
tive logic programming. Appl. Artif. Intell. 12(5), 363-383 (1998). http://
dx.doi.org/10.1080,/088395198117686

Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10-18
(2009). http://doi.acm.org/10.1145/1656274.1656278

Krogel, M.A., Wrobel, S.: Facets of aggregation approaches to propositionalization.
In: Horvath, T., Yamamoto, A. (eds.) Work-in-Progress Track at the Thirteenth
International Conference on Inductive Logic Programming (ILP) (2003)

Puissant, A., Lachiche, N., Skupinski, G., Braud, A., Perret, J., Mas, A.: Classifi-
cation et évolution des tissus urbains a partir de données vectorielles. Rev. Int. de
Géomatique 21(4), 513-532 (2011)

Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco (1993)

Srinivasan, A., Muggleton, S., Sternberg, M.J.E., King, R.D.: Theories for muta-
genicity: A study in first-order and feature-based induction. Artif. Intell. 85(1-2),
277-299 (1996). http://dx.doi.org/10.1016/0004-3702(95)00122-0

Van Assche, A., Vens, C., Blockeel, H., Dzeroski, S.: First order random forests:
Learning relational classifiers with complex aggregates. Mach. Learn. 64(1-3), 149—
182 (2006)

Vens, C., Ramon, J., Blockeel, H.: Refining aggregate conditions in relational learn-
ing. In: Flirnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 383-394. Springer, Heidelberg (2006)

http://ijcai.org/papers09/Papers/IJCAI09-167.pdf
http://dx.doi.org/10.1007/978-3-662-44848-9_12
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/978-3-319-23708-4_4
http://dx.doi.org/10.1016/S0004-3702(96)00034-3
http://dx.doi.org/10.1080/088395198117686
http://dx.doi.org/10.1080/088395198117686
http://doi.acm.org/10.1145/1656274.1656278
http://dx.doi.org/10.1016/0004-3702(95)00122-0

2 Springer
http://www.springer.com/978-3-319-40565-0

Inductive Logic Programming

25th International Conference, ILP 2015, Kyoto, Japan,
August 20-22, 2015, Revised Selected Papers

Inoue, K.; Ohwada, H.; Yamamoto, A, (Eds.)

2016, X, 215 p. 56 illus., Softcover

ISEN: 978-3-319-40565-0

	CARAF: Complex Aggregates within Random Forests
	1 Introduction and Context
	2 Complex Aggregates
	3 Random Forests
	4 CARAF: Complex Aggregates with RAndom Forests
	5 Experimental Results
	6 Aggregation Processes Selection with Random Forests
	7 Conclusion and Future Work
	References

