
Chapter 2
On the PLS Algorithm for Multiple Regression
(PLS1)

Yoshio Takane and Sébastien Loisel

Abstract Partial least squares (PLS) was first introduced by Wold in the mid 1960s
as a heuristic algorithm to solve linear least squares (LS) problems. No optimality
property of the algorithm was known then. Since then, however, a number of
interesting properties have been established about the PLS algorithm for regression
analysis (called PLS1). This paper shows that the PLS estimator for a specific
dimensionality S is a kind of constrained LS estimator confined to a Krylov subspace
of dimensionality S. Links to the Lanczos bidiagonalization and conjugate gradient
methods are also discussed from a somewhat different perspective from previous
authors.

Keywords Krylov subspace • NIPALS • PLS1 algorithm • Lanczos bidiagonal-
ization • Conjugate gradients • Constrained principal component analysis (CPCA)

2.1 Introduction

Partial least squares (PLS) was first introduced by Wold (1966) as a heuristic
algorithm for estimating parameters in multiple regression. Since then, it has
been elaborated in many directions, including extensions to multivariate cases
(Abdi 2007; de Jong 1993) and structural equation modeling (Lohmöller 1989;
Wold 1982). In this paper, we focus on the original PLS algorithm for univariate
regression (called PLS1), and show its optimality given the subspace in which
the vector of regression coefficients is supposed to lie. Links to state-of-the-art
algorithms for solving a system of linear simultaneous equations, such as the
Lanczos bidiagonalization and the conjugate gradient methods, are also discussed
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from a somewhat different perspective from previous authors (Eldén 2004; Phatak
and de Hoog 2002). We refer the reader to Rosipal and Krämer (2006) for more
comprehensive accounts and reviews of new developments of PLS.

2.2 PLS1 as Constrained Least Squares Estimator

Consider a linear regression model

z D Gb C e; (2.1)

where z is the N-component vector of observations on the criterion variable, G is
the N � P matrix of predictor variables, b is the P-component vector of regression
coefficients, and e is the N-component vector of disturbance terms. The ordinary LS
(OLS) criterion is often used to estimate b under the iid (independent and identically
distributed) normal assumption on e. This is a reasonable practice if N is large
compared to P, and columns of G are not highly collinear (i.e., as long as the matrix
G0G is well-conditioned). However, if this condition is not satisfied, the use of OLS
estimators (OLSE) is not recommended, because then these estimators tend to have
large variances. Principal component regression (PCR) is often employed in such
situations. In PCR, principal component analysis (PCA) is first applied to G to find
a low rank (say, rank S) approximation, which is subsequently used as the set of new
predictor variables in a linear regression analysis. One potential problem with PCR
is that the low rank approximation of G best accounts for G but is not necessarily
optimal for predicting z. By contrast, PLS extracts components of G that are good
predictors of z. For the case of univariate regression, the PLS algorithm (called
PLS1) proceeds as follows:

PLS1 Algorithm

Step 1. Column-wise center G and z, and set G0 D G.
Step 2. Repeat the following substeps for i D 1; � � � ; S (S � rank.G/):

Step 2.1. Set wi D G0
i�1z=kG0

i�1zk, where kG0
i�1zk D .z0Gi�1G0

i�1z/1=2.
Step 2.2. Set ti D Gi�1wi=kGi�1wik.
Step 2.3. Set vi D G0

i�1ti.
Step 2.4. Set Gi D Gi�1 � tiv0

i D QGi�1wi Gi�1 (deflation),

where QGi�1wi D I � Gi�1wi.w0
iG

0
i�1Gi�1wi/

�1w0
iG

0
i�1, and where 0 denotes the

transpose operation, and jj:jj denotes the L2 norm of a vector (i.e., jjxjj D p
x0x,

see, e.g., Takane (2014), for details); vectors wi, ti, and vi are called (respectively)
weights, scores, and loadings, and are collected in matrices WS, TS, and VS. For a
given S, the PLS estimator (PLSE) of b is given by

Ob.S/
PLSE D WS.V0

SWS/�1T0
Sz (2.2)
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(see, e.g., Abdi 2007). The algorithm above assumes that S is known and, actually,
the choice of its value is crucial for good performance of PLSE (a cross validation
method is often used to choose the best value of S). It has been demonstrated (Phatak
and de Hoog 2002) that for a given value of S, the PLSE of b has better predictability
than the corresponding PCR estimator.

The PLSE of b can be regarded as a special kind of constrained LS estimator
(CLSE), in which b is constrained to lie in the Krylov subspace of dimensionality S
defined by

KS.G0G; G0z/ D Sp.KS/; (2.3)

where Sp.KS/ is the space spanned by the column vectors of KS, and

Ks D ŒG0z; .G0G/G0z; � � � ; .G0G/S�1G0z� (2.4)

is called the Krylov matrix of order S. Because Sp.WS/ D KS.G0G; G0z/ (see
Eldén 2004, proposition 3.1; Phatak and de Hoog 2002) b can be re-parameterized
as b D WSa for some a. Then Eq. (2.1) can be rewritten as

z D GWSa C e: (2.5)

The OLSE of a is given by

Oa D .W0
SG0GWS/�1W0

SG0z; (2.6)

from which the CLSE of b is found as

Ob.S/
CLSE D WS Oa D WS.W0

SG0GWS/�1W0
SG0z: (2.7)

To show that (2.7) is indeed equivalent to (2.2), we need several well-known
results in the PLS literature (Bro and Eldén 2009; de Jong 1993; Eldén 2004; Phatak
and de Hoog 2002). First of all, WS is column-wise orthogonal, that is,

W0
SWS D IS: (2.8)

Secondly, TS is also column-wise orthogonal,

T0
STS D IS; (2.9)

and

TSLS D GWS; (2.10)

where LS is an upper bidiagonal matrix. Relations (2.8), (2.9) and (2.10) imply that

W0
SG0GWS D L0

SLS D HS; (2.11)
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where HS is tridiagonal. Thirdly,

V0
S D T0

SG; (2.12)

so that

LS D T0
SGWS D V0

SWS: (2.13)

Now it is straightforward to show that

Ob.S/
CLSE D WS.W0

SG0GWS/�1W0
SG0z

D WSH�1
S L0

ST0
Sz

D WS.L0
SLS/�1L0

ST0
Sz

D WSL�1
S T0

Sz

D WS.V0
SWS/�1T0

Sz

D Ob.S/
PLSE; (2.14)

and this establishes the equivalence between Eqs. (2.7) and (2.2).
The PLSE of regression parameters reduces to the OLSE if S D rank.G/ (when

rank.G/ < P, we use GC, which is the Moore-Penrose inverse of G, in lieu of
.G0G/�1G in the OLSE for regression coefficients).

2.3 Relations to the Lanczos Bidiagonalization Method

It has been pointed out (Eldén 2004) that PLS1 described above is equivalent to the
following Lanczos bidiagonalization algorithm:

The Lanczos Bidiagonalization (LBD) Algorithm

Step 1. Column-wise center G, and compute u1 D G0z=jjG0zjj and q1 D Gu1=ı1,
where ı1 D jjGu1jj.

Step 2. For i D 2; � � � ; S (this is the same S as in PLS1),

(a) Compute �i�1ui D G0qi�1 � ıi�1ui�1.
(b) Compute ıiqi D Gui � �i�1qi�1.

Scalars �i�1 and ıi (i D 2; � � � ; S) are the normalization factors to make jjuijj D 1

and jjqi�1jj D 1, respectively.
Let US and QS represent the collections of ui and qi for i D 1; � � � ; S. It has been

shown (Eldén 2004, Proposition 3.1) that these two matrices are essentially the same
as WS and TS, respectively, obtained in PLS1. Here “essentially” means that these
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two matrices are identical to WS and TS except that the even columns of US and QS

are reflected (i.e., have their sign reversed). We show this explicitly for u2 and q2

(i.e., u2 D �w2 and q2 D �t2). It is obvious from Step 1 of the two algorithms that

w1 D u1 and t1 D q1: (2.15)

Let ˛1 D jjG0zjj. Then

w2 / G0QGw1z (from Step 2.4 of the PLS1 algorithm)

D G0z � G0Gw1.w0
1G0Gw1/�1w0

1G0z

D ˛1.w1 � G0Gw1=ı2
1/ (2.16)

/ �G0Gw1=ı1 C ı1w1; (2.17)

where / means “proportional.” To obtain the last expression, we multiplied
Eq. (2.16) by ı1=˛1 (> 0). This last expression is proportional to �u2, where
u2 / G0Gu1=ı1 � ı1u1 from Step 2(a) of the Lanczos algorithm. This implies
u2 D �w2, because both u2 and w2 are normalized.

Similarly, define ˇ2
1 D w0

1.G0G/2w1. Then

t2 / QGw1GG0QGw1z (from Step 2.2 of the PLS1 algorithm)

D ˛1.Gw1 � GG0Gw1=ı2
1 � Gw1 C ˇ2

1

ı4
1

Gw1/ (2.18)

/ �GG0Gw1 C ˇ2
1

ı2
1

Gw1: (2.19)

To obtain Eq. (2.19), we multiplied (2.18) by ı2
1=˛1 (> 0). On the other hand, we

have

q2 / 1

ı1�1

.GG0Gu1 � ı2
1Gu1 � �2

1 Gu1/ (from Step 2(b) of the Lanczos algorithm)

/ GG0Gu1 � .ı2
1 C �2

1 /Gu1: (2.20)

To show that q2 / �t2, it remains to show that

�2 C ı2 D ˇ2
1=ı2

1: (2.21)

From Step 2(a) of the Lanczos algorithm,

�2 D .G0Gu1=ı1 � ı1u1/0.G0Gu1=ı1 � ı1u1/

D ˇ2=ı2 � ı2; (2.22)

and so indeed (2.21) holds. Again, we have q2 D �t2, because both q2 and t2 are
normalized.
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The sign reversals of u2 and q2 yield u3 and q3 identical to w3 and t3, respectively,
by similar sign reversals, and u4 and q4 which are sign reversals of w4 and t4, and so
on. Thus, only even columns of Us and Qs are affected (i.e., have their sign reversed)
relative to the corresponding columns of WS and TS, respectively. Of course, these
sign reversals have no effect on estimates of regression parameters. The estimate of
regression parameters by the Lanczos bidiagonaliation method is given by

Ob.S/
LBD D Us.L�

S /�1Q0
Sz; (2.23)

where

L�
S D Q0

SGUS; (2.24)

which is upper bidiagonal, as is LS (defined in Eq. (2.13)). matrix L�
S differs

from matrix LS only in the sign of its super-diagonal elements. The matrices L�1
S

and .L�
S /�1 are also upper bidiagonal, for which the super-diagonal elements are

opposite in sign, while their diagonal elements remain the same. Thus

WSL�1
S T0

S D
sX

iD1

.`i;iwit0
i C `i;iC1wit0

iC1/

D
sX

iD1

.`�
i;iuiq0

i C `�
i;iC1uiq0

iC1/

D Us.L�
s /�1Q0

s; (2.25)

where `i;j and `�
i;j are the ij-th element of (respectively) LS and L�

S . Note that

`i;i D `�
i;i; wit0

i D uiq0
i; `i;iC1 D �`�

i;iC1; and wit0
iC1 D �uiq0

iC1 (2.26)

It is widely known (see, e.g., Saad 2003) that the matrix of orthogonal basis
vectors generated by the Arnoldi orthogonalization of KS (Arnoldi 1951) is
identical to US obtained in the Lanczos algorithm. Starting from u1 D G0z=kG0zk,
this orthogonalization method finds uiC1 (i D 1; � � � ; S � 1) by successively
orthogonalizing G0Gui (i D 1; � � � ; S � 1) to all previous ui’s by a procedure
similar to the Gram-Schmidt orthogonalization method. This yields US such that
G0GUS D USH�

S , or

U0
SG0GUS D L�0

S L�
S D H�

S ; (2.27)

where H�
S is tridiagonal as is HS defined in Eq. (2.11). The diagonal elements of

this matrix are identical to those of HS while its sub- and super-diagonal elements
have their sign reversed. Matrix H�

S is called the Lanczos tridiagonal matrix and it
is useful to obtain eigenvalues of G0G.
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2.4 Relations to the Conjugate Gradient Method

It has been pointed out (Phatak and de Hoog 2002) that the conjugate gradient (CG)
algorithm (Hestenes and Stiefel 1951) for solving a system of linear simultaneous
equations G0Gb D G0y gives solutions identical to Ob.s/

PLSE [s D 1; � � � ; rank.G/],

if the CG iteration starts from the initial solution Ob.0/
CG � b0 D 0. To verify their

assertion, we look into the CG algorithm stated as follows:

The Conjugate Gradient (CG) Algorithm

Step 1. Initialize b0 D 0. Then, r0 D G0z � G0Gb0 D G0z D d0. (Vectors r0 and
d0 are called initial residual and initial direction vectors, respectively.)

Step 2. For i D 0; � � � ; s � 1, compute:

(a) ai D d0
iri=d0

iG
0Gdi D jjrijj2=d0

iG
0Gdi.

(b) biC1 D bi C aidi.
(c) riC1 D G0z � G0GbiC1 D ri � aiG0Gdi D Q0

di=G0Gri, where Qdi=G0G D
I � di.d0

iG
0Gdi/

�1d0
iG

0G is the projector onto the space orthogonal to
Sp.G0Gdi/ along Sp.di/ [its transpose, on the other hand, is the projector
onto the space orthogonal Sp.di/ along Sp.G0Gdi/].

(d) bi D �r0
iC1G0Gdi=d0

iG
0Gdi D jjriC1jj2=jjrijj2.

(e) diC1 D riC1 C bidi D Qdi=G0GriC1.

Let Rj D Œr0; � � � ; rj�1� and Dj D Œd0; � � � ; dj�1� for j � S. We first show that

Sp.Rj/ D Sp.Dj/ D Kj.G0G; G0z/ (2.28)

by induction, where, as before, Sp.A/ indicates the space spanned by the column
vectors of matrix A. It is obvious that r0 D d0 D G0z, so that Sp.R1/ D Sp.D1/ D
K1.G0G; G0z/. From Step 2(c) of the CG algorithm, we have

r1 D Q0
di=G0Gr0 D r0 � G0Gd0c0 (2.29)

for some scalar c0, so that r1 2 K2.G0G; G0z/ because G0Gd0 2 K2.G0G; G0z/.
From Step 2(e), we also have

d1 D Qd0=G0Gr1 D r1 � d0c�
0 (2.30)

for some c�
0 , so that d1 2 K2.G0G; G0z/. This shows that Sp.R2/ D Sp.D2/ D

K2.G0G; G0z/. Similarly, we have r2 2 K3.G0G; G0z/ and d2 2 K3.G0G; G0z/, so
that Sp.R3/ D Sp.D3/ D K3.G0G; G0z/, and so on.

The property of Dj above implies that Sp.WS/ is identical to Sp.DS/, which in
turn implies that

Ob.S/
CG D DS.D0

SGGDS/�1D0
SGz (2.31)
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is identical to Ob.S/
CLSE as defined in Eq. (2.7), which in turn is equal to Ob.S/

PLSE defined in
Eq. (2.2) (Phatak and de Hoog 2002) by virtue of Eq. (2.14). It remains to show that
Ob.S/

CG defined in (2.31) coincides with bS generated by the CG algorithm. By the G0G-
conjugacy of dj’s (the orthogonality of dj’s with respect to G0G, i.e., d0

iG
0Gdj D 0

for any i ¤ j, as will be shown later), Eq. (2.31) can be rewritten as

Ob.S/
CG D

S�1X

iD0

di.d0
iG

0Gdi/
�1d0

iG
0z: (2.32)

From Step 2(b) of the CG algorithm, on the other hand, we have

b1 D d0.d0
0G0Gd0/�1d0

0r0 D d0.d0
0G0Gd0/�1d0

0Gz D Ob.1/
CG; (2.33)

and

b3 D Ob.1/
CG C d1.d0

1G0Gd1/�1d0
1r1;

D Ob.1/
CG C d1.d0

1G0Gd1/�1d0
1G0z D Ob.2/

CG; (2.34)

since d0
1r1 D d0

1Q0
d0=G0Gr0 D d0

1r0 D d0
1Gz (the second equality in the preceding

equation holds again due to the G0G-conjugacy of d1 and d0). Similarly, we obtain

b3 D Ob.2/
CG C d2.d0

2G0Gd2/�1d0
2r2;

D Ob.2/
CG C d2.d0

2G0Gd2/�1d0
2G0z D Ob.3/

CG; (2.35)

since d0
2r2 D d0

2Q0
d1=G0Gr1 D d0

2r1 D d0
2Q0

d0=G0Gr0 D d0
2r0 D d0

2Gz. This extends to
S larger than 3. This proves the claim made above that (2.31) is indeed identical to
bS obtained from the CG iteration.

It is rather intricate to show the G0G-conjugacy of direction vectors (i.e.,
d0

jG
0Gdi D 0 for j ¤ i), although it is widely known in the numerical linear

algebra literature (Golub and van Loan 1989). The proofs given in Golub and van
Loan (1989) are not very easy to follow, however. In what follows, we attempt
to provide a step-by-step proof of this fact. Let Rj and Dj be as defined above.
We temporarily assume that the columns of Dj are already G0G-conjugate (i.e.,
D0

jG
0GDj is diagonal). Later we show that such construction of Dj is possible.

We first show that

d0
j�1rj D 0: (2.36)

From Step 2(c) of the CG algorithm, we have

d0
j�1rj D d0

j�1Q0
dj�1=G0Grj�1 D d0

j�1.I � G0Gdj�1.d0
j�1G0Gdj�1/�1d0

j�1/rj�1 D 0;

(2.37)
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as claimed above. We next show that

d0
j�2rj D 0; (2.38)

based on (2.36). From Step 2(c) of the algorithm, we have

d0
j�2rj D d0

j�2Q0
dj�1=G0Grj�1

D d0
j�2.I � G0Gdj�1.d0

j�1GGdj�1/�1d0
j�1/rj�1

D d0
j�2rj�1 D 0; (2.39)

as claimed. Note that d0
j�2G0Gdj�1 D 0 by the assumption of the G0G-conjugacy

(among the column vectors) of Dj. The last equality in (2.39) holds due to (2.36).
By repeating essentially the same process, we can prove that d0

j�krj D 0 for k D
3; � � � ; j, which implies

D0
jrj D 0; (2.40)

and

R0
jrj D 0; (2.41)

since Sp.Dj/ D Sp.Rj/ D Kj.G0G; G0z/. These relations indicate that in the CG
method, the residual vector rj is orthogonal to all previous search directions as well
as all previous residual vectors.

We are now in a position to prove that

d0
j�1G0Gdj D 0: (2.42)

To do so, we first need to show that

d0
jrj D jjrjjj2; (2.43)

and also that

d0
jrj�1 D jjrjjj2: (2.44)

For Eq. (2.43), we note that

d0
jrj D r0

jQ
0
dj�1=G0Grj (by Step 2(e))

D jjrjjj2 � r0
jG

0Gdj�1.d0
j�1G0Gdj�1/�1d0

j�1/rj D jjrjjj2; (2.45)
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due to Eq. (2.36). For Eq. (2.44), we have

d0
jrj�1 D r0

jrj�1 C bj�1d0
j�1rj�1 (by Step 2(e))

D 0 C .jjrjjj2=jjrj�1jj2/jjrj�1jj2 D jjrjjj2: (2.46)

To show that (2.42) holds is now straightforward. We note that

r0
jdj D r0

j�1dj � aj�1d0
j�1G0Gdj (2.47)

by Step 2(c), and that r0
jdj D r0

j�1dj D jjrjjj2 by Eqs. (2.43) and (2.44). Since
aj�1 ¤ 0, this implies that d0

j�1G0Gdj D 0. That is, dj is G0G-conjugate to the
previous direction vector dj�1.

We can also show that dj is G0G-conjugate to all previous direction vectors
despite the fact that at any specific iteration, dj is taken to be G0G-conjugate to
only dj�1. We begin with

d0
j�2G0Gdj D 0: (2.48)

We first note that

r0
j�2dj D r0

j�2rj C bj�1r0
j�2dj�1 (by Step 2(e))

D 0 C .jjrjjj2=jjrj�1jj2/jjrj�1jj2 (by (2.44))

D jjrjjj2: (2.49)

We also have

r0
j�1dj D r0

j�2dj � aj�2d0
j�2G0Gdj (2.50)

by Step 2(c). Since r0
j�1dj D r0

j�2dj D jjrjjj2 and aj�2 ¤ 0, this implies (2.48). We
may follow a similar line of argument as above, and show that d0

j�kG0Gdj D 0 for
k D 3; � � � ; j. This shows that D0

jG
0Gdj D 0, as claimed.

In the proof above, it was assumed that the column vectors of Dj were G0G-
conjugate. It remains to show that such construction of Dj is possible. We have
D0

1r1 D d0
0r1 D 0 by (2.36). This implies that R0

1r1 D 0 (since Sp.D1/ D Sp.R1/),
which in turn implies that D0

1G0Gd1 D d0
0G0Gd1 D 0. The columns of D2 D

Œd0; d1� are now shown to be G0G-conjugate. We repeat this process until we reach
Dj whose column vectors are all G0G-conjugate. This process also generates Rj

whose columns are mutually orthogonal. This means that all residual vectors are
orthogonal in the CG method. The CG algorithm is also equivalent to the GMRES
(Generalized Minimum Residual) method (Saad and Schultz 1986), when the latter
is applied to the symmetric positive definite (pd) matrix G0G.
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It may also be pointed out that RS is an un-normalized version of WS obtained
in PLS1. This can be seen from the fact that the column vectors of both of these
matrices are orthogonal to each other, and that Sp.WS/ D Sp.RS/ D KS.G0G; G0z/.
Although some columns of RS may be sign-reversed as are some columns of Us in
the Lanczos method, it can be directly verified that this does not happen to r2 (i.e.,
r2=jjr2jj D w2). So it is not likely to happen to other columns of RS.

2.5 Concluding Remarks

The PLS1 algorithm was initially invented as a heuristic technique to solve LS
problems (Wold 1966). No optimality properties of the algorithm were known at
that time, and for a long time it had been criticized for being somewhat ad-hoc. It
was later shown, however, that it is equivalent to some of the most sophisticated
numerical algorithms to date for solving systems of linear simultaneous equations,
such as the Lanczos bidiagonalization and the conjugate gradient methods. It
is amazing, and indeed admirable, that Herman Wold almost single-handedly
reinvented the “wheel” in a totally different context.
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