Chapter 2
On the PLS Algorithm for Multiple Regression
(PLS1)

Yoshio Takane and Sébastien Loisel

Abstract Partial least squares (PLS) was first introduced by Wold in the mid 1960s
as a heuristic algorithm to solve linear least squares (LS) problems. No optimality
property of the algorithm was known then. Since then, however, a number of
interesting properties have been established about the PLS algorithm for regression
analysis (called PLS1). This paper shows that the PLS estimator for a specific
dimensionality S is a kind of constrained LS estimator confined to a Krylov subspace
of dimensionality S. Links to the Lanczos bidiagonalization and conjugate gradient
methods are also discussed from a somewhat different perspective from previous
authors.

Keywords Krylov subspace « NIPALS ¢ PLSI algorithm ¢ Lanczos bidiagonal-
ization * Conjugate gradients * Constrained principal component analysis (CPCA)

2.1 Introduction

Partial least squares (PLS) was first introduced by Wold (1966) as a heuristic
algorithm for estimating parameters in multiple regression. Since then, it has
been elaborated in many directions, including extensions to multivariate cases
(Abdi 2007; de Jong 1993) and structural equation modeling (Lohmdller 1989;
Wold 1982). In this paper, we focus on the original PLS algorithm for univariate
regression (called PLS1), and show its optimality given the subspace in which
the vector of regression coefficients is supposed to lie. Links to state-of-the-art
algorithms for solving a system of linear simultaneous equations, such as the
Lanczos bidiagonalization and the conjugate gradient methods, are also discussed
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from a somewhat different perspective from previous authors (Eldén 2004; Phatak
and de Hoog 2002). We refer the reader to Rosipal and Kridmer (2006) for more
comprehensive accounts and reviews of new developments of PLS.

2.2 PLSI1 as Constrained Least Squares Estimator

Consider a linear regression model
z=Gb+e, 2.1)

where z is the N-component vector of observations on the criterion variable, G is
the N x P matrix of predictor variables, b is the P-component vector of regression
coefficients, and e is the N-component vector of disturbance terms. The ordinary LS
(OLS) criterion is often used to estimate b under the iid (independent and identically
distributed) normal assumption on e. This is a reasonable practice if N is large
compared to P, and columns of G are not highly collinear (i.e., as long as the matrix
G’G is well-conditioned). However, if this condition is not satisfied, the use of OLS
estimators (OLSE) is not recommended, because then these estimators tend to have
large variances. Principal component regression (PCR) is often employed in such
situations. In PCR, principal component analysis (PCA) is first applied to G to find
a low rank (say, rank S) approximation, which is subsequently used as the set of new
predictor variables in a linear regression analysis. One potential problem with PCR
is that the low rank approximation of G best accounts for G but is not necessarily
optimal for predicting z. By contrast, PLS extracts components of G that are good
predictors of z. For the case of univariate regression, the PLS algorithm (called
PLS1) proceeds as follows:

PLS1 Algorithm

Step 1. Column-wise center G and z, and set Gy = G.
Step 2. Repeat the following substeps fori = 1,--- , S (§ < rank(G)):

Step2.1.  Setw; = G}_,z/|G/_,z|, where ||G|_,z|| = (2G;—1G/_,z)"/>.
Step2.2.  Sett; = G,‘_IW,'/”G,'_]WZ‘”.

Step 2.3.  Setv; = G}_,t..

Step2.4. SetG; = G- —t;V; = Qg,_,w,Gi—1 (deflation),

where Qg,_,wi = I — Gimywi(W/G/_;G;—1w;)"'W/G/_,, and where ' denotes the
transpose operation, and ||.|| denotes the L, norm of a vector (i.e., ||x|]| = VXX,
see, e.g., Takane (2014), for details); vectors w;, t;, and v; are called (respectively)
weights, scores, and loadings, and are collected in matrices Wy, T, and V. For a
given S, the PLS estimator (PLSE) of b is given by

b\ = Ws(VsWs) ™' Tz 2.2)
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(see, e.g., Abdi 2007). The algorithm above assumes that S is known and, actually,
the choice of its value is crucial for good performance of PLSE (a cross validation
method is often used to choose the best value of ). It has been demonstrated (Phatak
and de Hoog 2002) that for a given value of S, the PLSE of b has better predictability
than the corresponding PCR estimator.

The PLSE of b can be regarded as a special kind of constrained LS estimator
(CLSE), in which b is constrained to lie in the Krylov subspace of dimensionality S
defined by

H5(G'G.G') = Sp(Ky). 23)
where Sp(Ky) is the space spanned by the column vectors of Kg, and
K, = [G'z,(G'G)G'z,--- ,(G'G)* 'G'z] 2.4)
is called the Krylov matrix of order S. Because Sp(Ws) = #5(G'G,G'z) (see
Eldén 2004, proposition 3.1; Phatak and de Hoog 2002) b can be re-parameterized
as b = Wga for some a. Then Eq. (2.1) can be rewritten as
z=GW;a +e. (2.5)
The OLSE of a is given by
a = (W;G'GW,) 'W,G'z, (2.6)
from which the CLSE of b is found as
b = Wia = Ws(WiG'GWs) ™' WGz, 2.7)
To show that (2.7) is indeed equivalent to (2.2), we need several well-known
results in the PLS literature (Bro and Eldén 2009; de Jong 1993; Eldén 2004; Phatak
and de Hoog 2002). First of all, Wy is column-wise orthogonal, that is,
WWs = Is. (2.8)
Secondly, Ty is also column-wise orthogonal,
TTs = I, 2.9)
and
TsLs = GWg, (2.10)

where Ly is an upper bidiagonal matrix. Relations (2.8), (2.9) and (2.10) imply that

W,G'GW;s = LjLs = Hj, (2.11)
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where Hj is tridiagonal. Thirdly,
V, = TG, (2.12)

so that

Ls = T{GWs = V(W (2.13)
Now it is straightforward to show that

b . = Wg(W,G'GWy)~'W,G'z

= WsH; 'L{T}z

= Wy(LiLs) 'L{Tsz

= WLy ' Tz

= Ws(VsWs) ' Tz

=bS). (2.14)

and this establishes the equivalence between Eqgs. (2.7) and (2.2).

The PLSE of regression parameters reduces to the OLSE if S = rank(G) (when
rank(G) < P, we use GT, which is the Moore-Penrose inverse of G, in lieu of
(G’G)™'G in the OLSE for regression coefficients).

2.3 Relations to the Lanczos Bidiagonalization Method

It has been pointed out (Eldén 2004) that PLS1 described above is equivalent to the
following Lanczos bidiagonalization algorithm:

The Lanczos Bidiagonalization (LBD) Algorithm

Step 1. Column-wise center G, and compute u; = G’z/||G’z|| and q; = Gu; /6,
where §; = ||Guy]|.
Step2. Fori=2,---,8 (this is the same S as in PLS1),

(a) Compute y,_u; = G'q;_; — 8;_1u;_;.
(b) Compute §;,q; = Gu; — y;—1q;—;.

Scalars y;—; and §; (i = 2,---,S) are the normalization factors to make ||u;|| = 1
and ||q;—|| = 1, respectively.
Let Ug and Qg represent the collections of u; and q; fori = 1, , S. It has been

shown (Eldén 2004, Proposition 3.1) that these two matrices are essentially the same
as Wy and T, respectively, obtained in PLS1. Here “essentially” means that these



2 On the PLS Algorithm for Multiple Regression (PLS1) 21

two matrices are identical to Wy and T except that the even columns of Ug and Qg
are reflected (i.e., have their sign reversed). We show this explicitly for u, and q;
(i.e., uy = —w; and q; = —t;). It is obvious from Step 1 of the two algorithms that

w; =1u; and t; = q;. (2.15)
Let a1 = ||G'z||. Then
wy x G'Qgy,z  (from Step 2.4 of the PLS1 algorithm)
=G'z— G'Gw,;(W,G'Gw,)"'W|G'z
=a;(w; — G'Gw,/87) (2.16)
x —G'Gw;/8; + 8wy, (2.17)

where o« means “proportional.” To obtain the last expression, we multiplied
Eq.(2.16) by 6;/a; (> 0). This last expression is proportional to —u,, where
u; « G'Guy/8; — §ju; from Step 2(a) of the Lanczos algorithm. This implies
u, = —W,, because both u, and w, are normalized.

Similarly, define 87 = W} (G’G)?*w,. Then

t; X Q6w GG'Qgy,z  (from Step 2.2 of the PLS1 algorithm)

2
= a;(Gw; — GG/GW1/812 —Gw; + %Gwl) (2.18)
1
/32
x —GG'Gw, + S—Z}Gwl. (2.19)
1

To obtain Eq. (2.19), we multiplied (2.18) by 812 /a1 (> 0). On the other hand, we
have

q2 X %}/I(GG’ Gu; — 8]2Gu1 - ylzGul) (from Step 2(b) of the Lanczos algorithm)
« GG'Gu; — (8] + y{)Gu,. (2.20)
To show that q; o« —t;, it remains to show that
y? 482 = B3/82. (2.21)
From Step 2(a) of the Lanczos algorithm,
y? = (G'Gu, /8 — §1u1) (G'Guy /8 — §1uy)
= p*/8* - &7, (2.22)

and so indeed (2.21) holds. Again, we have q; = —t;,, because both q, and t, are
normalized.
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The sign reversals of u, and q; yield u; and q; identical to w; and t3, respectively,
by similar sign reversals, and uy and q4 which are sign reversals of w4 and t4, and so
on. Thus, only even columns of U, and Qy are affected (i.e., have their sign reversed)
relative to the corresponding columns of Wy and Ty, respectively. Of course, these
sign reversals have no effect on estimates of regression parameters. The estimate of
regression parameters by the Lanczos bidiagonaliation method is given by

by, = Us(L}) ™' Qz. (2.23)
where
L! = Q,GUs, (2.24)

which is upper bidiagonal, as is Ly (defined in Eq.(2.13)). matrix LY differs
from matrix Lg only in the sign of its super-diagonal elements. The matrices Lg!
and (L})~" are also upper bidiagonal, for which the super-diagonal elements are
opposite in sign, while their diagonal elements remain the same. Thus

WLy ' Ty = Z(ei,iwit; + Lii Wit )

i=1
= Z(E;i“iq; + gy )
i=1
=U,(L)™'Q;, (2.25)
where ¢;; and ﬁéf,- are the ij-th element of (respectively) Ls and L. Note that

Gi=1L5 witi=wq;, {1 =—L,, and wt,, =-wq,, (226)

It is widely known (see, e.g., Saad 2003) that the matrix of orthogonal basis
vectors generated by the Arnoldi orthogonalization of Kg (Arnoldi 1951) is
identical to Uy obtained in the Lanczos algorithm. Starting from u; = G’z/||G'z|,
this orthogonalization method finds w;+; (i = 1,---,§ — 1) by successively
orthogonalizing G'Gu; (i = 1,---,8 — 1) to all previous u;’s by a procedure
similar to the Gram-Schmidt orthogonalization method. This yields Ug such that
G/GUS = UsH;, or

U,G'GUs = LY L = HY, (2.27)

where H is tridiagonal as is Hy defined in Eq. (2.11). The diagonal elements of
this matrix are identical to those of Hg while its sub- and super-diagonal elements
have their sign reversed. Matrix H is called the Lanczos tridiagonal matrix and it
is useful to obtain eigenvalues of G'G.



2 On the PLS Algorithm for Multiple Regression (PLS1) 23
2.4 Relations to the Conjugate Gradient Method

It has been pointed out (Phatak and de Hoog 2002) that the conjugate gradient (CG)
algorithm (Hestenes and Stiefel 1951) for solving a system of linear simultaneous
equations G’Gb = G’y gives solutions identical to lA)I(,fESE [s = 1,--- ,rank(G)],
if the CG iteration starts from the initial solution f)g)(); = bg = 0. To verify their
assertion, we look into the CG algorithm stated as follows:

The Conjugate Gradient (CG) Algorithm

Step 1. Initialize by = 0. Then, ry = G’z — G'Gby = G’z = d,. (Vectors ry and
dy are called initial residual and initial direction vectors, respectively.)
Step2. Fori=0,:--,s— 1, compute:
(@) a; = d,’rl/d;G’Gd, = ||l'l||2/d:G/Gd,
(b) biy1 =b; + ad;.
©) riy1 = G'z—GGbyy =1, —a;G'Gd; = Q:ii/G/Gl'i, where Qg /676 =
I — d;(d/G'Gd,)"'d/G’G is the projector onto the space orthogonal to
Sp(G’Gd;) along Sp(d;) [its transpose, on the other hand, is the projector
onto the space orthogonal Sp(d;) along Sp(G’'Gd;)].
@ b = —1},,G'Gd;/d]G'Gd; = [|ri1|]*/|Iri| >
(e) dig1 =riy1 + bid; = Qg ecriti.
Let Rj = [ro,--- ,rj—1] and D; = [dy,--- ,d;—] for j < S. We first show that
Sp(R;) = Sp(D)) = #(G'G.G'z) (2.28)
by induction, where, as before, Sp(A) indicates the space spanned by the column
vectors of matrix A. It is obvious that ry = dy = G'z, so that Sp(R;) = Sp(D;) =
1(G'G, G'z). From Step 2(c) of the CG algorithm, we have
r = Qz/i,'/G’GrO =Ty — G/Gdoco (2.29)

for some scalar ¢y, so that r; € J%(G'G, G'z) because G'Gdy € 4 (G'G,G'z).
From Step 2(e), we also have

d; = Qg/crr1 = 11 —docy (2.30)

for some ¢, so that d; € J#%(G'G, G'z). This shows that Sp(R,) = Sp(D») =
5(G'G, G'z). Similarly, we have r, € J#(G’'G, G'z) and d, € 43(G'G, G'z), so
that Sp(R;) = Sp(D3) = J#(G’G, G'z), and so on.

The property of D; above implies that Sp(Ws) is identical to Sp(Dy), which in
turn implies that

b, = Dg(D;GGDs) "' DGz (2.31)
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is identical to f)(CSL)SE as defined in Eq. (2.7), which in turn is equal to ﬁ;,SL)SE defined in
Eq. (2.2) (Phatak and de Hoog 2002) by virtue of Eq. (2.14). It remains to show that
B(CS(); defined in (2.31) coincides with bg generated by the CG algorithm. By the G'G-
conjugacy of d;’s (the orthogonality of d,’s with respect to G'G, i.e., d/G'Gd; = 0
for any i # j, as will be shown later), Eq. (2.31) can be rewritten as

S—1
by = > di(d/G'Gd)'d/G'z. (2.32)
i=0

From Step 2(b) of the CG algorithm, on the other hand, we have
b, = do(d)G'Gdy) "'d)ry = do(d)G'Gdy)"'d)Gz = b, (2.33)
and
b; = b\, + d,(d|G'Gd,)""d|r,,
= bl + d(d,G'Gd))"'d|G'z = b2, (2.34)

since dir; = djQy cro = diro = d|Gz (the second equality in the preceding
equation holds again due to the G'G-conjugacy of d; and dy). Similarly, we obtain

b; = b{%), + dy(d,G'Gdy) "' djrs,
= b + da(d5G'Gdy) " d)G'z = b, 235)

since dyry = d5Q), o1 = dory = dyQ) 6To = dyro = d,Gz. This extends to
S larger than 3. This proves the claim made above that (2.31) is indeed identical to
bg obtained from the CG iteration.

It is rather intricate to show the G’G-conjugacy of direction vectors (i.e.,
dG'Gd; = 0 for j # i), although it is widely known in the numerical linear
algebra literature (Golub and van Loan 1989). The proofs given in Golub and van
Loan (1989) are not very easy to follow, however. In what follows, we attempt
to provide a step-by-step proof of this fact. Let R; and D; be as defined above.
We temporarily assume that the columns of D; are already G’G-conjugate (i.e.,
D/G'GD; is diagonal). Later we show that such construction of D; is possible.

We first show that

/
d_,

r,=0. (2.36)
From Step 2(c) of the CG algorithm, we have

dj/‘—lrj = djl'—lQ:ij_l/G/Grj—l = d}_l(I — G,Gdj_l (d]{_lG/Gdj_l)ildj{_l)l'j_l =0,
(2.37)
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as claimed above. We next show that

d_,r; =0, (2.38)

based on (2.36). From Step 2(c) of the algorithm, we have
d,’-—zrj = d]{—zQizj_l JleZeaya!
=d_,(I-G'Gd;_(d_,GGd;—)~'d}_)r;,

=d_,r_1 =0, (2.39)

as claimed. Note that d_,G'Gd;—; = 0 by the assumption of the G'G-conjugacy
(among the column vectors) of D;. The last equality in (2.39) holds due to (2.36).
By repeating essentially the same process, we can prove that d;_krj = 0fork =
3,---,j, which implies

D;rj =0, (2.40)
and
Rj{rj =0, (241)
since Sp(D;) = Sp(R;) = #;(G'G, G'z). These relations indicate that in the CG
method, the residual vector r; is orthogonal to all previous search directions as well
as all previous residual vectors.
We are now in a position to prove that
dj’-_lG/Gdj =0. (2.42)
To do so, we first need to show that
dir; = [P, (2.43)
and also that
dirj—1 = |||, (2.44)
For Eq. (2.43), we note that

dir; = r/Q_ ogrj (by Step 2(e))

|Irj|* = ¥/G'Gdj— (d_,G'Gd;—)~'d]_) )r; = |||, (2.45)
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due to Eq. (2.36). For Eq. (2.44), we have

drj = rjrj_; + bi1di_;ri;  (by Step 2(e))

=0+ (I[P / 1= [P = | P = (el (2.46)
To show that (2.42) holds is now straightforward. We note that
I'j/-dj = r;_ldj — aj_ld;_lG'Gdj (247)

by Step 2(c), and that r; 'd; = r_l = ||r;||* by Egs.(2.43) and (2.44). Since
aj—; # 0, this implies that d_ G’Gd = 0. That is, d; is G’G-conjugate to the
previous direction vector djfl.

We can also show that d; is G’G-conjugate to all previous direction vectors
despite the fact that at any specific iteration, d; is taken to be G'G-conjugate to
only d;_;. We begin with

dJ’-_zG/Gdj =0. (2.48)
We first note that
r_,d; = rj_,r; + bji_1r;_,d;—; (by Step 2(e))
_ 2 2 2
=0+ (IIe]17/ 1=t 1) [Ie=1[]7 - (by (2.44))
= Iyl (2.49)
We also have
r/—ldj = l'J/-_2dj — aj_zd;_zG/Gdj (250)

by Step 2(c). Since rj_,d; = r}_,d; = ||rj||* and a;— # 0, this implies (2.48). We
may follow a similar line of argument as above, and show that d;_,G'Gd; = 0 for
k = 3,---,j. This shows that D’ G'Gd; = 0, as claimed.

In the proof above, it was assumed that the column vectors of D; were G'G-
conjugate. It remains to show that such construction of D; is poss1ble We have
D/r; = djr; = 0 by (2.36). This implies that Rjr; = 0 (smce Sp(Dy) = Sp(Ry)),
which in turn implies that D{G’'Gd; = d{G’'Gd; = 0. The columns of D, =
[do, d] are now shown to be G’ G- conjugate We repeat this process until we reach
D; whose column vectors are all G'G-conjugate. This process also generates R;
whose columns are mutually orthogonal. This means that all residual vectors are
orthogonal in the CG method. The CG algorithm is also equivalent to the GMRES
(Generalized Minimum Residual) method (Saad and Schultz 1986), when the latter
is applied to the symmetric positive definite (pd) matrix G'G.
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It may also be pointed out that Ry is an un-normalized version of Wy obtained
in PLS1. This can be seen from the fact that the column vectors of both of these
matrices are orthogonal to each other, and that Sp(Ws) = Sp(Rs) = #5(G’'G, G'z).
Although some columns of Ry may be sign-reversed as are some columns of U; in
the Lanczos method, it can be directly verified that this does not happen to r; (i.e.,
r2/||r2|| = w). So it is not likely to happen to other columns of Rg.

2.5 Concluding Remarks

The PLS1 algorithm was initially invented as a heuristic technique to solve LS
problems (Wold 1966). No optimality properties of the algorithm were known at
that time, and for a long time it had been criticized for being somewhat ad-hoc. It
was later shown, however, that it is equivalent to some of the most sophisticated
numerical algorithms to date for solving systems of linear simultaneous equations,
such as the Lanczos bidiagonalization and the conjugate gradient methods. It
is amazing, and indeed admirable, that Herman Wold almost single-handedly
reinvented the “wheel” in a totally different context.
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