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Abstract. English language requirements are often used to specify
the behavior of complex cyber-physical systems. The process of trans-
forming these requirements to a formal specification language is often
challenging, especially if the specification language does not contain
constructs analogous to those used in the original requirements.
For example, requirements often contain real-time constraints, but
many specification languages for model checkers have discrete time
semantics. Work in specification patterns helps to bridge these gaps,
allowing straightforward expression of common requirements patterns in
formal languages. In this work we demonstrate how we support real-time
specification patterns in the Assume Guarantee Reasoning Environment
(AGREE) using observers. We demonstrate that there are subtle chal-
lenges, not mentioned in previous literature, to express real-time patterns
accurately using observers. We then demonstrate that these patterns
are sufficient to model real-time requirements for a real-world avionics
system.

1 Introduction

Natural language requirements specifications are often used to prescribe the
behavior of complex cyber-physical systems. Regrettably, such specifications can
be incomplete, inconsistent, or ambiguous. For these reasons, researchers have
long advocated the use of formal languages, such as temporal logics to describe
requirements. Unfortunately, the process of formalizing natural language require-
ments using formal specification languages is often challenging, especially if the
specification language does not contain constructs analogous to those used in
the original requirements.

Specification patterns [1,2] are an approach to ease the construction of for-
mal specifications from natural language requirements. These patterns describe
how common reasoning patterns in English language requirements can be rep-
resented in (sometimes complex) formulas in a variety of formalisms. Follow-
ing the seminal work of Dwyer [1] for discrete time specification patterns, a
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variety of real-time specification pattern taxonomies have been developed [2-6].
An example of a timed specification pattern expressible in each is: “Globally, it is
always the case that if P holds, then S holds between low and high time unit(s).”

In most of this work, the specification patterns are mapped to real-time tem-
poral logics, such as TCTL [7], MTL [8], RTGIL [9], and TILCO-X [4]. As an
alternative, researchers have investigated using observers to capture real-time
specification patterns. Observers are code/model fragments written in the mod-
eling or implementation language to be verified, such as timed automata, timed
Petri nets, source code, and Simulink, among others. For example, Gruhn [3] and
Abid [10] describe real-time specifications as state machines in timed automata
and timed Petri nets, respectively. A benefit of this approach is that rather than
checking complex timed temporal logic properties (which can be very expensive
and may not be supported by a wide variety of analysis tools), it is possible to
check simpler properties over the observer.

Despite this benefit, capturing real-time specification patterns with observers
can be challenging, especially in the presence of overlapping “trigger events.”
That is, if P occurs multiple times before low time units have elapsed in the
example above. For example, most of the observers in Abid [10] explicitly are
not defined for ‘global’ scopes, and Gruhn, while stating that global properties
are supported, only checks a pattern for the first occurrence of the triggering
event in an infinite trace.

In this work, we examine the use of observers and invariant properties to
capture specification patterns that can involve overlapping triggering events.
We use the Lustre specification language [11] to describe synchronous observers
involving a real-valued time input to represent the current system clock'. We
describe the conditions under which we can use observers to faithfully represent
the semantics of patterns, for both positive instances of patterns and negations
of patterns. We call the former use properties and the latter use constraints.

The reason that we consider negations of patterns is that our overall goal
is to use real-time specification patterns in the service of assume/guarantee
compositional reasoning. In recent efforts [12,13], we have used the AGREE
tool suite [14] for reasoning about discrete time behavioral properties of com-
plex models described in the Architectural Analysis and Design Language [15]%.
Through adding support for Requirements Specification Language (RSL) pat-
terns [16] and calendar automata [17-19], it becomes possible to lift our analysis
to real-time systems. In AGREE, we prove implicative properties: given that
subcomponents satisfy their contracts, then a system should satisfy its contract.
This means that the RSL patterns for subsystems are used under a negation.
We describe the use of these patterns in AGREE and demonstrate their use on
a real avionics system. Thus, the contributions of this work are as follows:

1 Although our formalisms are expressed as Lustre specifications, the concepts and
proofs presented in this paper are applicable to many other popular model checking
specification languages.

2 AGREE is available at: http://loonwerks.com.
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— We demonstrate a method for translating RSL Patterns into Lustre observers
and system invariants.

— We prove that it is possible to efficiently capture patterns involving arbitrary
overlapping intervals in Lustre using non-determinism.

— We argue that there is no method to efficiently encode a transition system in
Lustre that implements the exact semantics of all of the RSL patterns when
considering their negation.

— We demonstrate how to encode these patterns as Lustre constraints for prac-
tical systems.

— We discuss the use of these patterns to model a real-world avionics system.

2 Definitions

AGREE proves properties of architectural models compositionally by proving a
series of lemmas about components at different levels in the model’s hierarchy.
A description of how these proofs are constructed is provided in [12,14] and a
proof sketch of correctness of these rules is described in [14,20]. For the purpose of
this work, it is not important that the reader has an understanding of how these
proofs are constructed. The AGREE tool translates AADL models annotated
with component assumptions, guarantees, and assertions into Lustre programs.
Our explanations and formalizations in this paper are described by these target
Lustre specifications. Most other SMT-based model checkers use a specification
language that has similar expressivity as Lustre; the techniques we present in this
paper can be applied generally to other model checking specification languages.

A Lustre program M = (V, T, P) can be thought of as a finite collection of
named variables V', a transition relation 7', and a finite collection of properties P.
Each named variable is of type bool, integer, or real. The transition relation is a
Boolean constraint over these variables and theory constants; the value of these
variables represents the program’s current state, and the transition relation con-
strains how the state changes. Each property p € P is also a Boolean constraint
over the variables and theory constants. We sometimes refer to a Lustre program
as a model, specification, or transition system. The AGREE constraints specified
via assumptions, assertions, or guarantees in an AADL model are translated to
either constraints in the transition relation or properties of the Lustre program.

The expression for T' contains common arithmetic and logical operations (+,
—, %, =, V, A, =, 7, =) as well as the “if-then-else” expression (ite) and two
temporal operations: — and pre. The — operation evaluates to its left hand
side value when the program is in its initial state. Otherwise it evaluates to its
right hand side value. For example, the expression: true — false is true in the
initial state and false otherwise. The pre operation takes a single expression as
an argument and returns the value of this expression in the previous state of the
transition system. For example, the expression: z = (0 — pre(z) + 1) constrains
the current value of variable = to be 0 in the initial state otherwise it is the value
of x in the previous state incremented by 1.

In the model’s initial state the value of the pre operation on any expression
is undefined. Every occurrence of a pre operator must be in a subexpression
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of the right hand side of the — operator. The pre operation can be performed
on expressions containing other pre operators, but there must be — operations
between each occurrence of a pre operation. For example, the expression: true —
pre(pre(x)) is not well-formed, but the expression: true — pre(z — pre(x)) is
well-formed.

A Lustre program models a state transition system. The current values of
the program’s variables are constrained by values of the program’s variables in
the previous state. In order to model timed systems, we introduce a real-valued
variable ¢t which represents how much time has elapsed during the previous tran-
sitions of the system. We adopt a similar model as timeout automata as described
in [17]. The system that is modeled has a collection of timeouts associated with
the time of each “interesting event” that will occur in the system. The current
value of ¢ is assigned to the least timeout of the system greater than the previous
elapsed time. Specifically, ¢ has the following constraint:

t =0 — pre(t) + min_pos(t; — pre(t), ..., t, — pre(t)) (1)

where t1,...,t, are variables representing the timeout values of the system.
The function min_pos returns the value of its minimum positive argument. We
constrain all the timeouts of the system to be positive. A timeout may also
be assigned to positive infinity (00)?. There should always be a timeout that is
greater than the current time (and less than co). If this is true, then the invariant
true — t > pre(t) holds for the model, i.e., time always progresses.

A sequence of states is called a trace. A trace is said to be admissible (w.r.t.
a Lustre model or transition relation) if each state and its successor satisfy the
transition relation. We adopt the common notation (o, 7) to represent a trace of a
timed system where o is a sequence of states (0 = 010203 ...) and 7 is a sequence
of time values (7 = 747273 ...) such that Vi : 7, < 7,41. In some literature, state
transitions may take place without any time progress (i.e., Vi : 73 < 7i41). We
do not allow these transitions as it dramatically increases the complexity of a
model’s Lustre encoding.

A Lustre program implicitly describes a set of admissible traces. Each state
op, in the sequence represents the value of the variables V' in state n. Each time
value 7, represents the value of the time variable ¢ in state n. We use the notation
on = e, where e is Lustre expression over the variables V' and theory constants,
if the expression e is satisfied in the state o,,. Similarly, we use o, }~ e when e
is not satisfied in the state o,. A property p is true (or invariant) in a model
if and only if for every admissible trace Vn : o, |= p. For the purposes of this
work, we only consider models that do not admit so-called “Zeno traces” [21]. A
trace (o, 7) is a Zeno trace if and only if JoVi : 7; < v, i.e., time never progresses
beyond a fixed point.

3 In practice, we allow a timeout to be a negative number to represent infinity. This
maintains the correct semantics for the constraint for ¢ in Formula 1.
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3 Implementing RSL Patterns

3.1 Formalizing RSL Patterns Semantics

For this work, we chose to target the natural language patterns proposed in the
CESAR project because they are representative of many types of natural lan-
guage requirements [16]. These patterns are divided into a number of categories.
The categories of interest for this work are the functional patterns and the timing
patterns. Some examples of the functional patterns are:

1. Whenever event occurs event occurs during interval

2. Whenever event occurs condition holds during interval

3. When condition holds during interval event occurs during interval
4. Always condition

Some examples of timing patterns are:

1. Event occurs each period [with jitter jitter]
2. Event occurs sporadic with IAT interarrivaltime [and jitter jitter]

Generally speaking, the timing patterns are used to constrain how often a
system is required to respond to events. For instance, a component that listens to
messages on a shared bus might assume that new messages arrive at most every
50ms. The second timing pattern listed above would be ideal to express this
assumption. In AGREE, this requirement may appear as a system assumption
using the pattern shown in Fig. 1.

new message occurs sporadic with TAT 50.0

Fig. 1. An instance of a timing pattern to represent how frequently a message arrives
on a shared bus.

The functional patterns can be used to describe how the system’s state
changes in response to external stimuli. Continuing with the previous example,
suppose that the bus connected component performs some computation when-
ever a new message arrives. The functional patterns can be used to describe
when a thread is scheduled to process this message and how long the thread
takes to complete its computation. The intervals in these patterns have a speci-
fied lower and upper bound, and they may be open or closed. The time specified
by the lower and upper bound corresponds to the time that progresses since
the triggering event occurs. Both the lower and upper bounds must be positive
real numbers, and the upper bound must be greater than or equal to the lower
bound. An AGREE user may specify the instances of patterns shown in Fig. 2
as properties she would like to prove about this system. For the purposes of
demonstration we assume that the thread should take 10 ms to 20 ms to execute.
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Always new_message = thread_start
Whenever thread_start occurs thread_stop occurs during [10.0, 20.0]

Fig. 2. Two instances of a functional patterns used to describe when a thread begins
executing, and how long it takes to execute.

C e
1 1 1 1
l, 1+l t, t.+h

whenever ¢ occurs e occurs during [I, h]

Fig. 3. A graphical representation for the RSL pattern

Figure 3 shows a graphical representation of the first functional pattern listed
at the beginning of this section. The variable . represents the time that event
¢ occurs. Similarly, the variable t. represents the time that event e occurs. The
formal semantics for many of the RSL patterns are described in [5]. The seman-
tics for the pattern described in Fig. 3 are represented by the set of admissible
traces Lpqs described below.

Lpai ={(o,7) |Vidj:o, Ec=G>)N(n+I<7<1+h)A(0; = e)}

The remainder of this section discusses how the pattern in Fig.3 can be trans-
lated into either a Lustre property or a constraint on the admissible traces of
a transition system described by Lustre. Although we discuss only this pattern,
the techniques that we present can be applied generally to all except one of the
functional and timing RSL patterns?.

3.2 Implementing RSL Patterns as Lustre Properties

One can determine if a transition system described in Lustre admits only traces
in L4 by adding additional constraints over fresh variables (variables that are
not already present in the program) to the model. This commonly used technique
is referred to as adding an observer to the model. These constraints are over fresh
variables: run,timer,rec. and pass; they are shown in Fig.4. The constraints
only restrict the values of the fresh variables, therefore they do not restrict the
traces admissible by the transition relation.

The intuition behind these constraints is that one can record how much time
progresses since an occurrence of c¢. This time is recorded in the timer variable.
The value of the timer variable only increases if the previous value of the run

4 The single pattern that cannot be implemented requires an independent event to
occur for each of an unbounded number of causes. There are 12 functional and
timing RSL patterns in total.
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1. run = (rec. — ite(pre(run) Ae Al < timer < h,
false,
ite(rece, true, pre(run))))
2. timer = (0 — ite(pre(run), pre(timer) + (t — pre(t)),0))
rece = ¢
4. pass = (timer < h)

@

Fig. 4. The constraints added to a transition relation to verify if only the traces of
Lpatt are admissible. The transition relation only admits traces of Ly if and only if
the variable pass is invariant.

variable is true. The run variable is true if an occurrence of ¢ is recorded and no
occurrence of e happens until after the timer counts to at least [. The variable
rec. non-deterministically records an occurrence of c. If the transition system
admits a trace outside of L4+, then the rec. variable can choose to record only
an event that violates the conditions of L,4. In this case the pass variable will
become false in some state.

Theorem 1. Let Ly; represent the admissible traces of a transition system con-
taining the constraints of Fig. 4. The transition system admits only traces in
Lpate if and only if the property pass is invariant. Formally: (Lar C Lpar) <
(Vo,7,i: (0,7) € Ly = 0 = pass)

Proof. First we show that if pass is invariant for a trace of the transition relation,
then that trace is in L,q4.

Lemma 1. (Vo,7,i: (0,7) € Ly = 05 |= pass) = (Lar C Lpatt).

Proof. Towards contradiction, assume Lyr € Lpaue. Let (o, 7) be a trace in Ly
but not in Lyq¢¢. Since (0, 7) ¢ Lyatt, by definition there exists ¢ such that o; = ¢
and

Vi:(G>i)An+I<7m<m+h=o0;Fe (2)

Without loss of generality, we can assume that this is the only time when c is
recorded. That is, o; | rec. and Vk : k # i = oy, [~ rec.. From constraint 1 in
Fig. 4 we have

Vi ((j <i)= o5 FErun) A((r <75 <7 +1) = 0j = run)

This can actually be strengthened more. From Formula 2 the event e does not
occur between 7; + [ and 7; + h. So the variable run will become invariant after 7;.

Vi:((j <i)=0oj Erun) A(1; < 1j) = 0j = run)
From this and constraint 2 in Fig. 4, we have

Vi:(j <i)=o0; = timer=0
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and
Vj:(m <15) = (0; | timer = (pre(timer) + (15 — 7j-1)))

From this and the invariant Vi : 7,41 > 7, we have
Vi:(m < 15) = (05 = timer > pre(timer))

Therefore since the value of timer is zero before 7; and always increasing after 7;,
and since we only consider non-Zeno traces (Vo3i : v < 7;), eventually timer > h
and so pass becomes false. This contradicts the assumption (Vo, 7,7 : (0,7) €
Ly = 0; = pass). Therefore Loy C Lpass. m|

Next we show if a trace of Ly is in Lpas, then pass is invariant for this trace.

Lemma 2. (Ly C Lpour) = (Yo, 7,1 : (0,7) € Ly = 05 = pass)

Proof. Towards contradiction, assume that there exists a trace of £ for which
pass is not invariant. This means that for some state o; = timer > h. For
this to be true, the timer must be running continuously since it started with
some recorded occurrence of c¢. That is there exists ¢ such that o; = timer = 0,
o | rece, 0y = ¢, Vk i < k < j= o, E run, and 7, — 7, > h. Thus
Vk:i<k<j= o | timer = 1, — 7;. By the definition of L. we have a
k such that 7; +1 < 7, < 7, + h and o = e. This means [ < 7, — 7; < h and
so o = I < timer < h. Therefore oy, [~ run. We also have 7, <7, + h < 75 s0
that k < j. Thus from Vk : i < k < j = o = run we have oy, |= run which is
a contradiction. Therefore, pass is invariant. O

From Lemmas 1 and 2 we have (Ly C Lpait) < (Vo,7,i: (0,7) € Ly =
o; = pass). O

3.3 Implementing RSL Patterns as Lustre Constraints

As we demonstrated with Fig. 4, one can specify a Lustre property that verifies
whether or not some transition system only admits traces of Lyq.. However, it
is surprisingly non-trivial to actually implement a transition system that admits
exzactly the traces of L4 Naively, one could attempt to add the constraints
of Fig.4 to a transition system and then assert that pass is invariant. However,
this transition system will admit all traces where every occurrence of ¢ is never
recorded (Vo; : 0; = rec.). Clearly some of these traces would not be in Lpq.
We conjecture that given the Lustre expression language described in Sect. 2
it is not possible to model a transition system that admits only and all of the
traces of Lpq+. The intuition behind this claim is that Lustre specifications con-
tain a fixed number of state variables, and variables have non-recursive types.
Thus a Lustre specification only has a finite amount of memory (though it can,
for example, have arbitrary sized integers). If a Lustre specification has n vari-
ables we can always consider a trace in L,q where event ¢ occurs more than n
times in a tiny interval. In order for the pattern to hold true, the Lustre specifi-
cation must constrain itself so that at least one occurrence of e occurs precisely
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between t. + [ and t. + h after each event c¢. This requires “more memory” than
the Lustre specification has available.

Rather than model the exact semantics of this pattern, we choose to take a
more pragmatic approach. We model a strengthened version of Fig. 3 which does
not allow overlapping instances of the pattern. That is, after an event ¢ there
can be no more occurrences of ¢ until the corresponding occurrence of e. We do
this by proving that ¢ cannot occur frequently enough to cause an overlapping
occurrence of the pattern. Then if we constrain the system based on a simple
non-overlapping check of the pattern, the resulting system is the same as if we
had constrained it using the full pattern. This simple non-overlapping check and
the property limiting the frequency of ¢ are both easily expressed in Lustre since
they only look back at the most recent occurrence of c. Moreover, they can both
be used freely in positive and negative contexts. Formally, the property we prove
is Lprop and the constraints we make are Leons:

Lprop ={(o,7) | Viioo Eec=Vi:G>)OAN(<Ti+h)Aogj Ec=
er(i,j]:Ti+l§TkA0k ): e}

Econs:{(077)|VifUi ': Céﬂjt(]’>i)/\
(m+l<Tj<mi+hAo; Ee)V(<m+hAo; = )}

The correctness of Ly,.0p and Leons are captured by the following theorem.

Theorem 2. Let M be a transition system and Ly its corresponding set of
admissible traces. Suppose Lar C Lprop. Then Leons and Lpque are equivalent
restrictions on Lyr, that is Ly N Leons = Lar N Lpatt-

Proof. We prove the theorem by showing that the subset relationship between
Lar N Leons and Las N Lyge holds in both directions.

Lemma 3. Ly N Lparr C Lar N Leons

Proof. From the definitions of L4+ and Leons it follows directly that Ly C
Lecons. Therefore Lar N Lpare S Lar N Leons- O

Lemma 4. Suppose Lar C Lyprop, then Lar N Leons S Lar N Lpatt

Proof. Suppose towards contradiction that Las N Leons € LarNLpatt. Consider a
trace (0,7) € Lar N Leons With (0, 7) & Lar N Lpgse. Then we have (0, 7) € Leons,
(0,7) € Lprop, and (0,7) ¢ Lpast. From the definition of £,q:+ we have an ¢ such
that o; | ¢ and

Vi:(G>)A(m+1<1 <7+ h)=0;Fe (3)

Then from the definition of L.ons with o; = ¢ we have a j such that j > ¢
and either (; +1 <717, <7 +hAo; E e or(r; <7,+hAo; = ¢). The
former option directly contradicts Formula 3, so we must have 7; < 7; + h and
o; = c. From the definition of L., with o; = ¢ and our j, we have a k in
(t,j] such that 7; +1 < 7, and o, |= e. From k < j we have 7, < 7; and thus
7i+1 < 1 < 7;+h. Instantiating Formula 3 with & yields oy, [~ e, a contradiction.
Therefore Ly N Leons S Lar N Lpgtt- O
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From Lemmas 3 and 4 have Ly N Leons = Lar N Lpgre- O

Ezample 1. Suppose we want to model a system of components communicating
on a shared bus. The transition relation for this system must contain constraints
that dictate when threads can start and stop and how frequently new messages
may arrive. First we constrain the event new_message from occurring too fre-
quently according to the pattern instance in Fig. 1. Let £, represent the set of
admissible traces for this pattern. This set is defined explicitly in Formula 1.

Lom ={(0,7) | Vi:0o; E new_message =
=[F7: (G >9) A (15 <7i+50) A(0; = new-message)]}

Suppose we wish to constrain the system to the pattern instances in Fig. 2. The
first pattern instance is represented by the set L4+ and the second by Lop:

Lstart = {(0,7) | Vi : 0; E new_message = o; = thread_start}

Lstop = {(0,7) | ViTj : 0y = thread_start =
>IN (m+1<1 <7+ h)A(0; = thread_stop)}

Let Lj; denote the admissible traces of the transition system that is being
modeled. The goal is to specify the transition system in Lustre such that £y, =
Lym N Lstart N Letop. Writing a Lustre constraint to represent the set of traces
Lgiare 1s trivial. The traces that are contained in Lg;,,+ are those whose states
all satisfy the expression new_message = thread_stop. However, as we noted
earlier, it is not possible to develop a set of Lustre constraints that admit only
(and all of) the traces of Lsiop.

Note that the second pattern in Fig. 2 is an instance of the pattern described
in Fig. 3. Therefore we can split the set Ly0p into two sets, Lgiope and Leiopp:

Lstope = {(0,7) | Vi:0; |= thread_start = 35 : (j > i) A
(m+1<1 <7, +hAo; = thread_stop) V
(rj <7+ hAo; = thread_start)]}

Lstopp = {(0,7) | Vi : 0, = thread_start = Vj: (j > i) A
(r; <7+ h)ANo; = thread_start =
dk € (4,7] : 7 +1 < 7 Aoy |= thread_stop}

In this example, the sets of admissible traces representing the patterns hap-
pen to have the following relationship:

‘Cnm N ['start g ‘Cstopp (4)

This is because for every trace in L., the event new_message only occurs
at most every 50ms. Likewise, for each state of every trace of Lg:q+ the vari-
able thread_start is true if and only if new_message is true. Finally, the set
Lstopp contains every trace where thread_start occurs at most every 20 ms. From
Formula 4 and Theorem 2 we have Ly N Lstart N Lstope = Lnm N Lstart N Lstop-
Thus the system L, NLstareNLstope, Which we can model in Lustre, is equivalent
to a system constrained by the pattern instances in Figs.1 and 2.
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Example 1 is meant to demonstrate that, in practical systems, there is usually
some constraint on how frequently events outside the system may occur. Systems
described by the functional RSL patterns generally have some limitations on how
many events they can respond to within a finite amount of time. The Lustre
implementations of Lcons and L, are simpler than Fig. 4, and their proof of
correctness is also simpler then Theorem 1, though we omit both due to space
limitations.

4 Application

We implemented a number of RSL patterns into the AGREE tool. These pat-
terns were used to reason about the behavior of a real-world avionics system.
Specifically, the patterns were used to model the logic and scheduling constraints
of threads running on a real-time operating system on an embedded computer
on an air vehicle. Each thread in the system has a single entry point that is dis-
patched by some sort of event. The event may be the arrival of data from a bus
or a signal from another thread. When a thread receives an event, the current
state of the thread’s inputs are latched. Each thread runs at the same priority as
every other thread (no thread may preempt any other thread). A thread begins
executing after it receives an event and no other thread is executing.

The patterns in Figs.1 and 2 are actually fairly representative of the con-
straints used in this model. Figure 5 shows some of the RSL patterns that were
used to describe these scheduling constraints. We added an additional tag “exclu-
sively” before the second event in the patterns to indicate that the second event
occurs only in the specified interval after the first pattern (and never any other
time). We found that this was a useful shorthand because one often wants to
specify a signal that only occurs under a specified condition and not at any other
time.

assert “thread A runtime” : whenever thread A start running occurs
thread_A_ finish exclusively occurs during [10.0, 50.0];

assert “thread B runtime” : whenever thread B start running occurs
thread_B_ finish exclusively occurs during [10.0, 50.0];

assert “thread C runtime” : whenever thread C start rumning occurs
thread_C_finish exclusively occurs during [10.0, 50.0];

Fig. 5. Assertions about the how the operating system schedules threads

The results that each thread produces after it finishes executing are described
by an assume-guarantee contract. Generally speaking, the assumptions restrict
the values of inputs that the thread expects to see. Likewise, the thread’s guar-
antees constrain the values of the thread’s outputs based on it’s current state and
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input values. The AADL component that contains the threads has assumptions
about how frequently it receives inputs and has guarantees about how quickly it
produces outputs. These assumptions are translated to constraints in the Lus-
tre transition system, and the guarantees are translated to properties. Figure 6
illustrates one of these assumptions and guarantees.

The “eq” statements in Fig. 6 are used to constrain a variable to an expres-
sion. They are usually used as a convenient short hand to make AGREE contracts
easier to read. In this case, the first “eq” statement is used to set the variable
change_status_request to true if and only if a new message has arrived and the
content of the message is requesting that the vehicle change its status. Likewise,
the second statement is used to record the last requested change value into the
change_request variable. The contract assumes that this new message arrives
periodically (with some jitter). The contract guarantees that if a new message
arrives requesting that the vehicle change its status, then the vehicle’s status
will be set to the requested value within 500 ms. In this application we assumed
that all time units are expressed in microseconds. This means that the timing
constraints expressed in Fig.5 are also expressed in microseconds. Other con-
straints are used to assert that the vehicle_status variable corresponds to one of
the state variables in the component’s threads.

eq change status event : bool =
new message and message content.change vehicle status;

eq change request : bool =
ite(change status_event,
message_content.status,
false — pre(change request));

assume “periodic messages” : new_ message occurs
each 10000.0 with jitter 50.0;

guarantee ‘“‘new message can change vehicle status” :
whenever change status event occurs
vehicle_status = change request during [0.0, 500.0];

Fig. 6. Assumptions and guarantees about the component containing the threads.

The guarantee of this component is invariant if and only if the threads in
the component’s implementation are scheduled in such a way that whenever a
new message arrives its content is parsed and sent to the correct threads to be
processed in a timely manner. The logic expressed in the contract of each thread
determines how the content of this message is transmitted to other threads in
the system.
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4.1 Results

We had three properties of interest for the vehicle. These properties were related
to timing, schedulability, and behavior of the system’s threads. We ran the trans-
lated Lustre file, which contained about 1000 lines, from the AADL/AGREE
model on the latest version of JKind on a Linux machine with an Intel(R)
Xeon(R) E5-1650 CPU running at 3.50 GHz. JKind uses k-induction, property
directed reachability, and invariant generation engines to prove properties of Lus-
tre models. In the case of this experiment, it took about 8h to prove all three
properties. One of the properties was proved via k-induction, the other two were
proved by the property directed reachability engine.

JKind allows users to export the lemmas used to prove a property. These
lemmas can be exported and used again in order to speed up solving for similar
models and properties. We found that when these lemmas were used again to
prove the properties a second time all of the properties were proved in less than
10s. This seems to indicate that the properties are not particularly deep. That is
to say, to prove the properties via k-induction, the inductive step does not need
to unroll over many steps. We are currently exploring techniques for lemma
discovery for properties specified with RSL patterns.

5 Related Work

Our work focuses on the real-time patterns in the Requirements Specification
Language (RSL) [5] that was created as part of the CESAR project [16]. This
language was an extension and modularization of the Contract Specification
Language (CSL) [22]. The goal of both of these projects was to provide contract-
based reasoning for complex embedded systems. We chose this as our initial
pattern language because of the similarity in the contract reasoning approach
used by our AGREE tool suite [14].

There is considerable work on real-time specification patterns for different
temporal logics. Konrad and Cheng [2] provide the first systematic study of real-
time specification patterns, adapting and extending the patterns of Dwyer [1]
for three different temporal logics: TCTL [7], MTL [8], and RTGIL [9]. Indepen-
dently, Gruhn [3] constructed a real-time pattern language derived from Dwyer,
presenting the patterns as observers in timed automata. In Konrad and Cheng,
multiple (and overlapping) occurrences of patterns are defined in a trace, whereas
in Gruhn, only the first occurrence of the pattern considered. This choice side-
steps the question of adequacy for overlapping triggering events (as discussed
in Sect.3), but limits the expressiveness of the specification. We use a weaker
specification language than Konrad [2] which allows better scaling to our analy-
sis, but we also consider multiple occurrences of patterns, unlike Gruhn [3].
Bellini [4] creates a classification scheme for both Gruhn’s and Konrad’s pat-
terns and provides a rich temporal language called TILCO-X that allows more
straightforward expression of many of the real-time patterns. Like [2], this work
considers multiple overlapping occurrences of trigger events.
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The closest work to ours is probably that of Abid et al. [10], who encode a
subset of the CSL patterns as observers in a timed extension of Petri nets called
TTS, and supplement the observers with properties that involve both safety
and liveness in LTL. For most of the RSL patterns considered, the patterns are
only required to hold for the first triggering event, rather than globally across the
input trace. In addition, the use of full LTL makes the analysis more difficult with
inductive model checkers. Other recent work [6] considers very expressive real-
time contracts with quantification for systems of systems. This quantification
makes the language expressive, but difficult to analyze.

Other researchers including Pike [23] and Sorea [24] have explored the idea
of restricting traces to disallow overlapping events in order to reason about
real-time systems using safety properties. The authors of [25] independently
developed a similar technique of using a trigger variable to specify real-time
properties that quantify over events.

6 Conclusion

We have presented a method for translating RSL patterns into Lustre observers.
While we only specifically discussed a single pattern in detail, the techniques
we presented can be applied analogously to other functional or timing patterns.
Similarly, the techniques we presented can be applied to other synchronous data
flow languages. The RSL patterns have been incorporated into the AGREE
plugin for the OSATE AADL integrated development environment. We used
these patterns to show that we could successfully model, and prove properties
about, scheduling constraints for a real-world avionics application. Future work
will focus on lemma generation to improve scalability for reasoning about real-
time properties.
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