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Abstract. We introduce a new method for triggering vulnerabilities in
deep layers of binary executables and facilitate their exploitation. In our
approach we combine dynamic symbolic execution with fuzzing tech-
niques. To maximize both the execution path depth and the degree of
freedom in input parameters for exploitation, we define a novel method
to assign probabilities to program paths. Based on this probability distri-
bution we apply new path exploration strategies. This facilitates payload
generation and therefore vulnerability exploitation.
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1 Introduction

As ubiquitous software is ever increasing in size and complexity, we face the
severe challenge to validate and maintain the systems that surround us. Soft-
ware testing has come a long way from its origins to the recent developments
of sophisticated validation techniques. In this paper we introduce a new method
combining symbolic execution and random testing. Our goals are (1) code cover-
age in deep layers of targeted binaries which are unreachable by current technolo-
gies and (2) maximal degree of freedom in the input variables when discovering
a program error.

Before we present the main idea of our approach and the summary of our
contributions, we give some background on concolic execution and fuzzing. We
especially highlight limitations of concolic execution and fuzzing when applied
isolated and motivate a combination of both as a promising new strategy.

Concolic Execution. The main idea of symbolic execution is to assign symbolic
representations to input variables of a program and generate formulas over the
symbols according to the transformations in the program execution. Reason-
ing about a program on the bases of such symbolic representations of execution
paths can provide new insight into the behavior of the program. Besides program
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verification, symbolic execution nowadays has its biggest impact in program test-
ing. The original idea was extended over the years and developed into concrete
symbolic (concolic) execution. The program is initially executed with arbitrary
concrete input values and symbolic constraints over the symbols are generated
along the program execution path. Next, one of the collected branch conditions
is negated and together with the remaining constraints given to an SMT solver.
The solution (also called model) generated by the SMT solver is injected as new
input into the program, which now takes the branch alternative when executed.
This is because the SMT solver just calculated the solution of the negation of the
former branch constraint so that the newly generated input follows the alterna-
tive path. This procedure is iteratively repeated until a halt condition is reached.
In the best case the reached halt condition resembles full path coverage of all
alternative paths of the program, in the worst case the halt condition is caused
by an overloaded SMT solver. The latter is a natural consequence of the expo-
nential growth of the number of paths we have to deal with, which we refer to as
the path explosion problem. Concolic execution is advantageous in code regions
where pure symbolic reasoning is ineffective or even infeasible. This is often the
case for complex arithmetic operations, pointer manipulations, calls to external
library functions, or system calls.

Pure concolic execution, however, has strong limitations. Current SMT
solvers are very limited in the number of variables and constraints they can
handle efficiently so that concolic execution gets stuck in very early stages of the
program. Despite huge advances in the field of SMT solvers, concolic execution
of large programs is infeasible and in practice will only cover limited parts of the
execution graph. The major part of graph coverage must therefore be done with
fuzzing.

Fuzzing. Existing fuzzing tools generate random input values for the targeted
program in order to drive it to an unexpected state. Fuzzing has generated a long
list of vulnerabilities over the years and is by now the most successful approach
when it comes to program testing. However, it has severe limitations even in
very simple situations. To illustrate this, consider the following code snippet:

#include <stdint.h>

int check( uint64_t num ){
if ( num == UINT64_C(0) )
assert( false );

3

If we want to reach the assertion in the check function with a random choice
of the integer num, we have a probability of 2764 for each try to pass the if
statement. The situation gets even worse if there are multiple such checks, e.g.
in the calculation of a checksum or character match during input parsing. Such
code areas are very hard to be passed by pure random input generation and
code regions beyond such examples are most likely not covered by fuzzing. In
the following we will refer to such cases as fuzzing walls. However, the false
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assertion in the above code listing can easily be reached with concolic execution,
as the comparison to zero directly translates to a simple expression for the SMT
solver.

The Hybrid Approach. As we just showed, critical limitations of fuzzing can
be overcome with concolic execution, and in turn fuzzing scales much better to
path explosion than SMT solvers do. As a natural next step we combine both
methods. The idea is to apply concolic execution whenever fuzzing saturates (i.e.
stops exploration at a fuzzing wall), and in turn switch back to fuzzing whenever
the fuzzing walls are passed by concolic execution.

However, we still have to deal with the problem of path explosion and there-
fore still may end up covering only the first execution layers of a program. In
the following, we refer to path depth as the number of branches along that path,
which directly corresponds to the number of basic blocks. Even in the combined
approach we are confronted with two challenges. First, if we want to fuzz deep
areas of a program, we have to find a way to construct execution paths into such
areas and somehow delay path explosion until we have found such a tunnel. Sec-
ond, to generate a payload and exploit a detected vulnerability in the program
under test, we not only have to reach the bug with a single suitable input, but
we have to reach it with maximal degree of freedom in the input values. To be
more precise, if we reach a vulnerability with exactly one constellation of the
input variables, we most probably would not be able to exploit it in a meaningful
way because any attempt to generate a payload (and thereby change the input
variables) would lead the input to take a different path in the execution graph.
Therefore, we propose a way to maximize the degree of freedom regarding input
variables. This yields both alleviation of vulnerability exploitation and execution
paths that reach into deep layers of the program.

In summary, we make the following contributions:

— We propose a new search heuristic that delays path explosion effectively into
deeper layers of the tested binary.

— We define a novel technique to assign probabilities to execution paths.

— We introduce DeepFuzz, an algorithm combining initial seed generation, con-
colic execution, distribution of path probabilities, path selection, and con-
strained fuzzing.

2 Related Work

Symbolic execution has experienced significant development since its beginnings
in the seventies to the advanced modern variants invented for program testing
in recent years. Especially the last decade has seen a renewed research interest
due to powerful Satisfiability Modulo Theory (SMT) solvers and computation
capabilities that have led to advanced tools for dynamic software testing. Cadar
et al. [2] give an overview of the current status of dynamic symbolic execution.
In concolic execution [5,10] symbolic constraints are generated along program
execution paths of concrete input values.
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Research in random test generation established powerful fuzzing tools such
as AFL, Radamsa, the Peach Fuzzer, and many more. We refer to [12] for a
comprehensive account.

Both concolic execution and fuzzing have severe limitations when aiming for
code coverage (see Sect.1). Since those limitations are partly complementary
to each other, a fusion of concolic execution and fuzzing emerges as natural
approach. Majumdar et al. [8] made a first inspiring step into this direction by
proposing hybrid concolic testing: by interleaving random testing with concolic
execution the authors of [8] increase code coverage significantly. However, it is
still an open question how to efficiently generate restricted inputs for random
testing. We propose a solution for high frequency test case generation that scales
to large sets of constraints. Further, we specify the rather general test goals of [§]
by focusing on maximization of the degree of freedom regarding input variables
to achieve both, alleviation of vulnerability exploitation and execution paths
that reach into deep layers of the program.

Closely related to our approach is Driller by Stephens et al. [11] who also
combine fuzzing with selective concolic execution in order to reach deep execu-
tion paths. Driller switches from pure fuzzing to concolic execution whenever
random testing saturates, i.e. gets stuck at a fuzzing wall. To keep the load
for symbolic execution low while simultaneously maximizing the chance to pass
fuzzing walls with concolic execution, Driller also selects inputs. This selection
privileges paths that first trigger state transitions or first reach loops which are
similarly iterated by other paths. In contrast, we systematically assign proba-
bilities to paths based on SMT solving performance and select paths according
to this probability distribution. This assignment of probabilities to execution
paths has no direct counterpart in related work. Although the authors of [4] also
propose assertion of probability weights to paths in the execution graph, they
differ significantly in their proposed methods which are based on path condition
slicing and computing volumes of convex polytopes.

3 The DeepFuzz Algorithm

In this section we present the DeepFuzz algorithm in detail. The main idea is
interleaving concolic execution with constrained fuzzing in a way that allows
us to explore paths providing maximal input generation frequency. We achieve
this by assigning weights (corresponding to fuzzing performance) to the explored
paths after each concolic execution step in order to select the ones with highest
probability. In the following, we first describe the individual building blocks,
namely initial seed generation, concolic execution, distribution of path probabil-
ities, path selection, and constrained fuzzing. Next, we combine these parts in
the overall DeepFuzz algorithm.

3.1 Initial Seed Generation

Initially we start with a short period of concrete input generation for the sub-
sequent concolic execution. If the inputs belong to a predefined data format, we
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generate inputs according to the format definition (as in generational fuzzing).
If there is no format specified or available we just generate random input seeds.
We denote the set of all possible concrete input values as X and the initial seeds
generated in this initial step as Xg C X.

3.2 Concolic Execution

The concolic execution step receives a set of concrete program inputs Xgeeq C X
and outputs a set of symbolic constraints collected along the paths belonging to
these inputs. At the beginning, directly after the initial seed generation step, we
set Xgeeqd = Xo. The symbolic expressions are basically generated as described
in Sect.1. However, we adapt the path search heuristics to our approach in a
similar way as introduced in [6]. We conduct concolic execution of the program
with each input z; € Xeeq until one of the following two halt conditions occur:
either the program reaches the predefined goal, which in our case is basically an
unexpected error condition, or the number of newly discovered branches taken
exceeds a fixed maximum b, € N.

To keep the notation as clear as possible, in the following we assume without
loss of generality that the halting conditions are reached after exactly bp,qz
branches. Let ¢} denote the execution path belonging to input z; and n’ = | Xsced|
denote the number of inputs in Xgeeq. For each branch j € {1,..., b4, } there
is a sub-path c;j which equals ¢, until branch number j is reached. Clearly,
the c;; are sub-paths of ¢}. For each i = 1,...,n" and j = 1, ..., by We store the
logical conjunction of the negated branch condition \;; (corresponding to branch
number j of execution path c;) and the path condition p;; of the sub-path c;;
leading to this branch, which yields the n'#b,,q, expression sets ¢;; := —=Xi; Api;.
With this notation, concolic execution of the input set X,..q yields the total set
of constraints @ := {¢;; | i =1,...,n', j =1,...,bpmaz }. For each element in @ the
SMT solver checks if the the symbolic constraints are satisfiable and in that case
computes a new input z;; for each element ¢;; € ®. These newly generated inputs
x;; drive the program execution along the original paths ¢ until branch number
j is reached and then takes the alternative. We denote these new explored paths
as ¢;;. In the next step we assign probabilities to these paths. To maintain a
clear notation and avoid too many indices we work with the union set

C:={c1,.,Cn}i= chj. (1)
0,J

3.3 Distribution of Path Probabilities

Next, we describe our approach to assign probabilities to program paths. This
step takes as input a set of paths C and outputs a probability distribution on
this set.

One possible strategy is to calculate the cardinality |I;| of the set of solutions
I; for the path constraint ¢; € @ corresponding to ¢; and then define weights on
the paths according to number of inputs that travel through it. This strategy
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is chosen and comprehensively described in [4], where the purpose of assigning
probabilities to paths is to provide estimates of likelihood of executing portions of
a program in the setting of general software evaluation. In contrast to this we are
interested in deep fuzzing and therefore must guarantee maximal possible sample
generation in a fixed amount of time. To illustrate this more clearly, consider two
sets of constraints $4 and @ with (non-empty) solution sets A and B. If we are
given only the constraints @4 and @5 and are interested in some solutions in A
or B, we simply feed an SMT solver with the constraints and receive solutions.
However, computing the cardinality |A| and | B| of all solutions corresponding to
&4 and Pp (also called the model counting problem) can be significantly more
expensive than the decision problem (asking if there is a single solution of the
constraints at all). The authors of [4] rely on expensive algorithms for computing
volumes of convex polytopes and integrating functions defined upon them. This
would yield a theoretical sound distribution of path probabilities, with the dis-
advantage of extremely low fuzzing performance in our setting. Further, even if
cardinality |A| is significantly greater than | B|, meaning that &4 has much more
solutions than ®@p, computation of B may take much longer than computation
of A. In other words (|A| > |B|) # (T(®4) > T(®p)), where T(®;) is the time
it takes an SMT solver to compute all solutions corresponding to the constraints
@;. To guarantee high frequency of model generation for effective deep fuzzing
we have to build our strategy around a time constraint. Therefore, in order to
assign probabilities to the paths ¢y, ..., ¢, we apply another strategy.

For a fixed time interval T let k;(¢;, Tp) denote the number of solutions for
constraints ¢; that the applied SMT solver finds in the amount of time Ty. Among
the paths cq, ..., ¢, we choose the one whose constraints yield - when given to the
SMT solver - the maximal number of satisfying solutions in the fixed amount
of time Tj. Therefore, we distribute the probabilities p(c;) belonging to path ¢;
according to

-1

plei) = ki (60, To) [ D ki85, To) (2)
for i =1,...,n. With >, p(¢;) = 1 this probability distribution is well defined.

3.4 Path Selection

Now that we have n explored paths C = {¢1, ...., ¢, } weighted with probabilities
according to Eq. (2) in the execution graph, our goal in this step is to select the
paths that provide us maximal model generation frequency. Such a set of paths
will guarantee us efficient fuzzing and maximal degree of freedom for subsequent
payload generation in case we detect a vulnerability.

The defined probabilities p(c¢;) in Eq. (2) directly correspond to the perfor-
mance in computing inputs for subsequent fuzzing. Practical calculation of those
probabilities is efficient: we simply let the SMT solver compute solutions for the
path constraints @;(i = 1,...,n) in a round-robin schedule and count the number
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of solutions for each path, which directly yields the probabilities p(¢;). A suffi-
ciently small choice of the computing time Tj will result in fast path selection.
To gain maximal input generation frequency, we could simply choose the single
path whose assigned probability is maximal. However, some paths are dead ends
and if we would restrict the algorithm to select only a single path for subsequent
fuzzing, path exploration might stop too early in some binaries.

Therefore, we select the m < n different paths é; (j =1, ..., m) with highest
probability. In order to make sure that the following path choice is well defined,
we prepend a short side note first: it almost never happens in practice that
there are two paths assigned with exactly the same probability. If this unlikely
situation occurs in practice, we could just randomly choose one among these
equiprobable paths and proceed without much changes in the subsequent algo-
rithm. For simplicity of notation we assume without loss of generality that the
set {p(¢;) | © = 1,...,n} is strictly ordered. We initially choose the path with
highest probability

¢ = argmax p(c;) 3)
c,eC

and then proceed in the same way

¢ = argmax  p(c;) (4)
i €C\{é1,....,&5-1}

until we obtain the path set Chign = {¢; | j = 1,...,m} including the m paths
with hightest probability. On the one hand, setting the parameter m close to n
will result in fast path explosion. On the other hand, setting m = 1 might be
too restrictive for some binaries. Therefore, we initially set m to a small integer
and then run parameter optimization to adapt to the specific binaries in testing
experiments.

3.5 Constrained Fuzzing

Now that we have selected the paths Cjg, with highest probability, we continue
with fuzzing deeper layers of the program. Remember we denoted the set of all
possible concrete input values as X and the set of inputs belonging to path ¢;
as I; ¢ X (i = 1,...,n). To start fuzzing into the program from an endpoint
of a selected path ¢; € Chign, the generated fuzzing inputs have to fulfill the
respective path constraints ¢;, otherwise they would result in a different execu-
tion path. There are basically three possible strategies to generate inputs (i.e.
subsets of I;) that satisfy the respective constraints:

Random Generation of Inputs with Successive Constraint Filtering. This strat-
egy would initially generate a random input set X,,,q C X, which would be
given to an SMT solver in order to check if a concrete input z € X,.4,q satisfies
the constraint ¢; and therefore belongs to I;. However, filtering the generated
inputs in X454 by checking for satisfiability of respective path constraints would
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most unlikely leave any input over, i.e. X,qnqNI; = () with high probability. This
is obvious due to the fact that the path constraints in ¢; symbolically represent
all branch conditions along the path ¢;, in particular fuzz-walls (as introduced
in Sect.1). Randomly generating input values that satisfy such a fuzz-wall con-
straint in ¢; is therefore clearly as unlikely as passing such a wall with pure
fuzzing.

Pure SMT Solver-Based Input Generation. With this strategy we would inject all
the constraints in ¢; into an SMT solver, that in turn computes a set of possible
solutions. The problem with this strategy is that an SMT solver is sometimes
slow and inefficient in computing solutions and the fuzzing input generation
rate would drop significantly. This is due to the fact that an SMT solver cannot
effectively handle large amounts of variables constrained in large amounts of
equations. For example, consider a situation where the input consists of a large
file I' and the targeted program only checks a small part F of it during initial
parsing. Using an SMT solver to generate both the constrained part F’ and the
unconstrained part of F' would be inefficient. This motivates the third strategy.

Random Generation of Independent Input Variables with Subsequent Constraint
Solving. Here, we randomly generate input values for all variables that are inde-
pendent (also called free) in ¢;. An SMT solver subsequently generates a model
for the remaining dependent variable constraints.

In summary, the first strategy is infeasible, whereas strategies two and three
are more similar to each other for small input sizes. However, if we deal with
larger inputs where only a small minority of input variables are constrained by
the current path constraint ¢; there is no need to feed a huge amount of path
constraints for independent input variables into an SMT solver. We proceed with
the third approach as it guarantees us maximal input generation frequency and
scales better to large inputs.

In the following, we refer to the frequency of input generation for path ¢; as
f(¢;). The above reasoning yields

ki(¢i, To)
(o) > —T1,

()
i.e. the number of models for ¢; found by the SMT solver in time Tj is less or
equal than the number of inputs generated with strategy three in time Tj.

3.6 Joining the Pieces

Now that we have described all individual parts we can combine them for the
overall DeepFuzz algorithm, as depicted in Fig.1. After the initial seed gener-
ation (SG) is completed we run concolic execution (CE), distribution of path
probabilities (DP), path selection (PS), and constrained fuzzing (CF) in a loop,
where CF is run for a fixed amount of time 7. This loop is executed until a halt
condition is reached. A halt condition is given either if a predefined goal (e.g. a
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Input: Program P, Parameters m, kpin, 1o, T1, T2, bmax

Xseed < SG (P)
do:
o =1
Cc=0
for each = in X, .4 do:
¢, ¢ «CE (2,bmaz)
append ¢ to ®
append ¢ to C
Prob < DP (®,C,Tp)
Chigh «~ PS (P?”()IL C)
Xseed +— CF (C’Ligh7¢aTI)

L— while - condition (11) ;ie. (302 ki(¢,70) = kmin)

CF(Chigh, ®,T5)

Fig. 1. DeepFuzz main algorithm.

program crash) is reached, or if the constrained fuzzing performance collapses.
In the latter case the total number of solutions that the applied SMT solver finds
in the fixed amount of time m * Ty drops below a predefined bound &,

m

Z ki(¢s, To) < kmin (6)

i=1

and we leave the loop to procede with solely constrained fuzzing for a long testing
time T5.

4 Conclusion

We present an approach to trigger vulnerabilities in deep layers of binary exe-
cutables. DeepFuzz constructs a tunnel into the program by applying concolic
execution, distribution of path probabilities, path selection, and constrained
fuzzing in a way that allows fuzzing deep areas of the program.

Instead of source code instrumentation, we only need compiled binaries for
program testing. This is an advantage for the same reasons as stated in [7]. First,
we are independent on the high level language and build processes. Second, we
avoid any problems caused by compiler transformation after the build process,
realized for example by obfuscation. Third, DeepFuzz is suited to fuzz closed
source targets. Another important aspect of DeepFuzz is the ability to highly
parallelize the proposed algorithm in Sect. 3. All intermediate steps can be mod-
ularized and distributed for parallel computing with a suitable framework. One
disadvantage of DeepFuzz is that it is not directed towards a tagged point in the
execution graph. It builds paths as deep as possible into the program, however
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with no preferably direction. In order to address this issue we are currently con-
sidering how to combine our approach with previous work on driving execution
of the input space towards a selected region. Such a directed exploration can be
achieved by using fitness functions as described in [13]. For example, we could
integrate fitness functions in the path selection step.

First tests targeting OpenSSL-based parsers of Base64-encoded X.509 certifi-
cates promise well. Here, we adapted the concolic execution framework Triton
[9], which itself uses the Z3 SMT solver [3]. A comprehensive evaluation of our
approach on a broad range of targets is subject to future work.

Finally, DeepFuzz may help to circumvent current bottlenecks related to
automatic exploit generation as described by Avgerinos et al. in [1]. We expect
that our proposed algorithm can be deployed for automatic exploitation of vul-
nerabilities deeply hidden in binaries.
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