
Chapter 2
Billiard Systems as the Models
for the Rigid Body Dynamics

Victoria V. Fokicheva and Anatoly T. Fomenko

Abstract Description of the rigid body dynamics is a complex problem, which goes
back toEuler andLagrange.These systems are described in the six-dimensional phase
space and have two integrals the energy integral and the momentum integral. Of par-
ticular interest are the cases of rigid body dynamics, where there exists the additional
integral, and where the Liouville integrability can be established. Because many of
such a systems are difficult to describe, the next step in their analysis is the calcula-
tion of invariants for integrable systems, namely, the so called Fomenko–Zieschang
molecules, which allow us to describe such a systems in the simple terms, and also
allow us to set the Liouville equivalence between different integrable systems. Bil-
liard systems describe the motion of the material point on a plane domain, bounded
by a closed curve. The phase space is the four-dimensional manifold. Billiard sys-
tems can be integrable for a suitable choice of the boundary, for example, when
the boundary consists of the arcs of the confocal ellipses, hyperbolas and parabo-
las. Since such a billiard systems are Liouville integrable, they are classified by the
Fomenko–Zieschang invariants. In this article, we simulate many cases of motion of
a rigid body in 3-space by more simple billiard systems. Namely, we set the Liou-
ville equivalence between different systems by comparing the Fomenko–Zieschang
invariants for the rigid body dynamics and for the billiard systems. For example,
the Euler case can be simulated by the billiards for all values of energy integral.
For many values of energy, such billard simulation is done for the systems of the
Lagrange top and Kovalevskaya top, then for the Zhukovskii gyrostat, for the sys-
tems by Goryachev–Chaplygin–Sretenskii, Clebsch, Sokolov, as well as expanding
the classical Kovalevskaya top Kovalevskaya–Yahia case.
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2.1 Introduction

Definition 2.1 A symplectic structure on a smooth manifold M is a differential 2-
form ω satisfying the following two properties:

(1) ω is closed, i.e., dω = 0;
(2) ω is non-degenerate at each point of the manifold, i.e., in local coordinates,

detΩ(x) �= 0, where Ω(x) = (ωij(x)) is the matrix of this form.

The manifold endowed with a symplectic structure is called symplectic.

Let H be a smooth function on a symplectic manifoldM. We define the vector of
skew-symmetric gradient sgradH for this function by using the following identity:

ω(v, sgrad H) = v(H),

where v is an arbitrary tangent vector v. In local coordinates x1, . . . , xn, we obtain
the following expression:

(sgrad H)i =
∑

ωij ∂H

∂xj
,

where ωij are components of the inverse matrix to the matrix Ω .

Definition 2.2 The vector field sgradH is called a Hamiltonian vector field. The
function H is called the Hamiltonian of the vector field sgradH.

One of the main properties of Hamiltonian vector fields is that they preserve the
symplectic structure ω.

Definition 2.3 Dynamical system ẋ = v on the smooth manifoldM is called Hamil-
tonian if and only if on the manifold M we can find symplectic structure ω and the
function H such that system can be wrote as v = sgradH.

Definition 2.4 Let f and g be two smooth functions on a symplectic manifoldM. By
definition, we set {f , g} = ω(sgrad f , sgrad g) = (sgrad f )(g) This operation {·, ·} :
C∞ × C∞ → C∞ on the space of smooth functions on M is called the Poisson
bracket.

LetM2n be a smooth symplectic manifold, and let v = sgradH be a Hamiltonian
dynamical system with a smooth Hamiltonian H.

Definition 2.5 The Hamiltonian system is called Liouville integrable if there exists
a set of smooth functions f1, . . . , fn such that

(1) f1, . . . , fn are integrals of v,
(2) they are functionally independent on M, i.e., their gradients are linearly inde-

pendent on M almost everywhere.
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(3) {fi, fj} = 0 for any i and j,
(4) the vector fields sgrad fi are complete, i.e., the natural parameter on their integral

trajectories is defined on the whole real axis.

Definition 2.6 The decomposition of the manifoldM2n into connected components
of common level surfaces of the integrals f1, . . . , fn is called the Liouville foliation
corresponding to the integrable system v = sgradH.

Since f1, . . . , fn are preserved by the flow v, every leaf of the Liouville foliation is an
invariant surface. The Liouville foliation consists of regular leaves (fillingM almost
in the whole) and singular ones (filling a set of zero measure). The Liouville theorem
formulated belowdescribes the structure of theLiouville foliation near regular leaves.

Consider a common regular level Tξ for the functions f1, . . . , fn, that is Tξ = {x ∈
M|fi(x) = ξi, i = 1, . . . , n}. The regularity means that all 1-forms dfi are linearly
independent on Tξ .

Theorem 2.1 (J. Liouville) Let v = sgradH be a Liouville integrable Hamiltonian
system on M2n, and let Tξ be a regular level surface of the integrals f1, . . . , fn. Then

(1) Tξ is a smooth Lagrangian submanifold that is invariant with respect to the flow
v = sgradH and sgrad f1, . . . , sgrad fn.

(2) if Tξ is connected and compact, then Tξ is diffeomorphic to the n-dimensional
torus Tn (this torus is called the Liouville torus);

(3) the Liouville foliation is trivial in some neighborhood of the Liouville torus, that
is, a neighborhood U of the torus Tξ is the direct product of the torus Tξ and the
disc Dn;

(4) in the neighborhood U = Tn × Dn there exists a coordinate system s1, . . . , sn,
ϕ1, . . . , ϕn, (which is called the action-angle variables), where s1, . . . , sn are
coordinates on the disc Dn and ϕ1, . . . , ϕn are standard angle coordinates on
the torus, such that

• ω = Σdϕi ∧ dsi, are functions of the integrals,
• the action variables si are functions of the integrals f1, . . . , fn,
• in the action-angle variables s1, . . . , sn, ϕ1, . . . , ϕn, the Hamiltonian flow v is
straightened on each of the Liouville tori in the neighborhood U, that is,

ṡi = 0, ϕ̇i = qi(s1, . . . , sn), i = 1, 2, . . . , n.

(this means that the flow v determines the conditionally periodic motion that
generates a rational or irrational rectilinear winding on each of the tori).

The problems of the rigid body dynamics can be described on the six-dimensional
phase manifold, which in some cases is the Poisson manifold. In integrable case we
can restrict the system to a submanifold M4, where it is possible to introduce a
symplectic structure. As a result we assume the existence of such four-dimensional
symplectic manifold. Thus, the Liouville tori are two-dimensional tori.

Liouville foliation provides a lot of information about the solutions of the sys-
tem. In fact, according to the Liouville theorem, the solutions on each torus, are
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its rectilinear windings. The manifold of the parameters of the integrals, where the
rectilinear winding is rational (the case of the so-called resonant torus) has measure
zero. Thus, for almost all values of the additional integral the closure of the solution
forms the Liouville torus. If you change the initial data the change entails the change
the Liouville torus, which makes it possible to describe the behavior of the solu-
tions of the system. This weakening of the orbital equivalence is called the Liouville
equivalence, see below.

Definition 2.7 Let (M4
1 , ω1, f1, g1) and (M4

2 , ω2, f2, g2) be two Liouville integrable
systems on symplectic manifolds M4

1 and M4
2 . Consider the isoenergy surfaces

Q3
1 = {x ∈ M4

1 : f1(x) = c1} Q3
2 = {x ∈ M4

2 : f2(x) = c2}, endowed with the Liou-
ville foliations. Integrable systems on these 3-manifolds are said to be Liouville
equivalent if there exists a leafwise diffeomorphismQ3

1 → Q3
2, preserving the orien-

tation of the 3-manifolds Q3
1 and Q3

2 and of all critical circles.

Let (M4, ω, f1, f2) be Liouville integrable system on symplectic manifolds M4. The
manifold Q3 = {x ∈ M4 : f1(x) = c1} is foliated into tori and singular leaves. Con-
sider the base of the Liouville foliation on Q3. This is a one-dimensional graph W
called the Kronecker–Reeb graph of the function f2|Q3 . The structure of a foliation
in a small neighborhood of the singular leaf corresponding to a vertex of the graph is
described by a combinatorial object, called atom. A graph each of whose vertices is
assigned an atom is called a Fomenko invariant (rough molecule). At the vertices of
“atoms” are placed; they describe the corresponding bifurcations of the Liouville tori.

We now describe the atoms we need.
The minimax 3-atom A. Topologically, this 3-atom is presented as a solid torus

foliated into concentric tori, shrinking into the axis of the solid torus. In other words,
the 3-atom A is the direct product of a circle and a disc foliated into concentric
circles (see Fig. 2.1). From the viewpoint of the corresponding dynamical system, A
is a neighborhood of a stable periodic orbit.

The saddle 3-atoms without stars. Consider an arbitrary 2-atom without stars,
i.e., a two-dimensional oriented compact surface P with a Morse function f : P →
R having just one critical value. The corresponding 3-atom is the direct product
U = P × S1. An example is shown in Fig. 2.1: this is the simple 3-atom B.

The simple 3-atom A∗ with star is presented in Fig. 2.1.
The molecule W contains a lot of essential information on the structure of the

Liouville foliation on Q3. However, this information is not quite complete. We have
to add some additional information to the moleculeW , namely, the rules that clarify
how to glue the isoenergy surface Q3 from individual 3-atoms.

To this end, cut every edge of the molecule in the middle. The molecule will
be divided into individual atoms. From the point of view of the manifold Q3 this
operation means that we cut it along some Liouville tori into 3-atoms. Imagine that
we want to make the backward gluing. The molecule W tells us which pairs of
boundary atoms we have to glue together. To realize how exactly they should be
glued, for every edge ofW , we have to define the gluing matrix C, which determines
the isomorphism between the fundamental groups of the two glued tori. To write
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down this matrix, we have to fix some coordinate systems on the tori. As usual, by a
coordinate system on the torus, we mean a pair of independent oriented cycles (λ, μ)

that are generators of the fundamental group π1(T 2) = Z ⊕ Z (or, what is the same
in this case, of the one-dimensional homology group). Geometrically, this simply
means that the cycles λ and μ are both nontrivial and are intersected transversely at
a single point. According to the fixed rules for each type of 3-atom we must choose
a special coordinate system on the boundary tori of the atom (see [1]) which will be
called admissible.

To the gluingmatrixCi =
(

αi βi

γi δi

)
on the edge ei we assign two following numer-

ical marks.

Definition 2.8 The mark ri on the edge ei of the molecule W is:

ri =
{

αi
βi

mod 1 ∈ Q/Z, ifβi �= 0,

symbol∞, ifβi = 0.

Definition 2.9 The mark εi on the edge ei of the molecule W is:

εi =
{
signβi, ifβi �= 0,

signαi, ifβi = 0.

First, we need some preliminary construction. An edge of the molecule with mark
ri equal to ∞ is said to be it an infinite edge. The other edges are called finite. Let

Fig. 2.1 The simple 3-atoms A,B and A∗.
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us cut the molecule along all the finite edges. As a result, the molecule splits into
several connected pieces.

Definition 2.10 Those pieces which do nor contain atoms of type A are said to be
families. For example, if all the edges of a molecule are finite, then each of its saddle
atoms is a family by definition.

Consider a single family U = Uk . All its edges can be divided into three classes:
incoming, outgoing, and interior.

Definition 2.11 To each of these edges ei, we assign an integer number Θi by the
following rule:

Θi =

⎧
⎪⎨

⎪⎩

[ αi
βi

], if ei − outgoing edge,

[− δi
βi

], if ei − incoming edge,

[− γi
αi

], if ei − interior edge.

For every family Uk , we define an integer number nk by setting

nk =
∑

Θi,

where the sum is taken over all edges of the given family, and k is the number of the
family.

Definition 2.12 The molecule W endowed with the marks ri, εi and nk is called a
marked molecule. We denote it by

W∗ = (W , ri, εi, nk).

Theorem 2.2 (A.T. Fomenko, X. Zieschang) Two integrable Hamiltonian systems
on the isoenergy surfaces Q3

1 = {x ∈ M4
1 : f1(x) = c1} and Q3

2 = {x ∈ M4
2 : f2(x) =

c2} are Liouville equivalent if and only if their marked molecules coincide.

2.2 The Rigid Body Dynamics

The classical Euler–Poisson equations [10, 11], that describe the motion of a rigid
body with a fixed point in the gravity field, have the following form (in the coordinate
system whose axes are directed along the principal moments of inertia of the body):

Aω̇ = Aω × ω − Pr × ν,

ν̇ = ν × ω. (2.1)

Hereω and ν are phase variables of the system,whereω is the angular velocity vector,
ν is the unit vector for the vertical line. The parameters of (2.1) are the diagonalmatrix
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A = diag(A1,A2,A3) that determines the tensor of inertia of the body, the vector r
joining the fixed point with the center of mass, and the weight P of the body. Notation
a × b is used for the vector product in R

3. The vector Aω has the meaning of the
angular momentum of the rigid body with respect to the fixed point.

N.E. Zhukovskii studied the problem on themotion of a rigid body having cavities
entirely filled by an ideal incompressible fluid performing irrotational motion [12].
In this case, the angular momentum is equal to Aω + λ, where λ is a constant vector
characterizing the cyclic motion of the fluid in cavities. The angular momentum has
a similar form in the case when a flywheel is fixed in the body such that its axis
is directed along the vector λ. Such a mechanical system is called a gyrostat. The
motion of a gyrostat in the gravity field, as well as some other problems in mechanics
(see, for instance, [13]), are described by the system of equations

Aω̇ = (Aω + λ) × ω − Pr × ν,

ν̇ = ν × ω, (2.2)

whose particular case for λ = 0 is system (2.1).
Another generalization of Eq. (2.1) can be obtained by replacing the homogeneous

gravity field with a more complicated one. The equations of motion of a rigid body
with a fixed point in an arbitrary potential force field were obtained by Lagrange. If
this field has an axis of symmetry, then this axis can be assumed to be vertical, and
the equations become

Aω̇ = Aω × ω + ν × ∂U

∂ν
,

ν̇ = ν × ω, (2.3)

where U(ν) is the potential function, and ∂U
∂ν

denotes the vector with coordinates
( ∂U

∂ν1
, ∂U

∂ν2
, ∂U

∂ν3
). For U = P〈r, ν〉 we obtain system (2.1). By 〈a, b〉 we denote the

standard Euclidean inner product in R3.

The generalized Eqs. (2.2) and (2.3) can be combined by considering, the motion
of a gyrostat in an axially symmetric force field. The most general equations that
describe various problems in rigid body dynamics have the following form (see, for
example, Kharlamov’s book [14]):

Aω̇ = (Aω + κ) × ω + ν × ∂U

∂ν
,

ν̇ = ν × ω, (2.4)

where κ(ν)—is the vector functionwhose components are the coefficients of a certain
closed 2-form on the rotation group SO(3), the so-called form of gyroscopic forces.
Moreover, κ(ν) is not arbitrary, but has the form
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κ = λ + (Λ − divλ · E)ν, (2.5)

where λ(ν)—is an arbitrary vector function, divλ = ∂λ1
∂ν1

+ ∂λ2
∂ν2

+ ∂λ3
∂ν3

, and Λ =
(

∂λi
∂νj

)T
is the transposed Jacobi matrix. Obviously, systems (2.1)–(2.3) are particular

cases of (2.4).
System (2.4) always possesses the geometrical integral

F = 〈ν, ν〉 = 1

and the energy integral

E = 1

2
〈Aω,ω〉 + U(ν).

If the vector function κ(ν) has the form (2.5) then there exists another integral the
so-called area integral

G = 〈Aω + λ, ν〉.

It canbe shown thatEqs. (2.4), (2.5) areHamiltonianoncommon four-dimensional
levels of the geometrical and area integrals. Moreover, (2.4) and (2.5) can be repre-
sented as the Euler equations for the six-dimensional Lie algebra e(3) of the group
of isometrical transformations (motions) of three-dimensional Euclidean space.

On the dual space e(3)∗, there is the standard Lie-Poisson bracket defined for
arbitrary smooth functions f and g:

{f , g}(x) = x([dxf , dxg]),

where x ∈ e(3)∗, [, ] denotes the commutator in the Lie algebra e(3), and dxf and
dxg—are the differentials of f and g at the point x. These differentials in fact belong
to the Lie algebra e(3) after standard identification of e(3)∗∗ with e(3). In terms of
the natural coordinates

S1, S2, S3,R1,R2,R3

on the space e(3)∗ this bracket takes the form:

{Si, Sj} = εijkSk, {Ri, Sj} = εijkRk, {Ri,Rj} = 0, (2.6)

where {i, j, k} = {1, 2, 3}, and εijk = 1
2 (i − j)(j − k)(k − i).

A Hamiltonian system on e(3)∗ relative to the bracket (2.6), i.e. the so-called
Euler equations, by definition has the form:

Ṡi = {Si,H}, Ṙi = {Ri,H},
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where H is a function on e(3)∗ called the Hamiltonian of the system. By introducing
the vectors

S = (S1, S2, S3) and R = (R1,R2,R3),

these equations can be rewritten in the form of the generalized Kirchhoff equations:

Ṡ =
(

∂H

∂S

)
× S +

(
∂H

∂R

)
× R, Ṙ =

(
∂H

∂S

)
× R. (2.7)

Proposition 2.1 The mapping ϕ : R6(ω, ν) → R
6(S,R), given by the formulas

S = −(Aω + λ),R = ν, (2.8)

establishes an isomorphism between system (2.4), (2.5) and system (2.7) with the
Hamiltonian

H = (S1 + λ1)
2

2A1
+ (S2 + λ2)

2

2A2
+ (S3 + λ3)

2

2A3
+ U, (2.9)

where the parameters A1,A2,A3 and the function λ1, λ2, λ3,U are taken from (2.4),
(2.5), but the functions are defined not on the space R3(ν), but on R

3(R).

Corollary 2.1 Condition (2.5) imposed on the vector function κ(ν) is equivalent
to the fact that (2.4) is isomorphic to the Euler equations (2.7) on e(3)∗ with the
quadratic (in variables S) Hamiltonian of the form

H = 〈CS, S〉 + 〈W , S〉 + V, (2.10)

where is a constant symmetric 3 × 3-matrix, W(R) is a vector function, and V (R) is
a smooth scalar function.

Under mapping (2.8), the integrals F = 〈ν, ν〉 and G = 〈Aω + λ, ν〉 transform into
the invariants of the Lie algebra e(3)

f1 = R2
1 + R2

2 + R2
3, f2 = S1R1 + S2R2 + S3R3,

and the energy integral E = 1
2 〈Aω,ω〉 + U(ν) transforms into Hamiltonian (2.9).

System (2.7) is Hamiltonian on common four-dimensional level surfaces of the two
invariants f1 and f2:

M4
c,g = {f1 = R2

1 + R2
2 + R2

3 = c, f2 = S1R1 + S2R2 + S3R3 = g}. (2.11)

For almost all values of c and g, these common levels are non-singular smooth
submanifolds in e(3)∗. In what follows, we shall assume that c and g are such regular
values.
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It is easily seen that these symplectic 4-manifolds M4
c,g are diffeomorphic (for

c > 0) to the cotangent bundle TS2 of the 2-sphere S2. The symplectic structure on
M4

c,g is given by the restriction of the Lie-Poisson bracket onto TS2 = M4
c,g from the

ambient six-dimensional space e(3)∗. Since the linear transformation S′ = S,R′ =
γR, where γ = const, preserves bracket (2.6), we shall assume in what follows that
c = 1.

Thus, from now on, we shall consider Eq. (2.7) with Hamiltonian (2.9) on sym-
plectic four-dimensional manifolds M4

1,g = {f1 = 1, f2 = g} in the six- dimensional
space e(3)∗. In each specific problem, the phase variables and parameters of the
system obtain a concrete physical meaning.

Now we give the list of main integrable cases of Eqs. (2.7), (2.9) with necessary
comments. For each case we indicate explicitly the HamiltonianH and the additional
integralK independent ofH. Note that sometimes the additional integralK may exist
only for exceptional values of the area constant g.

The Euler case (1750). The motion of a rigid body about a fixed point that coin-
cides with its center of mass.

H = S21
2A1

+ S22
2A2

+ S23
2A3

, K = S21 + S22 + S23 . (2.12)

The Lagrange case (1788). The motion of an axially symmetric rigid body about
a fixed point located at the symmetry axis.

H = S21
2A

+ S22
2A

+ S23
2B

+ aR3, K = S3. (2.13)

The Kovalevskaya case (1899). The motion of a rigid body about a fixed point
with the special symmetry conditions indicated below.

H = S21
2A

+ S22
2A

+ S23
A

+ a1R1 + a2R
2,

K =
(
S21 − S22
2A

+ a2R2 − a1R1

)2

+
(
S1S2
A

− a1R2 − a2R1

)2

.

(2.14)

The integral has degree 4. In this case, A1 = A2 = 2A3 (in particular, the body is
axially symmetric), and the center of mass is located in the equatorial plane related
to the coinciding axes of the inertia ellipsoid.

The Goryachev–Chaplygin case (1899). The motion of a rigid body about a fixed
point with the special symmetry conditions indicated below.

H = S21
2A

+ S22
2A

+ 2S23
A

+ a1R1 + a2R
2,

K = S3(S
2
1 + S22) − AR3(a1S1 + a2S2).

(2.15)
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The integral has degree 3. In this case, A1 = A2 = 4A3, and the center of mass is
located in the equatorial plane related to the coinciding axes of the inertia ellipsoid.

In this case, the Poisson bracket of H and is

{H,K} = (S1R1 + S2R2 + S3R3)(a2S1 − a1S2).

Hence the functionsH andK do not commute on all themanifoldsM4
1,g. Therefore,

the system is integrable only on the single special manifoldM4
1,0 = {f1 = 1, f2 = 0}.

This is a case of partial integrability corresponding to the zero value of the area
constant f2.

Each of these four cases admits an integrable generalization the the case of gyro-
scopic forces.

The Zhukovskii case (1885). The motion of a gyrostat in the gravity field when
the body is fixed at its center of mass.

H = (S1 + λ1)
2

2A1
+ (S2 + λ2)

2

2A2
+ (S3 + λ3)

2

2A3
,

K = S21 + S22 + S23 .

(2.16)

This case is a generalization of the classical Euler case (the Euler case is obtained
for λ1 = λ2 = λ3 = 0).

The Kovalevskaya–Yahia case (1986). The Kovalevskaya case with gyrostat.

H = S21
2A

+ S22
2A

+ (S3 + λ)2

A
+ a1R1 + a2R

2,

K =
(
S21 − S22

2A
+ a2R2 − a1R1

)2

+
(
S1S2
A

− a1R2 − a2R1

)2

− 2λ

A2
(S3 + 2λ)(S21 + S22) + 4λR3

A
(a1S1 + a2S2).

(2.17)

The classical Kovalevskaya case is obtained for λ = 0.
The Sretenskii case (1963). The Goryachev–Chaplygin case with gyrostat.

H = S21
2A

+ S22
2A

+ 2(S3 + λ)2

A
+ a1R1 + a2R

2,

K = (S3 + 2λ)(S21 + S22) − AR3(a1S1 + a2S2).
(2.18)

If λ = 0, then we obtain the classical Goryachev–Chaplygin case. This system is
integrable on the zero level of the area integral.

The Clebsch case (1871). Motion of a rigid body in a fluid.

H = S21
2A1

+ S22
2A2

+ S23
2A3

+ ε

2
(A1R

2
1 + A2R

2
2 + A3R

2
3),

K = 1

2
(S21 + S22 + S23) − ε

2
(A2A3R

2
1 + A3A1R

2
2 + A1A2R

2
3).

(2.19)
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The calculation of Fomenko–Zieschang invariants is an effective method for
recognizing the Liouville equivalence of the systems. The bifurcations of Liouville
tori, bifurcation diagrams, and molecules W for these cases were first calculated
by M.P. Kharlamov [14] and A.A. Oshemkov [15–17]. Then the complete invari-
ants of the Liouville foliations (marked molecules W∗) were computed in a series
of papers by several authors (A.V. Bolsinov [10], P. Topalov [18], A.V. Bolsinov,
A.T. Fomenko [7, 8], O.E. Orel [19], O.E. Orel, S. Takahashi [20]). As a result, a
complete classification of the main integrable cases in rigid body dynamics has been
obtained up to Liouville equivalence. P. Morozov proved the Liouville equivalence
of the Clebsch case [21] and the Sokolov case [22] for certain values of the integrals.
In [23], the Liouville equivalence invariants for the Kovalevskaya–Yehia case (this
is a generalization of the classical Kovalevskaya top to the case of the problem on
the motion of a heavy gyrostat) were calculated.

2.3 Billiard Motion
Let the domain Ω be the domain on the plane R

2 such that its boundary is the
piecewise smooth curve and the angle at the corner points equals π

2 . Consider the
billiard dynamical system in Ω that describes the motion of a point inside Ω with
natural reflection at the boundary P = ∂Ω . At those points where the boundary P is
not smooth, the trajectory of the system is extended by continuity: hitting a corner
vertex, a material point is reflected back along the same trajectory without losing the
rate.

The phase space of the system is the manifold

M4 := {(x, v)|x ∈ Ω, v ∈ TxR
2, |v > 0|}/ ∼

where the equivalence relation ∼ is defined by
(x1, v1) ∼ (x2, v2) if and only if x1 = x2 ∈ P, |v1| = |v2| and v1 + v2 ‖ TxP.Here,

TxP denotes the tangent to the domainΩ at the point x and |v| is the Euclidean length
of the vector v.

Billiard motion has the natural integral—the speed |v| of the material point x.
If |v| > 0 then we can restrict the system to the isoenergy surface Q3 := {(x, v) ∈
M4 : |v| = 1}. Such isoenergetic surfaces are homeomorphic to each other and in the
subsequent discussion we put |v| = 1. Some restriction of the choice of the boundary
allows to find the additional integral.

Theorem 2.3 (Jacobi, Chasles [24]) Given a geodesic curve on a quadric in n-
dimensional Euclidean space, tangent lines which are drawn at arbitrary points on
the geodesic are tangent both to this quadric and to n − 2 confocal quadrics, which
are the same for all the points on the geodesic.

Now fix the family of the confocal quadrics on the plane R
2 and consider the

equation
(b − λ)x2 + (a − λ)y2 = (a − λ)(b − λ), λ ≤ a. (2.20)
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where ∞ ≥ a ≥ b > 0 is the fixed pair of numbers, which describe the family of
quadrics, λ is the parameter defining the quadric which belongs to the family.

Suppose that a domain Ω in the plane R2 is such that its boundary is the union
of piecewise smooth curves consisting of arcs of the confocal quadric. This domain
will be called elementary.

From the Jacobi Chasles theorem it follows that the tangent lines to a billiard
trajectory at any point inside a plane two-dimensional domain are tangent to an
ellipse or a hyperbola confocal with the family of quadrics forming the boundary of
this domain [24].

This implies the integrability of the billiard in a plane domain bounded by arcs of
confocal ellipses andhyperbolas. The functions |v|—the speedof thematerial point—
and λ—the parameter of the confocal quadric—commutate inside the domain Ω .
Thus, they commutate in the boundary P of the domain Ω because they are integrals
of the system.

As a result the billiard system which if defined in the plane domain bounded by
the arcs of the confocal quadrics has two independent (see [24]) integrals |v| and
λ. Function λ sets on the isoenergy surface Q3 the Liouville foliation which can be
described in terms of the Fomenko–Zieshang invariant.

To classify all the domains bounded by ellipses and hyperbolas it is convenient
to take the equivalence relation, which would allow, smoothly changing the class
of confocal quadrics of the border region, to preserve the Liouville foliation of the
billiard motion in it.

Definition 2.13 Elementary domain Ω , bounded by arcs of the confocal family of
quadrics (2.20), is called equivalent to the other elementary domain Ω ′, which is
bounded by arcs of quadrics from the same family (2.20), ifΩ ′ can be obtained from
Ω by the following composition of transformations:

• sequential changing borders by continuous segments deformation in the class of
quadrics (2.20), so that the value of the parameter λ of the variable segment of the
border did not take the value b;

• symmetry with respect to the axis of the family (2.20).

As a result of such definition of equivalence all elementary domains can be divided
into three classes:

• pieces of the ellipse: domain A2 (bounded by ellipse), A1 (right part of the A2), A0

(rectangle, limited by ellipse and two branches of a hyperbola) and its upper halfs
A′
2,A

′
1 and A′

0;• ring-domain C2, bounded by two ellipses;
• simply connected domain-bands series B, which are parts of the ring-domain C2.

We can extend the class of elementary domains, adding to them the flat domains
that do not have an immersion into the plane. In this case, to have the above-described
non-simply connected domains we need to add the domainsC2n–n−sheets coverings
over the domain C2 and results of Cn of the quotient by the group Z2. As for simply
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connected domain, we must add “prolongations” of the domains B, which are now
subsets of relevant domains Cn.

The Fomenko–Zieschang invariants of these systems were calculated by
M. Radnovic and V. Dragovic in [25] and V.V. Fokicheva in [26].

The generalized billiard system in a generalized locally flat domain is defined in a
similar way as the billiard in domains glued together along common convex segments
of their boundaries. In this case, if a point reaches such a segment, its trajectory passes
from one elementary domain to another. If a pair of domains is glued together along
the common corner (the case of a conical point), then, by continuity, the motion must
be defined as follows: a point moving on a sheet and hitting the corner is reflected
along the same trajectory on the same sheet.

The equivalence relation on the set of generalized domains if taken as a contin-
uation of the equivalence relation on the set of elementary domains. Namely, the
domains will be called equivalent if they can be obtained from each other by replac-
ing their constituent elementary domains on their equivalent. All such domains were
classified by V. Fokicheva [28].

Obviously, with such a definition phasemanifoldM4 preserves integrability of the
system, namely, retained additional integral λ—parameter of the confocal quadric,
which concerns the billiard trajectory. This is due to the fact that the boundary of any
elementary domain Ωi, which is part of the generalized domain Δ, and in particular,
all the gluing edges pass into the arc of the same family of confocal quadrics in the
isometric immersion of the field Ωi or double covering in the plane.

The Fomenko–Zieschang invariants of these systems were calculated by V.V.
Fokicheva in [28].

For further convenience, we assume the following notation. ByΩ will be denoted
an elementary domain. Glued from several elementary domains Ωi the generalized
domain is denoted by Δ. For a fixed generalized domain Δ the unification of all the
borders of its constituent regions Ωi, which are not glue arcs will be called a free
boundary. By Θ we will denote the domain bounded by arcs of confocal quadrics,
without specifying whether it is a elementary (Ω) or generalized (Δ).

The generalized domain without conical points is denoted by Δα , with conical
points by Δβ . We distinguish three types of conical points: type x is formed by the
intersection of the focal line (λ = b) and confocal ellipse (λ < b), type c—at the
intersection of the focal line (λ = b) and confocal hyperbola (b < λ < a), type y—
at the intersection of the confocal ellipse (λ < b) and confocal hyperbola (λ > b).
In the notation of the generalized domain in parentheses we specify the types of
domains that make up this region and generalized types of conical points, if they
exist.

We describe several classes of generalized domains and calculate Fomenko–
Zieschang invariants that describe the topology of the Liouville foliation of the
billiard motion in them. More precisely, we describe the domains of the invariants
of the billiard motion that occur in problems of rigid body dynamics.

Proposition 2.2 ([28]) Let the domain Θ be that, first, the interior of each ele-
mentary domain in its composition does not include points of the focal line, and
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Fig. 2.2 In the top row there
are domains without conical
points at the bottom—with
one conical point

secondly, any conical point is of the type y (see examples on the Fig.2.2). Then
Fomenko–Zieschang invariant describing the topology of Liouville foliation for the
billiard motion in Θ is of the form:

• A
r=0,ε=1−−−−→ A, if the domain Θ does not contain conical points;

• A
r= 1

2 ,ε=1−−−−−→ A, if the domain Θ contains conical points.

Remark 2.1 According to the classification of generalized domains [28] the domain,
which has no common points with the focal line, and contains a conical point is
arranged as follows: it contains exactly one conical point, with its free boundary
homeomorphic to a circle.

Proposition 2.3 ([28]) Suppose that domain Θ without conical points is such that
each elementary domain Ω in its composition does not contain any focuses (see
examples on the Fig.2.3). Then Fomenko–Zieschang invariant describing the topol-
ogy of Liouville foliation for the billiard motion in Θ is of the form:

• A
r=∞,ε=1−−−−−→ B ⇒ A

A
, where marks on the right edges are r = 0, ε = 1, if domain

Θ is equivalent to B1, Δα(2B1),
A0, Δα(A0 + B0),Δα(A0 + A′

0),Δα(B0 + A0 + B0),
Δα(A′

0 + A0 + B0) orΔα(A′
0 + A0 + A′

0), i.e. domainΘ is homeomorphic to a disc
and contains only one line segment of the focal line (either only one elementary
domain Ω in its composition contains line segment of the focal line or these
segments are glued into one along the arcs of the focal line);

• A
r=0,ε=1−−−−→ B ⇒ A

A
, where marks on the right edges are r = ∞, ε = 1, if domain

Θ is equivalent to Δα(A0)
2 or C1, i.e. domain Θ is homeomorphic to a cartesian

product S1 × [0, 1] and contains only one line segment of the focal line;
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Fig. 2.3 Domains without
focuses and conical points

• A

A
⇒ C2 ⇒ A

A
, where marks on the left edges are r = ∞, ε = 1, and on the right

edges are r = 0, ε = 1, if domain Θ is equivalent to Δα(2A0)
2or Δα(2C2), i.e.

domain Θ is homeomorphic to a cartesian product S1 × [0, 1] and contains two
line segments of the focal line.

If the domain contains the focuses, all the edges of the molecule are finite, that
makes compute mark n.

Proposition 2.4 ([28]) Let the domain Θ be such that an elementary domain in
its composition contains focuses of the confocal family of the domain’s border (see
examples on the Fig.2.4). Then Fomenko–Zieschang invariant describing the topol-
ogy of Liouville foliation for the billiard motion in Θ is of the form:

• A

A
⇒ B → A, marks on the all edges are r = 0, ε = 1, and mark n in the family

is equal to 1, if domain Θ is equivalent to A2, Δα(2A1) or Δα(A2 + C2);

• A
r=0,ε=1−−−−→ A∗ r=0,ε=1−−−−→ A, mark n in the family is equal to 0, if domain Θ is equiv-

alent to A1 or Δα(A1 + B1);

• A

A
⇒ C2 ⇒ A

A
, marks on the all edges are r = 0, ε = 1, and mark n in the family

is equal to 2, if domain Θ is equivalent to Δα(2A2);

• A

A
⇒ B → A, marks on the all edges are r = 0, ε = 1, and mark n in the family

is equal to 2, if domain Θ is equivalent to Δβ(A′
1)

2
c ,Δβ((A′

1)
2
c + C1) or Δβ(A′

1)
2
x .

2.4 Main Results
The descriptions of all systems of the rigid body dynamics are fairly complex. It
turns out that, in many cases, the Fomenko–Zieschang theorem makes it possible
to establish the Liouville equivalence of these systems to certain simpler billiard
systems on the four-dimensional phase space M4.
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Fig. 2.4 Domains which
contains the focuses

Theorem 2.4 ([27]) The following cases of rigid body dynamics are modeled by
(Liouville equivalent to) the following generalized billiards

• the Euler case (see [9]) is completly modeled by the billiards in the generalized
domains shown in Figs.2.5 and 2.6;

• the Zhukovskii case (see [15]) is modeled by the billiards in the generalized
domains shown in Fig.2.5b (energy zone 11, Q3 � RP3), Fig.2.5c (energy zone
2,Q3 � S1 × S2), Fig.2.5d (energy zone 8, Q3 � S3), and Fig.2.5f (energy zone
12, Q3 � RP3);

• the Lagrange case (see [9]) is modeled by the billiards in the generalized domains
shown in Fig.2.5a (energy zone 2, Q3 � S3) and Fig.2.5b (energy zone 3, Q3 �
RP3);

• the Goryachev–Chaplygin–Sretenskii case (see [19]) is modeled by the billiards
in the generalized domains shown in Fig.2.5c (energy zone 4,Q3 � S1 × S2) and
Fig.2.5g (energy zone 2, Q3 � S3);

• the Kovalevskaya–Yehia case (see [23]) is modeled by the billiards in the gener-
alized domains shown in Fig.2.5c (energy zone h28, Q3 � S1 × S2) and Fig.2.5e
(energy zone h18, Q3 � S3);

• the Clebsch case (see [21]) is modeled by the billiards in the generalized domains
shown in Fig.2.5e (energy zone 2, Q3 � S3), Fig.2.5h (energy zones 10 and 12,
Q3 � S1 × S2), and Fig.2.5i (energy zone 5, Q3 � RP3);

• the Sokolov case (see [22]) is modeled by the billiards in the generalized domains
shown in Fig.2.5e (energy zone B, Q3 � S3) and Fig.2.5i (energy zone I, Q3 �
RP3).

The Liouville equivalence of these billiard systems and integrable systems of
the motion of a rigid body follows from the Fomenko–Zieschang theorem and the
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Fig. 2.5 The left column shows the billiard domains, in the middle column – Fomenko-Zieschang
invariants describing the topology of the billiard motion in them. The right column shows the cases
of rigid body dynamics Fomenko-Zieschang which also have the form shown in the middle column
(in parentheses are the numbers of the isoenergy surfaces in accordance with the numbering of the
authors, the data to calculate the invariants)

comparison of the invariants of generalized billiards found by these authors with
invariants calculated in the cited works of other authors.
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Fig. 2.6 Billiard system and
the Euler case of the rigid
body dynamics. The motion
of a rigid body, the
appropriate settings in the
shaded gray area on the
bifurcation diagram,
modeled billiards in the
domain shaded in the same
shade

The Euler case is Liouville equivalent to the case of the geodesic flow on the
ellipsoid [7]. This has been proven by the application of the theory of Fomenko–
Zieschang—by calculating and comparing the invariants. On the other hand, the
problemof the geodesic flow is closely connectedwith the integrable billiard problem
in the domain bounded by arcs of confocal quadrics—by limiting to zero at the half-
axis the ellipsoid becomes the flat ellipse, and geodesic lines on it become straight
line segments. However, as can be seen, the billiard in an ellipse will not be Liouville
equivalent to the geodesic flow.

The introduction of generalized billiards allowed to expand the class of classical
billiard systems and successfully simulate not only the case of Euler fixed type
isoenergy surfaces, but also to select for each constant-energy surface of a billiard a
movement which will simulate the motion of a rigid body fixed at its center of mass.

It turns out that, in a sense, the billiard system is not so simple. However, its
complexity lies in the complexity of a generalized billiard table—the more exotic
the boundary the more complicated the topology of the Liouville foliation isoenergy
surface Q3.
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Thus, as a result of the introduction of generalized billiards we have been able
not only fully simulate the Euler case, but also to get a large number of systems,
whose Fomenko–Zieschang invariants coincide with those calculated previously for
many systems of rigid body dynamics. This has allowed to simulate a wide class of
problems of rigid body dynamics, though not completely.
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