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Abstract The main goal of this paper is to validate experimentally the principal
conclusions previously published in [17]. Two manufactured test cases were
considered with their respective analytic solutions. First, a scalar transport equation
is considered written in such a way that several parameters are included to stress
the limiting situation where the Eulerian and the Lagrangian approaches behave
better. The results show conditions to be fulfilled in order to choose between both
formulations, according to the problem parameters. A brief discussion about the
projection needed for PFEM-2 method is included, specially due to its impact
on the error convergence rate. Lately, an extension to Navier-Stokes equations is
introduced using also a manufactured case to verify again the same conclusions.
This paper intends to establish the first steps towards a mathematical error analysis
for the particle finite element method which supports the preliminary theoretical and
experimental results presented here.
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1 Introduction

Over the last decades, computer simulation of incompressible fluid flow has been
mainly based on the Eulerian formulation of the fluid mechanics equations on fixed
domains [3]. During this period, hardware has evolved considerably increasing the
speed performance of computations and allowing better facilities for data entry and
the display of results. However in these decades there have been no substantial
improvements on the numerical methods used concerning the efficiency of the
algorithm. In most practical engineering problems, very fine mesh and very small
time-steps are needed to reach acceptable results. This handicap exceeds most time
the efficiency of current powerful computers.

More recently, particle-based methods in which each particle is followed in
a Lagrangian manner have been used for fluid flow problems. Monaghan [21]
proposed the first ideas for the treatment of astrophysical hydrodynamic problems
with the so-called Smoothed Particle Hydrodynamics Method (SPH), which was
later generalized to fluid mechanics problems [6, 7, 21]. Koshizuka and coworkers
[18, 19] developed a similar method to SPH, named Moving Particle Simulation
(MPS). SPH and MPS belong to the family of the so-called meshless methods, as
well as the Finite Point Method [24–26]. Lately, the meshless ideas were generalized
to take into account the finite element type approximations in order to obtain more
accurate solutions [9]. This method was called the Meshless Finite Element Method
(MFEM) and uses the extended Delaunay tessellation [8] to build the mesh in
a computing time, which is linear with the number of nodal points. A natural
evolution of the last work was the Particle Finite Element Method (PFEM) [10]. The
PFEM combines the particle precept with the Finite Element Method (FEM) shape
functions using a background finite element mesh. This mesh may be quickly rebuilt
at each time-step (PFEM with moving mesh) or may be a fixed mesh (PFEM with
fixed mesh). In the last case, the results from the Lagrangian particles are projected
on a fixed mesh at each time-step. The idea of combining fixed meshes with moving
particles is not new. It was introduced for convection-diffusion problems in [22]
and was used in the so-called Particle in Cell method (PIC) [2] and later in its
extension called the Material Point Method (MPM) [29]. All these methods use
a Finite Element (FE) background mesh. Despite that both the PFEM and the MPM
use a fixed FE mesh and a set of Lagrangian particles, there are important differences
in the way the particles are employed: thus, while in the MPM all computations are
performed on the mesh, in the PFEM the aim is to calculate as much as possible on
the particles, leaving small corrections to be performed on the mesh. However, the
most important difference is that in the PFEM the particles do not represent a fixed
amount of mass, but rather material points that transport only intrinsic properties of
the fluid. This allows to use a variable number of particles and therefore simplifying
refinement.

The PFEM has been successfully used to solve the Navier-Stokes equations
[1, 20] and fluid–structure interaction problems [11, 12, 28] as well as solid
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mechanics problems [23]. The advantages of the PFEM concerning the tracking
of internal interfaces have also been explored and used to solve fluid mechanics
problems including multi-fluid flows [13].

The possibility to use the PFEM to solve non-linear problems with large time-
steps in order to obtain an accurate and fast solution was successfully explored
by the authors for the solution of the homogeneous incompressible Navier-Stokes
equations [5, 14, 15] and multi-fluid problems [4, 16]. This new strategy was named
PFEM-2.

In [17] the first trial of an error analysis for Lagrangian based methods like
PFEM and its comparison with an Eulerian formulation was presented in order to
demonstrate why the former is more accurate than the latter in certain particular
cases when large time-step and/or coarse meshes were used. There the authors claim
that nowadays, the best way to improve the efficiency of the algorithms in order
to take advantages of the increasing computer power is using this particle-based
method.

The goal of this paper is to demonstrate numerically the validity of that first
error analysis attempt for scalar transport problems and also for homogeneous
fluid flow problems. During this analysis the projection error arises as one of the
main limitations to reach that goal and a new proposal of projection algorithm is
presented. This projection shows to have several collateral benefits like having good
mathematical properties as the existence of reciprocity in the operation of going
back and forth between mesh and particles and also smoothing properties in the
computation of fluid flow forces.

The layout of the paper is the following. After a review of the main results
presented in [17] a numerical validation of these results for scalar transport problems
is shown highlighting the conditions under which a Lagrangian approximation
is preferred, in particular when using large time-steps. Next, the new projection
scheme is presented putting in evidence the possibility and the requirement of
reaching a second order approximation in space and time. Finally, an extension
to fluid flow problems is presented with a manufactured example that serves to
demonstrate the conclusions written in [17]. Some conclusions and future trends
are highlighted at the end.

2 Error Analysis Applied to a Scalar Transport Equation

Many problems in engineering may be mathematically expressed by transport equa-
tions written in Lagrangian or Eulerian reference frames. For such mathematical
models there is a strong division between transporting scalar fields or transporting
vector or tensor fields. Also the linear and non-linear approaches become another
important feature normally included in the modeling. Moreover, advection and
diffusion effects present very different behaviors from the physical, mathematical,
and numerical point of view. With such a complexity it is very difficult to find
analytic solutions to be used as reference for formal error analysis. In order to
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circumvent such a drawback in this paper manufactured test cases are developed
to be used as good candidates for getting exact solutions to our test problems.

Several control parameters for the exact solution are used to place the problem
in various conditions from some beneficial to Lagrangian schemes to other more
beneficial to an Eulerian one.

To begin, in this section a scalar transport equation is solved. The differential
equation associated to solve this problem may be written in an Eulerian (fixed)
frame as

@T

@t
C v � rT D Q.x/ (1)

where T D T.x; t/ D Tt.x/ is the scalar unknown, v is the velocity field, and
Q.x/ includes the source term q.x/, the diffusion term r � .krT/, and the linearized
version of a reactive source term cT , etc., being

Q.x/ D q.x/C r � .krT/ � cT C : : : (2)

To write Eq. 1 in the Lagrangian (mobile) frame, it is necessary to use the material
derivative D=Dt, which condenses the temporal derivative and the convective term
into a unique term. However, as it is well known for Lagrangian formulations not
only the respective field should be computed, but also the particle trajectories,
obtaining

8
ˆ̂
<̂

ˆ̂
:̂

DT

Dt
D Q.xp/

Dxp

Dt
D v

(3)

where T D T.xt
p; t/ D Tt.xt

p/ is the scalar unknown. Here the superscript t means
the time dependency and the subscript p represents the particle itself.

Eqns. (1) and (3) are integrated in time in an Eulerian frame using a linear method
named � -method:

TnC1.x/ D Tn.x/C
nC1Z

n

�
Qt � vtrTt

�
dt � Tn.x/C .Q � vrT/nC� �t (4)

where f nC� D .1��/f n C� f nC1 is the linear in time interpolation for any function f .
The time integration error of a function f t for � D 1=2 is proportional to the second
derivative of the function and �t2, i.e.,
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nC1Z

n

f t dt � f nC 1
2 �t ˙ � with � D Oh@

2f

@t2
�t2i�t: (5)

In the case of time integration in the Lagrangian frame, there are several options
to evaluate that integral [17]. An option is to perform the integration with the moving
particles following the streamlines (taking into account intermediate positions),
splitting the integration into an explicit part and an implicit part, or decoupling the
trajectory and temperature integrations employing two different values for � , i.e.,

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

TnC1.xnC1
p / � Tn.xn

p/C .1 � �1/
nC1Z

n

Qn.xt
p/ dt C �1Q

nC1.xnC1
p /�t

xnC1
p � xn

p C .1 � �2/
nC1Z

n

vn.xt
p/ dt C �2vnC1.xnC1

p /�t

(6)

The case of performing the unknown integration following streamlines with
�1 D 1=2, and the trajectory, also following streamlines, but with �2 D 0, has been
named X-IVAS+implicit correction [15]. On the other hand, if the choice for the
unknown integration is �1 D 1 the method is named X-IVS, which was presented
in [14]. The latter integration will be used in all the examples presented here when
using a Lagrangian frame. However, in the present study for the error analysis, the
standard � -method will be considered:

8

<̂

:̂

TnC1.xnC1
p / � Tn.xn

p/C QnC� .xnC�
p /�t

xnC1
p � xn

p C vnC� .xnC�
p / �t

(7)

This assumption is based on the fact that the X-IVAS integration improves the results
and decreases the integration errors. The evaluation of this difference is out of the
scope of this work.

2.1 Eulerian Errors

As presented in Equation (5), the linear � -method introduces a minimum error for
� D 1=2 which is proportional to the second derivative of the integrated function
and the square of the time-step, i.e.,

TnC1.x/ D Tn.x/C
nC1Z

n

�
Qt � vtrTt

�
dt � Tn.x/C

h
.Q � vrT/nC

1
2

i
�t ˙ �t (8)
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with the time integration error

�t D Oh @
2

@t2
ŒQ � vrT� �t2i�t D OhŒQ � vrT� R�t2i�t: (9)

On the other hand, the FEM approximation of the functions and the space
derivatives introduces spatial errors. As it was mentioned, this analysis only
considers linear finite element approximations of the unknown, therefore the spatial
errors are proportional to the second derivative of the functions and the square of
the mesh-size, i.e.,

TnC1.x/ D Tn.x/C
nC1Z

n

�
Qt � vtrTt ˙ �x

�
dt � Tn.x/C

h
.Q � vrT/nC 1

2 �t ˙ �x

i
�t˙�t

(10)

with the spatial discretization error

�x D Oh @
2

@x2
ŒQ � vrT� �x2i�t: (11)

Finally, avoiding higher order terms, the unknown function after a time-step using
the Eulerian framework is

TnC1.x/ D Tn.x/C .Q � vrT/nC
1
2 �t ˙ �x C �t D Tn.x/C .Q � vrT/nC

1
2 �t ˙ �E

(12)

with �E D �x C �t.

2.2 Lagrangian Errors

In this section first a general analysis taking into account the whole problem
involved in a Lagrangian formulation, i.e., solving not only for the scalar field, but
also for the particle trajectories, is done. Afterwards a specific analysis of projection
errors for PFEM-2 scheme due to the mapping of the field between particles and the
mesh is presented considering the importance of this projection stage in the global
error of the method.

2.2.1 General Analysis

In the case of the Lagrangian frame, the errors in the numerical evaluation of the
unknown function and the particle position are
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8
<

:

TnC1.xnC1
p / � Tn.xn

p/C QnC 1
2 .x

nC 1
2

p /�t ˙ OhQ00�x2i�t ˙ OhQR�t2i�t

xnC1
p � xn

p C vnC 1
2 .x

nC 1
2

p / �t ˙ Ohv00�x2i�t ˙ OhvR�t2i�t
(13)

The error in the evaluation of the particle position �p
x D Ohv00�x2i�t ˙

Ohv R�t2i�t introduces also an error in the evaluation of the unknown function.
Performing a series expansion around xnC1

p , i.e.,

TnC1.xnC1
p C �p

x / D TnC1.xnC1
p /C rT�p

x C OhT 00.�p
x /
2i (14)

and replacing in the first equation of (13), it is

TnC1.xnC1
p / � Tn.xn

p/C QnC 1
2 .x

nC 1
2

p /�t ˙ OhQ00�x2i�t ˙ OhQR�t2i�t ˙ rT�p
x

(15)

the expression for the Lagrangian error �L can be found

�L D ˙Oh�Q00 ˙ v00rT
�
�x2i�t ˙ Oh.QR ˙ vRrT/�t2i�t (16)

Comparing the Eulerian error expression in 12 with the Lagrangian one in 16,
the main differences are in the following terms:

ŒvrT�00�x2 ˙ ŒvrT� R�t2
„ ƒ‚ …

Eulerian

¤ v00rT�x2 ˙ vRrT�t2„ ƒ‚ …
Lagrangian

(17)

The difference presented in Equation (17) leads to a big advantage of the
Lagrangian framework against its Eulerian counterpart for some problems. For
instance, in the standard convection-diffusion problem of a non-constant unknown,
where the convective field is known and has a constant or nearly constant velocity,
Equation (17) reads

ŒvrT�00�x2 ˙ ŒvrT� R�t2 ¤ 0
„ ƒ‚ …

Eulerian

I v00rT�x2 ˙ vRrT�t2 D 0„ ƒ‚ …
Lagrangian

(18)

that is, the Lagrangian integration does not have any error because v00 D v R D 0,
but the Eulerian framework presents an error due to ŒvrT�00˙ ŒvrT� R D v ŒrT�00˙
v ŒrT� R ¤ 0.

2.2.2 Projection Errors

In order to complete the error analysis for the particular Lagrangian approximation
employed by PFEM-2, the projection errors should be taken into account. In [15]
PFEM-2 had been introduced as a hybrid method using particles and mesh in
order to exploit the advantages of Lagrangian and Eulerian methods. This duality
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between mesh and particles requires that data should be sent back and forth along
the whole computation several times. If this projection is not designed properly a
huge source of inaccuracies is introduced and the error degrades a lot. Moreover, the
projection is normally responsible of getting noisy values represented by the mesh,
like forces in a fluid–structure interaction problems. In [17] Idelsohn et al. conclude
that these errors depend on the distance between particles which is denoted by h.
Therefore, the importance to use a great amount of particles with h << �x becomes
obvious for decreasing projection errors. However this assumption relies on an ideal
projection strategy which consists in generating a mesh with the particles positions
guaranteeing that the projection error depends only on particle mesh-size h.

Even being an ideal strategy, the triangulation of the particle positions at each
time-step may be unaffordable because of the computational cost involved when
particles tend to grow in number.

Typical strategies employed by PFEM-2 [4] to project a given field � between
nodes using subindices .j/ and particles using subindices .p/ are of the following
form:

�j D ˘p!j�p D

X

P

�pWj.xp/

X

P

Wj.xp/
(19)

where the function Wj, associated with the node j, can be either the typical kernel
functions used in particle methods such as SPH[7] or the linear shape functions
raised to a power ˛ > 0 (it is Wj.x/ D Nj.x/˛), while xp is the position of the
particle p with state �p and P is the number of particles in a region around the
node j.

This projection algorithm does not preserve the global second order error
introducing a degradation of the solution accuracy proportional to the number of
projections done. This last variable depends on the time-step with a smaller impact
when the time step is large and a bigger one when the time-step tends to reduce.
This fact is observed experimentally in the next section.

On the other hand this family of projections algorithms is in general not
commutative, i.e., the projection does not satisfy the inverse property of operators:

˘p!j

�
˘p!j

��1 ¤ I (20)

This last statement strongly endangers the solution accuracy and may also be
responsible for excessive diffusion of the primal variables or for noisy secondary
(dual) fields computed on the mesh, like forces, heat fluxes, etc.

In order to circumvent this drawback in this paper a new projection is presented
overcoming most of the above cited weakness. Here only its definition and the main
idea behind this development are presented. The mathematical demonstration of its
incidence on the error analysis is still in elaboration.
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Fig. 1 Graphical example of
the target function ˚ and its
two possible FEM
approximations � and Ih

The idea is based on using least squares approximations to find the nodal values
from particles states.

More precisely, the idea is to find �j that realizes the following minimum:

min

2

6
4
1

2

X

p

0

@�p �
X

j

�jNj.xp/

1

A

2
3

7
5 (21)

Solving the Equation (21) leads to an equation system of J unknowns M� D f,
where J is the number of nodes, Mij D P

p Ni.xp/Nj.xp/ is a consistent mass matrix,
and fi D P

p Ni.xp/�p.
Figure 1 shows a graphic representation of the approximation of a target function

˚ where the particles look like quadrature points where the FEM solution is
evaluated. The function � is obtained minimizing (21), while the function Ih is the
Lagrange interpolator which takes the values of the function ˚ at nodal positions.
Because an approximation as Ih, which belongs to the same discretization space than
�, has an error proportional with the square of the mesh-size, i.e., � � C�x2, and
� has the lowest error among the functions of this space, then it follows that � has
also an error proportional with the square of the mesh.

Finally the projection error is introduced at each projection step independently
of the time-step size. Then, in a total period of time .tf � t0/ the Lagrangian error
can be extended to

�L D ˙Oh�Q00 ˙ v00rT
�
�x2i.tf � t0/˙ Oh.QR ˙ vRrT/�t2i.tf � t0/˙

˙ OhT 00�x2i .tf � t0/

�t

(22)

2.3 Validation Test

The differences presented in Equation (17) should be analyzed in depth. In the
Eulerian case the error formula includes the spatial and temporal derivative of
the product between the velocity and the scalar gradient, while in the Lagrangian
formula they only affect the velocity. It has important theoretical consequences,
which can be enumerated:
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1. Eulerian frames are better for diffusion dominant problems. In these cases, the
errors between the Lagrangian and Eulerian approaches are of the same order,
but in the Lagrangian frames the projection errors must be added.

2. Lagrangian frames are better for convective dominant problems when the con-
vective flow is constant or nearly constant in time v R � v00 � 0. The remaining
cases, when the convective flow presents high variations the Lagrangian or the
Eulerian frame will be better or worse depending on the projection errors.

3. Eulerian frames are better for stationary problems. In these cases, ŒrT�R D 0 and
there are no projection errors.

The aim of this section is to verify these facts experimentally, with numerical
simulations employing both frames. The modification of some parameters in these
tests will increase or decrease the terms which introduce errors in each formula,
being the objective to match the experimental and theoretical results. In order to do
this a particular 2D problem was tailored with an analytical solution to compare the
results.

The proposed domain is Œ�1;�1� � Œ1; 1�. The velocity field v D uOi C vOj has
variations both in time and space: a rigid rotation with a periodic temporal variation
of its angular velocity which is modulated in space by a parabola. The proposed
velocity field is

�
u.x; y; t/ D �!1y.1 � x2/.1 � y2/.1C C sin.!2t//
v.x; y; t/ D !1x.1 � x2/.1 � y2/.1C C sin.!2t//

(23)

where !1 is the mean angular velocity of the rotation field, !2 is the frequency at
which the field increases or decreases its rotation. The parameter C allows to control
the amplitude of the variation of the rotation direction, such as if jCj > 1 the rotation
is inverted for certain time, if C D 1 the movement vanishes at some instant, and
if jCj < 1 the field does not change its rotation direction. A source term q was
included such that the unknown function becomes

T.x; y; t/ D sin.!3t/ sin.�x/ sin.�y/ (24)

which is identically zero at boundaries and has four hills at points Œ˙0:5;˙0:5�.
A snapshot of the proposed scalar field is presented in Figure 2. An initial value of
T D 0 and Dirichlet boundary conditions T D 0were used. The diffusivity k and the
oscillation frequency !3 can take independent values allowing to analyze different
situations.

The reference grid used has 50 � 50 nodes conforming 4802 triangles, which
gives a mesh-size �x D H D 0:04. In the Eulerian case, Crank-Nicholson as time
discretization scheme was employed. For Lagrangian simulations four particles per
element were evenly seeded. The particle grid size h is defined as h D p

2A=Np,
where A is the area of the element containing Np particles. With this definition, the
area of the element is divided by the number of particles contained.
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Fig. 2 Snapshot for the
manufactured scalar field
solution

Table 1 Parameters for the
manufactured 2D scalar
transport case

Case C !1 !2 !3 k

1 1 2� 0 2� 0

2 1 2� 2� 2� 0

3 1 2� 2� 3� 0

4 1/2 2� 2� 2� 0

Four cases were designed to cover a wide range of problem types. Table 1
presents the parameters employed in each case. Two time-steps are employed in
order to simulate with small CFLmax � 1 and large CFLmax � 10, respectively,
being CFLD jvj�t=�x the Courant-Friedrich-Levy number.

In the following cases the root-mean-square (RMS) as an error measure is
employed, defined as

RMS.t/ D
v
u
u
t 1

N

NX

jD1

�
Tex

j .t/ � Tap
j .t/

�2

where N is the number of nodes on the mesh, Tex is the analytic reference solution,
and Tap is the numerical solution.

The results are presented in Figure 3. In the first case, which has a steady velocity
field (v R D 0) and no diffusion, as anticipated in previous section, the Lagrangian
framework has better results than the Eulerian one, being specially remarkable when
large Courant numbers are employed. In the mentioned case, the PFEM-2 error does
not depend on the time-step size showing a periodic variation due the spatial error
which is proportional to the temporal harmonic function rT . On the other hand,
FEM shows large errors when the time-step is increased as it is expected.

In the second case, the velocity field is unsteady having a harmonic variation in
its amplitude. Here v R ¤ 0, then the Lagrangian solution shows similar problems
to the Eulerian one. However, if the oscillation frequency of the solution is larger
than the amplitude variation of the velocity (!3 > !2), as happens in the third
Case, the temporal error term in the Eulerian case (ŒvrT� R�t2) increases, while
the Lagrangian one (v ŒrT� R ) remains almost equal. In this way, the second and
third case also prove experimentally the theoretical error formula presented in
Equation (17).
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a b

c d

Fig. 3 Case Four hills without diffusion. RMS error evolution for Eulerian and Lagrangian
simulations with steady (Figure 3(a)) and unsteady (Figures3(b), 3(c), and 3(d))) velocity fields.
The Lagrangian error is presented with black lines and the Eulerian with red lines

The second and the third cases use a velocity field which vanishes every T D
1=!2, this gives to the Eulerian formulation some advantages due the spatial error
term (ŒvrT�00�x2) also vanishes. That advantage is, in some cases, recovered by the
Lagrangian approach when the time-step is increased. The fourth case overcomes
this fact using another value for the constant C which avoids that v.t/ D 0 for any
t. Figure 3(d) shows that the error differences are more visible, proving again the
theoretical error formula.

As a preliminary conclusion, the results presented in Figure 3 confirm the
proposed error formula in [17], showing that the Lagrangian error using large time-
steps is affected by the unsteadiness of both, the velocity field and the source term.
As a footnote based on experimental facts, it can be mentioned that an X-IVAS
calculation of the unsteady source is mandatory to obtain accurate results, which
is not possible with the time-step selected (it only samples seven points inside the
source’s period). Regarding to Eulerian simulations, as expected, they show larger
errors when the CFL grows. Also, this error increases when high rT R are employed.

On the other hand, Figure 4 presents a convergence analysis for Case A. Three
mesh refinements were used �x D 2H, H, and H=2, modifying the �t in order to
keep the CFLmax in a constant value. The RMS error presented for each case is the
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LowCFL

a b

HighCFL

Fig. 4 Convergence of the RMS Error. Case A. CFLmax D 0:6 in 4(a) and CFLmax D 6 in 4(b)

average value of RMS from T D 0 to T D 2Œs� of simulation time. As presented
in Figure 3(a), using CFLmax � 0:6 the Lagrangian and Eulerian errors are almost
the same. However, when the dimensionless number is increased to CFLmax � 6,
the Lagrangian solution obtains better accuracy than Eulerian even using both time-
step and mesh-size twice larger. This fact represents a notable advantage of the
Lagrangian approach over the Eulerian in this type of problems, showing that
PFEM-2 simulation can obtain the same precision than FEM even solving a problem
eight times smaller.

Regarding to convergence orders, both Lagrangian and Eulerian solutions show
concordance with theoretical formula, presenting a second order convergence in
every case. In the Lagrangian approach this behavior is reached if the projection
operator fulfills this requirement.

3 An Extension to Viscous Incompressible Fluid
Flow Simulations

In this case the model to be solved is represented by the Navier-Stokes equations
added with the mass conservation that imposes a constraint on the velocity field to
be divergence free. This condition is enforced by the pressure acting as a Lagrange
multiplier. Inspecting the momentum equation and comparing this with the scalar
transport equation just analyzed, here the same unknown variable acts as the velocity
field that drives the convection term. This fact produces a non-linear term that is
responsible for the chaotic nature of the model that pretends to emulate the physical
effects produced by the turbulence.
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3.1 General Comments

In this case the error equation looks like the same [17], but the conclusions are
fundamentally different.

Generalizing Equation (17), the difference between the errors in the Eulerian and
Lagrangian frames for convective dominant problems (high Reynolds number) is

Œvrv�00�x2 ˙ Œvrv� R�t2
„ ƒ‚ …

Eulerian

¤ v00rv�x2 ˙ vRrv�t2„ ƒ‚ …
Lagrangian

(25)

In this case, it is not anymore possible to separate the case in which the convective
field is constant from the case in which the gradient of the transported field (rv) is
not constant. Nevertheless, some particular cases may be analyzed in order to draw
some conclusions:

• Eulerian frames are better for low Reynolds number. In these cases, the errors
between the Lagrangian and the Eulerian approaches are of the same order, but
on Lagrangian frames the projection errors must be added.

• Lagrangian frames are better for convective dominant problems when the
velocity has a smooth variation in time but the gradient of the velocity has high
spatial variations. This case is very common in fluid mechanics problems, such
as in shock waves. The remaining cases are better or worse depending on the
projection errors.

• Lagrangian frames are better for multi-fluid flows. This is because Eulerian
frames need to solve a level set equation to know the position of the interface.
The level set equation [27] is a convection equation that requires small time-
steps to yield accurate results due to the considerations concluded in the previous
section, i.e.,

vRrv < 1 and Œvrv� R � v Œrv� R � 1

3.2 Validation Test

Following the same criteria as the validation test in Section 2.3, a manufactured case
is employed where a solution is proposed and the external force f must be adapted
in order to satisfy the differential equation.

The case is adapted from the book of Donea & Huerta [3] where the authors
solved a stationary Stokes flow. In this work, the problem includes also a convective
term, leading to recalculation of the external force needed to satisfy the Navier-
Stokes equations. A two-dimensional problem in the square domain Œ0; 0�� Œ1; 1� is
considered, which possesses a closed-form analytical solution. The problem consists
in determining the velocity field v and the pressure p such that
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8
<

:

@v
@t C v � rv � r � .�rv/C rp D b in ˝

r � v D 0 in ˝
v D 0 in 	

(26)

where the fluid viscosity � can be changed in order to simulate for different
Reynolds numbers, being Re D jvjL=� with L D 1. In order to solve the previous
equation system, an analytical solution is proposed:

8
<

:

u.x; y; t/ D x2.1 � x/2.2y � 6y2 C 4y3/.1C 0:5 sin.!t//
v.x; y; t/ D �y2.1 � y/2.2x � 6x2 C 4x3/.1C 0:5 sin.!t//

p.x; y; t/ D x.1 � x/
(27)

which allows to find the expression for b. Varying � and ! is possible to modify
the Reynolds number and the unsteadiness of the solution, respectively. Cases were
solved using a 50 � 50 Cartesian mesh split into triangles and setting the time-step
such as CFLmax � 10. Figure 5 shows the shape of the proposed manufactured flow
for two different times.

Table 2 shows the configuration and the RMS errors at T D 1000Œs� of the
simulated cases.

Figure 6 presents graphically the evolution of the RMS for Cases 1 and 2. In
the first case, a low Reynolds number was selected, therefore the Eulerian solution
obtains better results although simulating with large CFL. This is an equivalent

Fig. 5 Manufactured velocity field solution of the Navier-Stokes equations. Snapshots for two
different times. Arrows indicating direction of the velocity field are colored by its magnitude

Table 2 Configuration and RMS � 103 errors. Every case was run with CFLmax � 10

Eulerian Lagrangian

Case ! Re RMS vx RMS vy RMS p RMS vx RMS vy RMS p

1 �=5000 10 0.75 0.73 0.036 2 1.9 0.058

2 �=5000 1000 0.012 0.011 0.014 0.0071 0.0062 0.013

3 �=50 10 0.8 0.82 0.026 0.83 0.85 0.023

4 �=50 1000 � 1 � 1 � 1 1.3 1.5 0.06
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vx with Re= 1000

vx with Re= 10

vy with Re= 1000

vy with Re= 10

p with Re= 1000

p with Re= 10

a b c

d e f

Fig. 6 RMS measured for a Navier-Stokes analytical solution using Lagrangian and Eulerian
schemes. Cases with ! D �=5000

problem to that diffusion dominated scalar transport problem. However, when the
Reynolds number is increased, the Lagrangian framework recovers its advantage.
In the third and fourth cases, the unsteadiness of the solution is increased, leading
to an increment of the temporal derivatives. In the Lagrangian approach the error
enlargement is lower than the Eulerian case, mainly because vRrv < Œvrv� R . This
fact is of extreme importance in the fourth case where the Eulerian solution diverges,
concluding that beyond the increasing of the Reynolds number, the growth of the
unsteadiness also affects the Eulerian simulations. On the other hand, Lagrangian
framework is not adequate in the case of low Reynolds number, which is also
consistent with the theoretical formula.

4 Conclusions

From the theoretical results published in [17] several conclusions were achieved
allowing to decide in which situation an Eulerian framework is preferred against
a Lagrangian one, and vice versa. In this paper the focus was on the experimental
validation of those statements with the main goal of beginning to write a formal
error analysis based on mathematical tools.
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After confirming the validity of those conclusions through the results presented
here not only for scalar problems, but also for vector systems like Navier-Stokes, the
next step is establishing the main baseline for writing some a priori error analysis
including not only the spatial and temporal approximations, but also the projection
error for the particle finite element method.

As a conclusion, when advective dominant flows were analyzed, the PFEM-2
methodology has shown several advantages over pure Eulerian strategies. Beyond
the possibility of enlarging time-steps, the Lagrangian method also allows to get
as accurate solutions as Eulerian ones even using coarser meshes. Last means a
significant saving of computational cost which is an invaluable feature in order to
solve the challenging problems of next decade
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