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Abstract. Recently, Holzer et al. gave a method to decide whether
the language accepted by a given deterministic finite automaton (DFA)
can also be accepted by some reversible deterministic finite automa-
ton (REV-DFA), and eventually proved NL-completeness. Here, we
show that the corresponding problem for nondeterministic finite state
automata (NFA) is PSPACE-complete. The recent DFA method essen-
tially works by minimizing the DFA and inspecting it for a forbidden
pattern. We here study the degree of irreversibility for a regular language,
the minimal number of such forbidden patterns necessary in any DFA
accepting the language, and show that the degree induces a strict infi-
nite hierarchy of languages. We examine how the degree of irreversibility
behaves under the usual language operations union, intersection, com-
plement, concatenation, and Kleene star, showing tight bounds (some
asymptotically) on the degree.

1 Introduction

In computation theory, reversibility is the property that computations are both
forward and backward deterministic. In the context of finite state models,
reversibility can usually be verified by simple inspection of the transition func-
tion, ensuring that the induced computation step relation is an injective function
on configurations. Despite the apparent simplicity of reversible computations,
reversibility is an interesting property that has been studied in a wide array of
contexts, including the thermodynamics of computation [7], across a wide array
of automata models [9], and even in robotics [10].

It is well-known that the reversibly regular languages, i.e., the languages
accepted by reversible deterministic finite automata (REV-DFA), form a strict
subclass of the regular languages, see, e.g., [6]. However, the exact cost of
reversibility is still not well-understood: for example, changing from one-way
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to two-way tapes is sufficient to collapse the classes [5]. Likewise, adding a
reversible transducer in front of the REV-DFA also collapses to the regular
languages [1]. This motivates further study into the relationship between the
regular and reversibly regular languages, and in particular towards developing
methods to understand and bridge the gap in terms of the internal structure
of deterministic finite automata (DFA). In this paper, we take steps in this
direction.

Recently, Holzer et al. showed a method for deciding if the language accepted
by a given DFA can also be recognized by some REV-DFA [4]. Tt was also shown
that this is an NL-complete problem, and a decision method was given, which
essentially works by minimizing the DFA and inspecting it for the presence of
a forbidden pattern. If this pattern is present in the minimal DFA, then there
is no REV-DFA that can accept the same language, and if not, then there is.
What makes this particularly interesting is that the pattern is structurally more
complex than the simplest violation of reversibility (see Sect. 2 for details). This
suggests that the forbidden pattern captures an essential aspect of irreversibility,
and offers an approach to studying the gap between the reversibly regular and
regular languages based on the absence, presence, and count of occurrences, of
this pattern.

Our contributions are as follows. We show that the generalization of the
problem studied in [4] to nondeterministic finite automata (NFA), i.e., the reg-
ular reversibility problem of whether the language accepted by a given NFA
is reversibly regular, is PSPACE-complete. Turning to DFAs, we introduce the
notion of degree of irreversibility for DFAs, essentially the number of occurrences
of the forbidden pattern in a given DFA, and extend this to (regular) languages
by minimizing over all DFAs accepting the language. Finally, we show that the
degree of irreversibility induces a strict, infinite hierarchy of languages. We then
proceed to show exact bounds on the degree of irreversibility under the common
language operations union, intersection, and complement, and asymptotically
tight bounds for concatenation and Kleene star.

The paper is organized as follows. Section 2 covers the necessary preliminar-
ies. In Sect. 3 we show that the regular reversibility problem is PSPACE-complete.
Section 4 defines the degree of irreversibility, and shows the related hierarchy. We
present the degree complexity results for common language operations in Sect. 5.
Most proofs are omitted due to space constraints, and will be given in the full
version of the paper.

2 Preliminaries

An alphabet X is a non-empty finite set, its elements are called letters or symbols.
We write X* for the set of all words over the finite alphabet X.

We recall some definitions on finite automata as contained, for example, in [3].
A deterministic finite automaton (DFA) is a 5-tuple A = (Q, X, 0, qo, F'), where Q
is the finite set of internal states, X' is the alphabet of input symbols, gy € S is
the initial state, F' C @ is the set of accepting states, and §: @ x X — @ is the
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partial transition function. Note that here the transition function is not required
to be total. The language accepted by A is L(A) = {w € X* | d(qo,w) € F },
where the transition function is recursively extended to 6: Q x X* — @Q. By
6 Q x ¥ — 29, with 6%(q,a) = {p € S| 6(p,a) = q}, we denote the reverse
transition function of §. Similarly, also 6% can be extended to words instead of
symbols. Two devices A and A’ are said to be equivalent if they accept the same
language, that is, L(A) = L(A").

Let A = (Q,X,0,q0,F) be a DFA accepting the language L. The set of
words Raq = {w € X* | 6(q,w) € F'} refers to the right language of the state ¢
in A. In case Ra, = Ra,q, for some states p,q € ), we say that p and ¢ are
equivalent and write p =4 ¢. The equivalence relation =4 partitions the state
set @ of A into equivalence classes, and we denote the equivalence class of ¢ € S
by [¢] = {p € S |p=a q} Equivalence can also be defined between states of
different automata: a state p of DFA A and a state g of DFA A’ are equivalent,
denoted by p=¢q, if Rap = Ra/ g

A state p € Q is accessible in A if there is a word w € X* such that 6(qo, w) =
p, and it is productive if there is a word w € X* such that §(p,w) € F. If p is
both accessible and productive then we say that p is useful. In this paper we
only consider automata with all states useful. Let A and A’ be two equivalent
DFAs. Observe that if p is a useful state in A, then there exists a useful state p’
in A’ with p = p’. A DFA is minimal (among all DFAs) if there does not exist
an equivalent DFA with fewer states. It is well known that a DFA is minimal if
and only if all its states are useful and inequivalent.

Next we define reversible DFAs. Let A = (Q,X,0,q0,F) be a DFA.
A state r € @ is said to be irreversible if there are two distinct states p and ¢
in @Q and a letter a € X such that 6(p,a) = r = §(q, a). Then a DFA is reversible
if it does not contain any irreversible state. In this case the automaton is said
to be a reversible DFA (REV-DFA). Equivalently the DFA A is reversible, if
every letter a € X induces an injective partial mapping from @Q to itself via the
mapping 0,: Q@ — @ with p — d(p,a). In this case, the reverse transition func-
tion % can be seen as a (partial) injective function 6%: Q x X — Q. Notice that
if p and ¢ are two distinct states in a REV-DFA, then 6(p, w) # 6(q,w), for all
words w € X*. Finally, a REV-DFA is minimal (among all REV-DFAs) if there
is no equivalent REV-DFA with a smaller number of states.

In [4] the following structural characterization of regular languages that can
be accepted by REV-DFAs in terms of their minimal DFAs is given. The condi-
tions of the characterization are illustrated in Fig. 1.

Theorem 1. Let A = (Q, X, J,qo, F) be a minimal deterministic finite automa-
ton. The language L(A) can be accepted by a reversible deterministic finite
automaton if and only if there do not exist useful states p,q € Q, a letter a € X,
and a word w € X* such that p # q, §(p,a) = §(q,a), and §(q, aw) = q.

Finally we need some notations on computational complexity theory. We
classify problems on DFAs with respect to their computational complexity. Con-
sider the complexity class NL (PSPACE, respectively) which refers to the set
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r=

Fig. 1. The “forbidden pattern” of Theorem 1: the language accepted by a minimal
DFA A can be accepted by a REV-DFA if and only if A does not contain the structure
depicted on the left. Here the states p and ¢ must be distinct, but state r could be
equal to state p or state q. The situations where » = g or » = p are shown in the middle
and on the right, respectively—here the word w and its corresponding path are grayed
out because they are not relevant: in the middle, the word w that leads from r to ¢ is
not relevant since it can be identified with the a-loop on state r = ¢. Also on the right
hand side, word w is not important because we can simply interchange the roles of the
states ¢ and r = p.

of problems accepted by nondeterministic logspace bounded (polynomial space,
respectively) Turing machines. Further, hardness and completeness is always
meant with respect to deterministic logspace bounded reducibility, unless other-
wise stated.

3 Complexity of the Regular Reversibility Problem

In [4] it was shown that the regular language reversibility problem—given a
DFA A, decide whether L(A) is accepted by any REV-DFA—is NL-complete. If
the regular language is given by an NFA or a regular expression, the problem
becomes intractable.

Theorem 2. The regular language reversibility problem is PSPACE-complete,
if the language is given as a nondeterministic finite automaton or a reqular
expression.

Before we can prove this result we need a technical lemma, which will be
used in the PSPACE-hardness argument later.

Lemma 3. Let A= (Q,X,0,qo0, F) be a minimal DFA. If there is a state q¢ € @,
other than the initial state, such that Raq = X*, then L(A) is irreversible. O

Let L C X*. Then the left derivative of L with respect to the letter a in X
is the set a=! - L = {w | aw € L}. This notation generalizes to words. By
this definition, there is an obvious relation between these left derivative set and
the states of the minimal finite automaton A accepting L. To be more precise,
the set u=! - L, for u € ¥*, is a description of the state q, = d(qo,u), where
A=(Q,%,6,q,F), and vice versa. Now we are ready to proof Theorem2 in a
convenient way.
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Proof (of Theorem?2). The containment within PSPACE is easily seen. For
the hardness we reduce the PSPACE-complete universality problem for regu-
lar expressions [8] to the reversibility problem for NFAs or regular expressions.
Let the regular expression r be an instance of the universality problem. We may
assume that r is an expression over the alphabet X = {a,b}. Then we construct
the expression

s=a-r+b- X"+

or equivalently the NFA depicted in Fig. 2 in deterministic logspace. Now assume
that L(r) = X*. Then it is easy to see that L(s) = X*, too, and therefore a
reversible language. On the other hand, if L(r) # X*, then there is a word u ¢
L(r). From this it follows that au & L(s) but bu € L(s). Thus we conclude that
the states a=1- L(s) and b~!- L(s) are not equivalent in the DFA accepting L(s).
Moreover, in that DFA states L(s) and b=! - L(s) are not equivalent, too. Note
that the former state is the initial state of the DFA that accepts L(s). Since
the right language of the state b=! - L(s) is equal to X* and it is not equal to
the initial state, Lemma 3 applies, and the language L(s) is not reversible. This
proves PSPACE-hardness. O

Fig. 2. Finite automaton that accepts the language L(s). It is built from the regular
expression r, where A, is an NFA with initial state ¢1 that accepts the language L(r).

4 On the Degree of Irreversibility

For an automaton A we define its degree of irreversibility d(A) as the number of
irreversible states that are part of one of the forbidden patterns shown in Fig. 1.
Observe, that since our DFAs need not to be complete and only contain useful
states, the non-accepting sink state does not count for the degree of irreversibil-
ity. This notation is generalized to languages in the usual way. This means, for
a regular language L C X* we define its degree of irreversibility d(L) as the
minimum degree of irreversibility among all equivalent DFAs A, that is,

d(L) = min{d(A) | A is a DFA with L(A) =L }.

The next example explains our notation.
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Fig. 3. DFA which accepts aba®™ + a*ba that has irreversibility degree one.

Example 4. Consider the following DFA depicted in Fig.3, which accepts the
union of aba* and a*ba. This automaton has irreversibility degree one by state 3.
Note that although state 4 has two ingoing b-transitions, this state does not yield
a forbidden pattern as shown in Fig. 1. There is no word that leads from state 4
to either state 1 or 3. Moreover, the language accepted by this automaton, which
is aba™ 4+ a*ba is also of irreversibility degree one, since it is not reversible by
Theorem 1. O

Next we consider the hierarchy on regular languages that is induced by the
irreversibility degree. To this end let

IREV,-DFA = { A | A is a DFA and d(A) < k }.

We have IREV()-DFA = { A | Ais areversible DFA} and thus the equality
Z(IREV(,-DFA) = Z(REV-DFA) holds, where the family of all languages
accepted by an automaton of some type X is denoted by .Z(X). Moreover, by
definition the inclusion IREV-DFA C IREV,1-DFA follows and therefore the
corresponding language classes satisfy Z(IREV-DFA) C Z(IREV41-DFA),
for £ > 0. By the example above we have

Z(REV-DFA) = Z(IREV,-DFA) C .Z(IREV;-DFA).

Before we show that the degree of irreversibility induces an infinite strict hier-
archy we need some tool that allows us to determine the irreversibility degree
for an arbitrary regular language. Since for the degree of irreversibility of a lan-
guage L we quantify over all equivalent DFAs we have to show that we cannot
trade more states for less irreversibility. The following example shows that this
is in fact not the case in general.

Ezample 5. Consider the substructure of a DFA as depicted in Fig. 4. It is not
hard to see that this pattern may appear in a minimal DFA. Both states r1 and ro
in the substructure are irreversible. By splitting both of these states, we obtain a
connecting structure as shown in Fig. 5. The structure has one irreversible state
only. Thus, the irreversibility degree of a minimal DFA is not necessarily the
irreversibility degree of the language under consideration. O
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a a d b
— (=
c b

Fig. 4. Substructure of a DFA containing two irreversible states 1 and 2.

Fig. 5. Substructure of a DFA with just one irreversible state s obtained after splitting
both irreversible states.

For a special class of finite automata, we can show that the minimal DFA
already gives the degree of irreversibility. A DFA is simply-irreversible if all
irreversible states are of the form depicted in the middle and right drawing shown
in Fig. 1. That is, the irreversibility state is entered by an a-transition and has
an a-self-loop, which is the simplest form of irreversibility. For the languages
accepted by these automata we can prove the next result.

Theorem 6. Let L be a regular language and A be its minimal deterministic
finite automaton. If A is simply-irreversible, then the degree of irreversibility
of A is equal to the irreversibility degree for L. That is d(L) = d(A). O

Now we are ready to show that the strict hierarchy on regular languages
induced by the irreversibility degree is tight and infinite.

Theorem 7. For all k >0, L(IREV,-DFA) C £ (IREVy11-DFA).

Proof. Consider the languages Ly, over the alphabet {a, b} defined as follows: for
k >0 set

Loy = (aa*bb*)* and  Logyr = (aa*bb*)*aa*.

The language Ly, for k > 0, is accepted by the DFA A = (Qx, {a, b}, ok, g0, F)
with Qr ={1,2,...,k+ 1}, o =1, Fr, = {k + 1}, and

5, a) 1+1 ifiisoddand1<i<k+1
Z7a’ = . ep o .
7 ifiisevenand 1 <i<k+1

and

5(i,b) 1+1 ifiisevenand 1 <i<k+1
Z’ = . . . . .
) ifiisoddand 1 <i<k-+1.
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By construction the DFA Ay is minimal and simply-irreversible. Thus, by the
previous theorem the degree of irreversibility of Ay is equal to the irreversibility
degree of the language L. Since Ay contains exactly k irreversible states, we
have d(Ly) = k. This shows that L, € Z(IREV-DFA) \ Z(IREV,_1-DFA),
for k> 1. a

Finally, we consider unary regular languages and their irreversibility degree.
It is not difficult to see that a unary complete DFA consists of a path, which
starts from the initial state, followed by a cycle of one or more states. Thus the
irreversibility degree of any unary DFA is at most one. Thus, the hierarchy on the
irreversibility degree collapses to its second level and £ (IREV;-DFA) N 2la}” jg
already equal to the class of all unary regular languages. Moreover, we conclude
that Z(IREV,-DFA) N 2{¢}" is the class of languages that contains only finite
or cyclic unary regular languages. Here a unary regular language is cyclic if it is
accepted by a unary DFA which is a cycle of one or more states.

5 Operations on Languages and Degree of Irreversibility

In this section we study the descriptional complexity of the operation problem
for reversible languages. We start with the Boolean operations and continue with
the concatenation and Kleene star operation.

First we consider the union operation. For the union of two reversible lan-
guage, the increase of the degree of irreversibility is linear in the sum of the
number of states of the involved automata. This can be seen in the next
theorem.

Theorem 8. Let m,n > 1 be two integers, A be an m-state and B be an n-state
reversible deterministic finite automaton. Then the degree m~+n of irreversibility
for the language L(A) U L(B) is sufficient and necessary in the worst case.

Proof. Let A = (Qa,X,04,q0,4,F4) and B = (Qp,X,dp,490,8,Fp). In order
to accept the union of L(A) and L(B) we apply the standard cross-product
construction. To this end define C' = (Q¢, X, d¢. qo.c, Fc), where

Qc=(QaxQp)U(Qax{-HU{-}xQ@pB),

q0,c = (90,4, Qo,5), and Fo = (Qax Fp)U(FaxQp)U(Fax{-HU({—}x Fp).
The transition function ¢ is set to

dc((p,q),a) =

(0a(p,a),dB(q,a)) if both d4(p,a) and dp(q,a) are defined
(0a(p,a),—) if 04(p, a) is defined and dp(q,a) is undefined
(—,0B(q,a)) if 04(p, a) is undefined and dp (g, a) is defined

and furthermore dc((p, —),a) = (da(p,a),—), if d4(p,a) is defined, as well as
dc((—,q),a) = (—,05(q,a)), if dp(q,a) is defined, for a € X. So we have
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L(C) = L(A) U L(B). From the m - n + m + n states of C' at most m + n
are irreversible. To be more precise, none of the states from Q4 X Qg are irre-
versible. This is seen as follows: consider a state (r,r') € Q4 X Qp. Assume to
the contrary that (r,r’) is irreversible. Then there are different states (p, p’) and
(¢,¢") with dc((p,p'),a) = (r,7") = dc((q,4¢'), a), for some a € X. Since (p,p’) is
not equal to (g,q’) we have p # q or p’ # ¢’. We only consider the case p # ¢
by symmetric reasons. But then we find that r is an irreversible state, because
d0a(p,a) = r = da(q,a), for the letter a from above. This is a contradiction,
because automaton A is a reversible DFA. It is worth mentioning that a similar
argumentation does not apply to states of the form (r, —) or (—,r). This is seen
by the counterexample 6¢((r,p),a) = (r,—) = dc((r,—),a), for some a € X,
which induces only d4(r,a) = r and dg(p,a) is undefined—an analogous exam-
ple can be given for state of the form (—,r). Hence, this does not contradict the
irreversibility of either A or B.

It remains to be shown that the bound m + n is tight. Define the reversible
DFA A = (Qa,{a,b},04,q0,F) with Q4 ={1,2,...,m}, g0 =1, F = {m}, and
the transition function is given by §(i,a) =i+ 1, for 1 < i < m, and 6(i,b) = 1,
for 1 < i < m. The automaton B is the same as A, but with n states, and
where the letters a and b are interchanged. The automaton C' constructed above
is easily seen to be minimal.

Finally we show that all states of the form (¢, —) and (—,j), for 1 <i <m
and 1 < j < n, are irreversible and yield a forbidden pattern as shown in Fig. 1.
The below given argument shows even more, namely that the automaton C' is
simply-irreversible. We have already argued that the state (i,n) is accessible.
Then it is easy to see that from state (i,n) reading a b the automaton C' enters
state (i, —), which has a b loop. Therefore state (¢, —) is simply-irreversible.
A similar argument shows that state (—,j) is simply-irreversible as well. By
Theorem 6 the stated claim follows. O

A careful inspection of the previous proof reveals that we can use parts of it
for the intersection of two reversible languages. For two reversible automata A
and B we construct an automaton C' by the cross-product construction described
in the proof of Theorem 8 but only using states of the form Q4 x @p and by
altering the set of accepting states to be F' = F4 x Fg. Then L(C) = L(A)NL(B).
It was shown that none of the states from Q4 x Qp are irreversible. Hence C'
does not contain any irreversible state. Thus, we have shown the following result.

Theorem 9. Let m,n > 1 be two integers, A be an m-state and B be an n-state
reversible deterministic finite automaton. Then the language L(A) N L(B) is
accepted by a reversible deterministic finite automaton. O

Next we deal with the complementation operation, and show that the degree
of irreversibility can be increased by one.

Theorem 10. Let n > 1 be an integers and A be an n-state reversible deter-
ministic finite automaton. Then the degree 1 of irreversibility for the complement
of L(A) is sufficient and necessary in the worst case. O
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In the remainder of this section we investigate the effect of the concatenation
and the Kleene star operation on the degree of irreversibility. First we recall the
construction of DFAs for the concatenation [11]. Let A = (Qa,X,04,q0.4,F4)
and B = (Qp, X,0B,q0.5,F5) be two DFAs. As in [11] we construct the DFA
C = (QC, X, 50, q0,C> Fc), where

Qc = (Q4 % QQB) \ (Fy % 2QB\{‘10,B}))

the initial state is

doc = (90,4, 0) if go,a & Fa
A (90,4,{q0,B}) otherwise,

the final states are
FC:{(p7P)|(p7P)€QC aHdeFB%Q},

and the transition function is defined by dc((p, P),a) = (¢, @), for a € X, where
q=04(p,a) and
Q- 6p(P,a)U{qo,p} ifq€Fa
0p(P,a) otherwise.

Clearly, automaton C accepts L(A)- L(B) and has at most m - 2" — 2"~ states.
Thus, the construction gives rise to an exponential upper bound on the number
of irreversible states.

Theorem 11. Let m,n > 2 be two integers, A be an m-state and B be an
n-state reversible deterministic finite automaton. Then the degree m - 2™ — 271
of irreversibility is sufficient for a deterministic finite automaton to accept the
language L(A) - L(B). O

The next theorem gives an exponential lower bound on the degree of irre-
versibility for the concatenation operation.

Theorem 12. Let m,n > 2 be two integers. There are a reversible m-state
deterministic finite automaton A and a reversible n-state deterministic finite
automaton B such that any deterministic finite automaton accepting L(A)-L(B)
has at least the degree (3m — 2) - 2"~2 of irreversibility.

Proof. Define the left automaton to be A = (Qa,{a,b,¢,d},04,q0,4, Fa) with
Qa =1{0,1,...,m — 1}, initial state go,.a = 0, final states Fy = {m — 1}, and
the transition function

41 if0<q —1
Salia) =4 TH HOsi<m and  Sa(1,b) = 64(i, ) = 6a(i,d) — i
0 otherwise

for 0 < i < m — 1. The right automaton is B = (Qg,{a,b,¢,d},05,q0.5, FB)
with Qg = {0,1,...,n — 1}, initial state ¢o, 5 = 0, final states F4 = {0}, and
the transition function
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i+1 if0<i<n—-1

op(i,a) =14, for0<i<n-—1,and 6dp(i,b) = ]
0 otherwise,

and
og(i,c) =1, for0<i<n-—1,and dp(i,d)=14, fori=0or2<i<n-—1.

Both reversible automata are depicted in Fig. 6.

Fig. 6. The reversible automata A (left) and B (right) with m and n states, respectively,
that witness the irreversibility degree lower bound for the concatenation operation.

We construct the DFA C for the concatenation L(A)-L(B) as described above.
In order to apply Theorem 6 we need to show that C' is minimal. Thus, one has to
verify that every state in C' is useful and defines a distinct equivalence class.

Finally, it remains to determine the lower bound on the irreversibility degree
of C'. We show that all states of C' whose second component does not contain 0
and 1 at the same time are simply-irreversible. We have already seen that all
states of the form (p, PU{0}) and (p, PU{1}) are reachable in C. We distinguish
two cases:

1. Assume p = m — 1. Then 0 € P, but then by assumption 1 ¢ P. We have
éc((p, PU{1}),d) = (p, P) and dc((p, P),d) = (p, P). Thus (p, P) is simply-
irreversible.

2. Let p=iwith0<i<m—1.1f0 ¢ P, then dc((p, PU{0}),¢c) = (p, P) and
dc((p, P),c) = (p, P). Also in the case 1 € P, the two transitions d¢c((p, P U
{1}),d) = (p, P) and 6¢c((p, P),d) = (p, P) follow. In both cases the state
(p, P) is simply-irreversible.

Next we count the number of simply-irreversible states. The first item above
induces 22 possibilities, and the second item 3(m —1)-2"~2. There are (m—1)
choices for p and the number of different sets P that do not contain 0 or 1
is 3+ 2772, For each of the cases (i) both 0 and 1 are not in P, (ii) element 0 is
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in P but 1 is not, and (iii) element 0 is not in P but 1 is member of P, there
are 2" 2 possibilities. This results in 3(m—1)-2"~2 sets for the second item above.
Putting things together results in in at least (3m — 2) - 2"~2 simply-irreversible
states in C'. By Theorem 6 the stated claim follows. O

Finally, we consider the Kleene star operation. From [11] the tight worst case
bound for a DFA to accept the Kleene closure of an n-state DFA language is
27~ 4+ 27=2 Thus, the upper bound for the irreversibility degree for the Kleene
closure is exponential.

Theorem 13. Letn > 2 be an integers and A be an n-state reversible determin-
istic finite automaton. Then the degree 271 4+2"~2 of irreversibility is sufficient
for a deterministic finite automaton to accept the language L(A)*. ad

As in the case of the concatenation operation we can provide an exponential
lower bound.

Theorem 14. Let n > 3 be an integer. There is a reversible n-state determin-
istic finite automaton A such that any deterministic finite automaton accept-
ing L(A)* has at least the degree 3 - 2"~ — 1 of irreversibility. O
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