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Abstract. A picture over a finite alphabet Γ is a matrix whose entries
are drawn from Γ . Let π : Σ → Γ be a function between finite alphabets
Σ and Γ , and let V, H ⊆ Σ ×Σ be binary relations over Σ. Given a pic-
ture N over Γ , the picture satisfiability problem consists in determining
whether there exists a picture M over Σ such that π(Mij) = Nij , and
such that the constraints imposed by V and H on adjacent vertical and
horizontal positions of M are respectively satisfied. This problem can be
easily shown to be NP-complete. In this work we introduce the notion
of s-smooth picture. Our main result states the satisfiability problem for
s-smooth pictures can be solved in time polynomial on s and on the size
of the input picture. With each picture N , one can naturally associate
a CNF formula F (N) which is satisfiable if and only if N is satisfiable.
In our second result, we define an infinite family of unsatisfiable pictures
which intuitively encodes the pigeonhole principle. We show that this
family of pictures is polynomially smooth. In contrast we show that the
formulas which naturally arise from these pictures are hard for bounded-
depth Frege proof systems. This shows that there are families of pictures
for which our algorithm for the satisfiability for smooth pictures per-
forms exponentially better than certain classical variants of SAT solvers
based on the technique of conflict-driven clause-learning (CDCL).

Keywords: Smooth pictures · Bounded frege proof systems ·
Pigeonhole principle

1 Introduction

A picture over an alphabet Γ is a matrix whose elements are drawn from Γ . Let
π : Σ → Γ be a function between finite alphabets Σ and Γ , and let V,H ⊆
Σ × Σ be binary relations over Σ. In the picture satisfiability problem we are
given an m × n picture N over Γ , and the goal is to determine whether there
exists an m×n picture M over Σ such that the following conditions are satisfied.
First, Ni,j = π(Mi,j) for each i ∈ {1, ...,m} and j ∈ {1, ..., n}; second, each two
consecutive vertical entries of M belong to V ; and third, each two consecutive
horizontal entries of M belong to H. If such a picture M exists, we say that M is a
(π, V,H)-solution for N . Variations of the picture satisfiability problem have been
studied since the seventies in the context of pattern recognition [21,23], image
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processing [5,21], tiling systems [14,22] and formal language theory [8,11,15,21].
In this work, we introduce the notion of s-smooth picture. Our main result states
that one can determine whether an s-smooth picture N has a (π, V,H)-solution
in time O(|Σ|e(π,V ) · se(π,V ) · m · n). Here, e(π, V ) ≤ |Σ × Σ| is a parameter that
does not depend on the size of the picture. As an implication, we have that if F is
a family of pictures such that each m × n picture in F is poly(m,n)-smooth, then
the picture satisfiability problem for this family can be solved in polynomial time.

The pigeonhole principle states that if m pigeons are placed into m−1 holes,
then at least one hole contains two pigeons. In a influential work, Haken showed
that a family of propositional formulas Hm encoding the pigeonhole principle
requires resolution refutations of exponential size [2,9]. Following Haken’s work,
the pigeonhole principle and many of its variants have played a central hole in
propositional proof complexity theory [3,19]. In particular, it has been shown
that refutations of the formulas Hm in constant-depth proof systems must have
exponential size [12,13,18]. In our second result, we define an infinite family of
pictures Pm,m−1 encoding the pigeonhole principle. Subsequently, we show that
this family of pictures is poly(m)-smooth. This implies that our algorithm for
smooth pictures is able to detect the unsatisfiability of the pictures Pm,m−1 in
polynomial time.

For each fixed triple (π, V,H) and each picture N one can derive a natural
constant-width CNF formula F (N) which is satisfiable if and only if N has a
(π, V,H)-solution. Our third result states that the family of formulas F (Pm,m−1)
derived from the pigeonhole pictures is still hard for constant depth Frege proof
systems. The proof of this result follows by application of routine techniques
to show that small refutations of F (Pm,m−1) imply small refutations of the
formulas Hm. This last result establishes a point of comparison between our
algorithm for the satisfiability of smooth pictures, and SAT solvers based on
the technique of conflict-driven clause-learning (CDCL) [7,16]. Indeed, it has
been shown that certain variants of CDCL-based SAT solvers, such as those
introduced in [7,16], are equivalent in power to resolution-based proof systems
[1,4,10,17]. Since bounded-depth Frege is stronger than the resolution proof
system, our third result implies that the formulas F (Pm,m−1) derived from the
pigeonhole pictures are hard for such variants of CDCL SAT solvers.

The remainder of the paper is organized as follows. Next, in Sect. 2 we intro-
duce some notation and some basic results concerning leveled finite automata.
Subsequently, in Sect. 3 we formally define the picture satisfiability problem and
introduce the notion of s-smooth picture. In Sect. 4 we state and prove our main
theorem, namely, that the satisfiability problem for pictures can be solved in
time polynomial on its smoothness. In Sect. 5 we define the family of pigeonhole
pictures and show that this family is polynomially smooth. In Sect. 6 we define a
natural translation from pictures to constant-width CNF formulas, and in Sect. 7
we show that CNF formulas derived from the pigeonhole pictures according to
our translation require exponential bounded-depth Frege proofs.
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2 Preliminaries

A leveled nondeterministic finite automaton (LNFA) over an alphabet Σ is a
triple A = (Q,Σ,R) where Q is a set of states partitioned into subsets Q0, ..., Qn

and R ⊆ ⋃n
i=1 Qi−1 × Σ × Qi is a transition relation. The states in Q0 are the

initial states of A, while Qn is the set of final states of A. For each i ∈ {0, ..., n},
we say that Qi is the i-th level of A. The size of A is defined as |A| = |Q| + |R|.
We say that a string w ∈ Σn is accepted by A if there exists a sequence of
transitions

q0
w1−→ q1

w2−→ ...
wn−→ qn

such that qi ∈ Qi for each i in {0, 1, ..., n}, and (qi−1, wi, qi) ∈ Ri for each i in
{1, ..., n}. We denote by L(A) the set of all strings accepted by A. We note that
all strings accepted by A have size n, i.e., L(A) ⊆ Σn. We say that A is a leveled
deterministic finite automaton (LDFA) if Q0 has a unique state q0, and for each
state q ∈ Q, and each symbol a ∈ Σ there exists at most one state q′ ∈ Q such
that (q, a, q′) ∈ R. Let π : Σ → Γ be a function and let w = w1w2...wn be a
string in Σ∗. We denote by π(w) = π(w1)π(w2)...π(wn) the image of w under π.

Lemma 2.1 (Synchronized Product of Automata). Let A and A′ be LNFA
over Σ accepting strings of size n. Let V ⊆ Σ × Σ be a binary relation over Σ.
Then one can construct in time |A|·|A′| an LNFA A⊗V A′ accepting the following
language over Σ × Σ.

L(A ⊗V A′) = {(w1, w
′
1)(w2, w

′
2)...(wn, w′

n) | w ∈ L(A), w′ ∈ L(A′), (wi, w
′
i) ∈ V }.

3 Pictures

An (m,n)-picture over a finite set of symbols Σ is an m × n matrix whose
entries are drawn from Σ. Let π : Σ → Γ be a function between finite sets of
symbols Σ and Γ , and let V,H ⊆ Σ × Σ be binary relations over Σ. Finally,
let N be an (m,n)-picture over Γ . We say that an (m,n)-picture M over Σ is a
(π, V,H)-solution for N if the following conditions are satisfied.

1. Ni,j = π(Mi,j) for each i ∈ {1, ...,m} and each j ∈ {1, ..., n}.
2. (Mi,j ,Mi,j+1) belongs to H for each i ∈ {1, ...,m} and j ∈ {1, ..., n − 1}.
3. (Mi,j ,Mi+1,j) belongs to V for each i ∈ {1, ...,m − 1} and j ∈ {1, ..., n}.

Intuitively, the symbols in Σ may be regarded as colored versions of symbols
in Γ . For each symbol a ∈ Γ , the set π−1(a) ⊆ Σ is the set of colored versions of
a. Thus M is a (π, V,H)-solution for N if M is a colored version of N and the
entries in M respect the vertical and horizontal constraints imposed by V and H
respectively. If N admits a (π, V,H)-solution, then we say that N is satisfiable
(with respect to (π, V,H)). Otherwise, we say that N is unsatisfiable.

Definition 3.1 (Picture Satisfiability Problem). Let π : Σ → Γ be a func-
tion and V,H ⊆ Σ × Σ be binary relations over Σ. Given an (m,n)-picture N
over Γ , is N satisfiable with respect to (π, V,H)?
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3.1 Smooth Pictures

Let [n] = {1, ..., n}. We assume that the set [m] × [n] = {(i, j) | i ∈ [m], j ∈ [n]}
is endowed with a lexicographic ordering <, which sets (i, j) < (i′, j′) if either
i < i′, or i = i′ and j < j′. We write (i, j) ≤ (i′, j′) to denote that (i, j) = (i′, j′)
or (i, j) < (i′, j′). For each (i, j) ∈ [m] × [n], we let

S(m,n, i, j) = {(i′, j′) | (i′, j′) ≤ (i, j)}
be the set of all positions in [m] × [n] that are (lexicographically) smaller than
or equal to (i, j).

Let π : Σ → Γ be a function, and V,H ⊆ Σ × Σ be a binary relation over
Σ. We say that a function M : S(m,n, i, j) → Σ is an (i, j)-partial (π, V,H)-
solution for N if the following conditions are satisfied.

1. (Mi′,j′ ,Mi′,j′+1) ∈ H for each (i′, j′), (i′, j′ + 1) in S(m,n, i, j).
2. (Mi′,j′ ,Mi′+1,j′) ∈ V for each (i′, j′), (i′ + 1, j′) in S(m,n, i, j).

Note that for simplicity we write Mi,j in place of M(i, j) to designate an
entry of M . Intuitively, an (i, j)-partial (π, V,H)-solution for N is a function
that colors the positions of N up to the entry (i, j) with elements from Σ in
such a way that the vertical and horizontal constraints imposed by V and H
respectively are respected. If (i, j1) and (i, j2) are positions in S(m,n, i, j) with
j1 < j2, then we let Mi,[j1,j2] = Mi,j1 ...Mi,j2 be the string formed by all entries
at the i-th row of M between positions j1 and j2. Now let (i, j) ∈ S(m,n, i, j)
with (i, j) ≥ (1, n). The (i, j)-boundary of M is defined as follows.

∂i,j(M) =

⎧
⎨

⎩

Mi,[1,n] if j = n.

Mi,[1,j] · Mi−1,[j+1,n] ifj < n.
(1)

In other words, if j = n, then ∂(M) is the string consisting of all entries
in the i-th row of M . On the other hand, if j < n, then ∂(M) is obtained by
concatenating the string corresponding to the first j entries of row i with the
last (n − j) entries of row (i − 1). The notion of boundary of a partial solution
is illustrated in Fig. 1.

Fig. 1. An (i, j)-partial solution M where i = 3 and j = 4. The grey entries form the
boundary of M . Therefore ∂i,j(M) = cabccab.

Below, we define the (i, j)-feasibility boundary of a picture N over Γ as the
set of (i, j)-boundaries of partial solutions of N .
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Definition 3.2 (Feasibility Boundary). Let π : Σ → Γ be a function, V,H ⊆
Σ × Σ, and N be a (m,n)-picture over Γ . The (i, j)-feasibility boundary of N
with respect to (π, V,H), denoted by ∂i,j(N,π, V,H), is defined as follows.

∂i,j(N,π, V,H) = {∂i,j(M) | M is an (i, j)-partial (π, V,H)-solution for N}.
(2)

Note that N has a (π, V,H)-solution if and only if its (m,n)-feasibility bound-
ary ∂m,n(N,π, V,H) is non-empty. Below we define the notion of smooth picture.

Definition 3.3 (Smooth Picture). Let π : Σ → Γ be a function, and V,H ⊆
Σ × Σ be binary relations over Σ. We say that an (m,n)-picture N over Γ is
s-smooth if for each (i, j) ≥ (1, n), the set ∂i,j(N,π, V,H) can be represented by
an LDFA of size at most s.

Intuitively, a picture N is smooth if each of its feasibility boundaries can be
efficiently represented. The main goal of this work is to show that the automata
representing the boundaries of feasibility of a picture N can actually be con-
structed in time polynomial on the smoothness parameter s and on the size
of N . Additionally, once these automata are constructed, one can proceed to
actually construct a solution for N if such a solution exists.

4 Satisfiability of Smooth Pictures in Polynomial Time

In this section we show that the satisfiability problem for smooth pictures can
be solved in time polynomial on the size of the picture and on its smoothness
parameter. Let π : Σ → Γ be a function and V ⊆ Σ × Σ be a binary relation
over Σ. We let e(π, V ) = maxa∈Γ,b∈Σ |{c ∈ π−1(a) | (b, c) ∈ V }| be the extension
number of V . Below we state our main theorem.

Theorem 4.1 (Main Theorem). Let π : Σ → Γ be a function and V,H ⊆ Σ
be binary relations over Σ. Let N be an (m,n)-picture over Γ . There is an
algorithm that works in time O(|Σ|e(π,V ) · se(π,V ) · m · n) and either constructs a
(π, V,H)-solution for N , or correctly determines that no such solution exists.

Note that as an application, we have that if F is a family of pictures such
that for each (m,n)-picture N in F , N is poly(m,n)-smooth, then the picture
satisfiability problem for F can be solved in polynomial time.

We dedicate this section to the proof of Theorem 4.1. For (i, j) ≥ (1, n),
let Aij(N,π, V,H) be the LDFA with minimum number of states accepting the
set of strings ∂i,j(N,π, V,H). The next Lemma will be used in the construction
of the automaton A1,n(N,π, V,H). Note that the language accepted by this
automaton is simply the set of all colored versions of the first row of N which
satisfy constraints imposed by the horizontal relation H.

Lemma 4.2. Let π : Σ → Γ be a function, and let H ⊆ Σ × Σ be a binary
relation over Σ. Let w = w1w2...wn be a string in Γn. Then one can construct
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in time O(|Σ|2 · n) an LDFA A(w,H) of size at most O(|Σ|2 · n) accepting the
following language.

L(A(w,H)) = {u ∈ Σn | π(u) = w, (ui, ui+1) ∈ H for i ∈ {1, ..., n − 1}}.

Proof. First, we construct an automaton A = (Q,Σ,R) as follows. We set Q =
Q0 ∪̇ Q1 ∪̇ ... ∪̇ Qn and R =

⋃n
i=1 Ri where Q0 = {q0}, Qi = {qi,a | a ∈ Σ} for

each i ∈ {1, ..., n}, R1 = {(q0, a, q1,a) | π(a) = w1}, and for each i ∈ {1, ..., n−1},
Ri = {(qi,a, b, qi+1,b) | (a, b) ∈ H, π(b) = wi}. Note that Q has |Σ| · n + 1 states
and at most |Σ|2 ·n transitions. Now it is straightforward to check that for each
string u ∈ Σn there exists an accepting path q0

u1−→ q1,u1

u2−→ ...
un−−→ qn,un

in
A if and only if π(u1)π(u2)...π(un) = w1w2...wn and for each i ∈ {1, ..., n − 1},
(ui, ui+1) ∈ H. Finally, we let A(w,H) = Min(A) be the minimum LDFA which
accepts the same language as A. Since A is acyclic, minimization can be per-
formed in time linear on the size of A [20]. So the overall time to construct
A(w,H) is still O(|Σ|2 · n). �

As a corollary of Lemma 4.2, the LDFA A1,n(N,π, V,H) can be constructed
in time O(|Σ|2 · n).

Corollary 4.3. Let π : Σ → Γ be a function and V,H ⊆ Σ × Σ be binary
relations over Σ. Then the LDFA A1,n(N,π, V,H) has size O(|Σ|2 · n) and can
be constructed in time O(|Σ|2 · n).

Proof. Set Ai,j(N,π, V,H) = A(w,H), where w = N1,[1,n] and A(w,H) is the
automaton of Lemma 4.2. �

For each (i, j) ∈ [m] × [n] with (i, j) < (m,n), let Suc(i, j) = (i, j + 1) if
j < n and Suc(i, j) = (i + 1, 1) if j = n. In other words, Suc(i, j) is the smallest
pair in [m] × [n] which is greater than (i, j) according to the lexicographical
ordering <. Our next step consists in showing that if (i′, j′) = Suc(i, j), then the
automaton Ai′,j′(N,π, V,H) can be constructed in time polynomial on the size
of Ai,j(N,π, V,H). Towards this construction we will need to introduce some
notation concerning leveled finite automata.

Let A = (Q,Σ,R) be a leveled finite automaton over Σ and let q be a state
in Q. The non-deterministic degree of q, denoted d(q), is defined as the maximum
number of states that can be reached from q when reading some fixed symbol
a ∈ Σ.

d(q) = max
a∈Σ

|{q′ | (q, a, q′) ∈ R}| (3)

We say that A has non-deterministic degree d if the following conditions are
satisfied.

1. All states of A have non-deterministic degree at most d.
2. All states of A of non-deterministic degree greater than one belong to the

same level.



Satisfiability via Smooth Pictures 19

The following lemma states that a leveled nondeterministic finite automaton
A of non-deterministic degree d can be transformed into a leveled deterministic
finite automaton det(A) of size at most |A|O(d) which accepts the same language
as A.

Lemma 4.4. Let A be an LNFA of non-deterministic degree d. Let det(A) be
the minimum LDFA accepting L(A). Then det(A) has size at most |A|d and can
be constructed in time O(|A|d).
Proof. Let A = (Q,Σ,R) where Q = Q0 ∪̇ Q1 ∪̇ ... ∪̇ Qn. Assume that all
states of A with non-deterministic degree greater than one belong to level Qi.
Then the sub-automaton of A induced by the states Q0 ∪̇ ... ∪̇ Qi−1 is deter-
ministic, in the sense that all of its states have non-deterministic degree at most
one. Therefore we just need to determinize the sub-automaton of A induced by
the states Qi ∪̇ ... ∪̇ Qn. This determinization process will be achieved by an
adaptation of the traditional subset construction, but with the caveat that only
subsets of states of size at most d need to be considered.

Let S ⊆ Q be a subset of states of A, and let a ∈ Σ. Then, we define
Q(S, a) = {q′ | ∃q ∈ S, (q, a, q′) ∈ R} as the set of all states reachable from
some state in S through a transition labeled with a. We note that for each
j ∈ {0, ..., n − 1}, if S ⊆ Qj then Q(S, a) ⊆ Qj+1. We note that since each state
q ∈ Qi has non-deterministic degree at most d, we have that |Q({q}, a)| ≤ d
for each symbol a ∈ Σ. Additionally, for each j ∈ {i + 1, ..., n − 1}, the non-
deterministic degree of each state in Qj is at most one. Therefore, for each
subset S ⊆ Qj , we have that |Q(S, a)| ≤ |S|. Therefore, to construct a deter-
ministic version of A we only need to consider sets of states of size at most d.
The construction is as follows. Consider the automaton A = (Q′, Σ,R′) where
Q′ = Q′

0 ∪ Q′
1 ∪ ... ∪ Q′

n and R = R1∪̇...∪̇Rn. For each j ∈ {0, ..., i} we let
Q′

j = {qj,{q} | q ∈ Qj}. In other words, Q′
j has one state qj,{q} for each state

q ∈ Qj . Now for j ∈ {i + 1, ..., n}, Q′
j = {qj,S | S ⊆ Qj , |S| ≤ d}. In other

words, Q′
j has one state qj,S for each subset of Qj of size at most d. Now for

each j ∈ {1, ..., n}, we set R′
j = {(qj−1,S , a, qj,S′) | qj−1,S ∈ Q′

j−1, qj,S′ ∈
Q′

j , S′ = Q(S, a)}. Clearly, the automaton A′ is deterministic, and has size at
most |A|d. Additionally we have that w1w2...wn is accepted by A if and only if
there exists an accepting sequence

q0,S0

w1−−→ q1,S1

w2−−→ ...
wn−−→ qn,Sn

in A′ where S0 = {q0} and for each j ∈ {0, ..., n − 1}, Sj+1 = Q(Sj , wj+1). This
implies that L(A′) = L(A). Since A′ is deterministic and acyclic, the minimum
leveled deterministic finite automaton det(A) accepting L(A) = L(A′) can be
constructed in time linear on the size of A′ [20], i.e., in time O(|A|d). �

Let (i′, j′) = Suc(i, j). The following proposition, whose proof is immedi-
ate, establishes a way of defining the boundary set ∂i′,j′(N,π, V,H) in terms of
∂i,j(N,π, V,H).
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Proposition 4.5. Let π : Σ → Γ be a function, V,H ⊆ Σ × Σ be binary
relations over Σ, and N be an (m × n)-picture over Γ . Let ∂i,j(N,π, V,H) be
the set of (i, j)-boundaries of N where (i, j) < (m,n).

1. If j = n, then

∂i+1,1(N,π, V,H) = {aw2...wn | a ∈ Σ, (w1, a) ∈ V }.

2. If j < n, then

∂i,j+1(N,π, V,H) = {w1...wjawj+2...wn | a ∈ Σ, (wj , a) ∈ H, (wj+1, a) ∈ V }.

Using Proposition 4.5, we will prove the following theorem.

Theorem 4.6. Let π : Σ → Γ be a function, V,H ⊆ Σ × Σ be binary rela-
tions over Σ, and N be a (m,n)-picture over Γ . Let (i′, j′) = Suc(i, j). Then
Ai′,j′(N,π, V,H) can be constructed in time

O( |Σ|e(π,V ) · |Ai,j(N,π, V,H)|e(π,V ) ).

Proof. Let A = Aij(N,π, V,H) = (Q,Σ,R) be the minimum LDFA accept-
ing the set of boundaries ∂ij(N,π, V,H) where Q = Q0 ∪̇ Q1 ∪̇ ... ∪̇ Qn

and R = R1 ∪̇ ... ∪̇ Rn. Now let A′ = (Q′, Σ,R′) be the LDFA obtained
from A as follows. First set Q′ = Q′

0 ∪̇ Q′
1 ∪̇ ... ∪̇ Q′

n where Q′
0 =

Q0 and Q′
i = {qa | q ∈ Qi, a ∈ Σ}. Subsequently set R′ = R1 ∪̇ ... ∪̇ Rn

where R′
1 = {(q0, a, qa) | (q0, a, q) ∈ R1} and for each i ∈ {2, ..., n},

R′
i = {(qa, b, rb) |(q, b, r) ∈ Ri, a ∈ Σ }. Then A′ is still deterministic,

and q0
w1−−→ q1

w2−−→ ...
wn−−→ qn is an accepting path in A if and only if

q0
w1−−→ qw1

1
w2−−→ ...

wn−−→ qwn
n is an accepting path in A′. In other words, A′

accepts precisely the same language as A. Note that |A′| ≤ |Σ| · |A|. Now using
A′ we will construct a non-deterministic automaton A′′ = (Q′, Σ,R′′) of non-
deterministic degree at most e(π, V ) which accepts the language ∂i′,j′(N,π, V,H)
where (i′, j′) = Suc(i, j). Note that the set of states of A′′ is a copy of the set
of states of A′. Now to define the set of transitions R of A′′ we need to consider
two cases.

1. In the first case, j = n, and therefore i′ = i + 1 and j′ = 1. In this case we
set R′′

k = R′
k for each k ∈ {2, ..., n}, and

R′′
1 = {(q0, a, rb) | a ∈ π−1(Ni+1,1), (q0, b, rb) ∈ R′

1, (b, a) ∈ V }.

Therefore, we have that q0
w1−−→ qw1

1
w2−−→ qw2

2 ...
wn−−→ qwn

n is an accepting path
of A′ if and only if for each a with (w1, a) ∈ V , q0

a−→ qw1
1

w2−−→ qw2
2 ...

wn−−→ qn

is an accepting path of A′′. Stated otherwise,

L(A′′) = {aw2...wn | a ∈ Σ, (w1, a) ∈ V,w ∈ L(A′)}.

By Proposition 4.5, we have that L(A′′) = ∂i′,j′(N,π, V,H).
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2. In the second case, j < n, and therefore i′ = i and j′ = j + 1. In this case,
we set Rk = R′

k for k 
= j + 1. We define R′′
j+1 as follows.

R′′
j+1 = {(qc, a, rb) | (qc, b, rb) ∈ Rk, a ∈ π−1(Ni,j+1), (c, a) ∈ H, (b, a)∈ V }.

Then we have that q0
w1−−→ qw1

1
w2−−→ qw2

2 ...
wn−−→ qwn

n is an accepting path of A
if and only if for each a ∈ Σ with (wj , a) ∈ H and (wj+1, a) ∈ V , the path

q0
w1−−→ ...

wj−−→ q
wj

j
a−→ q

wj+1
j+1 ...

wn−−→ qwn
n

is an accepting path of A′′. In other words,

L(A′′) = {w1...wjawj+2...wn |w∈ L(A′), a∈ Σ, (wj , a) ∈ H, (wj+1, a)∈ V }.

Since L(A′) = ∂i,j(N,π, V,H), by Proposition 4.5 we have that L(A′′) =
∂i′,j′(N,π, V,H).

In both cases considered above, A′′ has as many states and transitions as A′.
Nevertheless, contrary to A′, A′′ is non-deterministic. Fortunately, the non-
deterministic degree of A′′ is upper bounded by e(π, V ). This implies that by
Lemma 4.4, the minimum leveled deterministic finite automaton accepting the
same language as A′′ can be constructed in time

O(|A′′|e(π,V )) = O(|Σ|e(π,V ) · |Ai,j(N,π, V,H)|e(π,V )).

�

Now, for each (i, j) ≥ (1, n) we know how to construct the automaton
Ai,j(N,π, V,H) accepting the set ∂ij(N,π, V,H). Note that since by assump-
tion, the picture N is s-smooth, we have that the collection of all automata
Ai,j(N,π, V,H) can be constructed in time O(|Σ|e(π,V ) · se(π,V ) · m · n). If the
last automaton Am,n(N,π, V,H) accepts the empty language, then the picture
N has no (π, V,H)-solution. On the other hand, if this language is not empty,
then we still need to construct a solution. Let Ai = Ai,n(N,π, V,H) be the
automaton accepting the boundary set ∂i,n(N,π, V,H). Let γ : Σ × Σ → Σ
be a projection which sets γ(a, b) = a for each pair (a, b) ∈ Σ × Σ. In other
words, γ erases the second coordinate of each pair (a, b) ∈ Σ × Σ. For a string
u = (a1, b1)(a2, b2)...(an, bn) ∈ (Σ × Σ)n, we let γ(u) = a1a2...an. Also, for a
string w ∈ Σn, let A(w) be the minimum LDFA that accepts w, and no other
string. We will construct a (π, V,H)-solution M for N row by row, starting from
the last row of M and finishing at the first. The construction is inductive. More
precisely, we construct a sequence wn, wn−1, ..., w1 of strings in Σn as follows.

1. Let wn be an arbitrary string in L(An).
2. For i = n − 1, ... , 1:

(a) Let wi be an arbitrary string in L(γ(Ai ⊗V A(wi+1))).
3. Set M to be the (m,n)-picture over Σ such that wi is the i-th row of M .
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We note that the string wi selected from L(γ(Ai ⊗V A(wi+1))) is sim-
ply a string in the boundary ∂i,n(N,π, V,H) satisfying the property that
(wi

k, wi+1
k ) ∈ V for each k ∈ {1, ..., n}. In other words, wi is vertically compat-

ible with wi+1. Additionally, since wi by definition belongs to ∂i,n(N,π, V,H)
we have that for each k ∈ {1, ..., n − 1}, (wi

k, wi
k+1) ∈ H. In other words, the

horizontal constraints imposed by the relation H are satisfied by each wi. This
shows that the picture M obtained by setting, for each i ∈ {1, ...,m}, wi as the
i-th row of M is a valid (π, V,H)-solution for N . We note that the time to select
each string wi is of the order of O(|Ai|). Therefore, the total algorithm still runs
in the time O(|Σ|e(π,V ) · se(π,V ) · m · n). This proves Theorem 4.1. �

5 Pigeonhole Pictures

In this section we define a family of pictures formalizing the pigeonhole principle.
We call these pictures the pigeonhole pictures. Subsequently, we will show that
this family is polynomially smooth. This implies that our algorithm for the
satisfiability of smooth pictures is able to determine whether a given element of
this family has a solution, and in the case it has, the algorithm is able to construct
it. On the other hand, we will show in Sect. 7 that CNF formulas derived from
the pigeonhole pictures require constant-depth Frege proofs of exponential size.

Our primary alphabet Γ = {⊕, ◦,
} has a left symbol ⊕, used to fill all
entries of the first column of the picture, a right symbol 
, used to fill all
entries of the last column of the picture, and a middle symbol ◦, used to
fill all entries in between the first and last columns. Our colored alphabet is
defined as Σ = {b, g, bb, bg, gb, gg, rr}. Finally, the projection π : Σ → Γ is
such that π({bb, bg, gb, gg, rr}) = {◦}, π(b) = ⊕ and π(g) = 
. Intuitively, the
letters r, b, g stand for “red”, “blue” and “green” respectively. The symbols in
{bb, bg, gb, gg, rr} are called double colors. The left symbol ⊕ can only be col-
ored with b, then right symbol 
 can only be colored with g, and the middle
symbol can be colored with any double color in {bb, bg, gb, gg, rr}. The color red
serves to indicate presence of a pigeon. The colors blue and green serve to mark
the “footprint” of a pigeon. The vertical and horizontal relations are defined as
follows:

V = { (xb, yb), (xb, rr), (rr, xg), (xg, yg) | x, y ∈ {b, g} } ∪ {(b, b), (g, g)}

H = { (bx, by), (bx, rr), (rr, gx), (gx, gy) | x, y ∈ {b, g} }
∪

{ (b, bz), (b, rr), (rr, g), (gz, g) | z ∈ {b, g} }
(4)

We define the (m,n)-pigeonhole picture, Pm,n, as the m × (n + 2) picture,
where all entries in the first column are filled with the left symbol ⊕, all entries
in the last column are filled with the right symbol 
, and all other entries are
filled with the middle symbol ◦.
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Definition 5.1 (Pigeonhole Picture). The (m,n)-pigeonhole picture Pm,n is
the m × (n + 2) picture over Γ defined as follows.

Pm,n
ij =

⎧
⎨

⎩

⊕ if j = 1.

 if j = n + 2.
◦ otherwise.

(5)

Intuitively, the rows of Pm,n correspond to pigeons, while the middle columns
correspond to holes. Pigeons are not allowed to occupy the first nor the last
columns. If M is a (π, V,H)-solution for the pigeonhole picture then the fact
that Mi,j = rr indicates that the i-th pigeon is placed at the hole represented
by column j. The fact that Mi,j = bx for some x ∈ {g, b} indicates that the i-th
pigeon is placed in some column greater than j, while the fact that Mi,j = gx for
some x ∈ {b, g} indicates that the i-th pigeon is placed in some column smaller
than j. Analogously, if Mi,j = xb for some x ∈ {b, g}, then the pigeon that is
placed at the j-th hole is greater than i, while if Mi,j = xg, then the pigeon that
is placed at the j-th hole is smaller than i.

Note also that the horizontal relation guarantees that a pigeon must occur
in each row of a satisfying assignment. This is because there is no allowed pair
(xy, x′y′) where x is blue and x′ is green. Therefore in a satisfying assignment,
any row must have at least one position colored with rr. Now for the columns
we note that if some pigeon occurs in a position (i, j) then the second color in
each entry below (i, j) must be green, while the second color of each entry above
(i, j) must be blue. Therefore no two pigeons are allowed to appear on the same
column of a satisfying assignment.

Fig. 2. (i) The pigeonhole picture P 4,4. (ii) A solution for P 4,4. (iii) The pigeonhole
picture P 5,4 is unsatisfiable. (Color figure online)

We note that if m > n, then pigeonhole picture Pm,n is unsatisfiable. The
following theorem says that the family of pigeonhole pictures is polynomially
smooth. This implies that our algorithm for the satisfiability of smooth pictures
can be used to decide the unsatisfiability of the pigeonhole pictures in polynomial
time.

Theorem 5.2. Let Pm,n be the (m,n)-pigeonhole picture. Then for each i, j ∈
{1, ..,m}×{1, ..., n+1}, the boundary ∂ij(Pm,n, π, V,H) is accepted by an LDFA
of size at most O(m · n).

Proof. LetM be a solution forPm,n. IfMi,j = y1y2 where i ∈ {2, ..., n+1}, thenwe
say that y1 is the first coordinate of Mi,j while y2 is the second coordinate of Mi,j .
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We sketch the proof in the case in which j = n + 2. In other words we will show
how to construct the boundaries corresponding to full rows. The generalization for
smaller values of j is straightforward. Thus let M be an (i, n + 2) partial solution.
Then theborder ofM is simply its i-th row.SinceM is apartial solution, there exists
a unique k such that Mi,k = rr. Additionally, if k′ < k then the first coordinate
of Mi,k′ is necessarily blue, indicating that a pigeon has not occurred in that row
up to position k′. On the other hand, if k′ > k, then the first coordinate of Mi,k′ is
green, indicating that apigeonhas alreadyoccurred at row i.Now,wealso have that
precisely i pigeons must be present in M , one for each row. Therefore, there must
exist precisely i−1 entries of row i whose second coordinate is green. Indeed, for an
entryMi,k′ withk′ 
= k, if the second coordinate ofMi,k′ is green, thenweknowthat
a pigeon has already occurred at column k′. On the other hand, if Mi,k′ is blue then
we know that no pigeon occurred yet at column k′. It turns out that the converse
also holds. Namely, if each two consecutive entries of row i satisfy the horizontal
constraints imposed by the horizontal relation H and there exists a unique entry
which is equal to rr and precisely i − 1 entries whose second coordinate is green,
then we known that all other entries of M can be filled in such a way that it is an
(i, n + 2) solution. In other words, the strings w ∈ Σn+2 belonging to the border
of an (i, n + 2) partial solution are characterized by the following properties.

1. The first entry of w is b and the last entry is g.
2. (wk, wk+1) ∈ H for each k ∈ {1, ..., n + 1}
3. There exists a unique k such that wk = rr
4. w has precisely i − 1 entries whose second coordinate is green.

Now one can implement a leveled deterministic finite automaton with O(i ·n)
transitions and levels Q0, Q1, ..., Qn+1 which accepts a string w ∈ Σn+2 if and
only if the conditions above are satisfied. Note that the three first conditions
are immediate to verify using such an automaton. The fourth condition can be
implemented by considering that each level Qk is split into subsets of states
Qr

k for r ∈ {1, ..., i}, where the states in Qr
k indicate that from the k first read

symbols of w, r of them have the second coordinate green. �

Corollary 5.3. Let Pm,n be the pigeonhole picture. Then the algorithm devised
in the proof of Theorem 4.1 determines in time O(m4 · n4) whether Pm,n has a
(π, V,H)-solution. In case such a solution exists the algorithm constructs it.

Proof. By Theorem 5.2, Pm,n is O(m · n)-smooth. Additionally, the extension
number of (π, V ) is e(π, V ) = 3. Therefore from Theorem 4.6, we can construct
each automaton Ai,j(Pm,n, π, V,H) in time at most O(m3 · n3). Since there are
m · n such automata, the whole algorithm takes time at most O(m4 · n4). �

6 From Pictures to Constant Width CNF Formulas

Let π : Σ → Γ be a function, V,H ⊆ Σ × Σ be binary relations over Σ, and
M be an m × n-picture over Γ . Next we define a constant width CNF formula
F (M) that is satisfiable if and only if M is (π, V,H)-satisfiable.
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Let Sij = π−1(Mij) be the set of colored versions of the symbol Mij . The
formula F (M) has a variable xija for each (i, j) ∈ [m] × [n], and each symbol
a ∈ Sij . Intuitively, the variable xija is true if the position (i, j) of a solution
picture is set to a. The following set of clauses specifies that in a satisfying
assignment, precisely one symbol of Sij occupies the position (i, j).

OneSymbol(M, i, j) ≡
∨

s∈Sij

xijs ∧
∧

s,s′∈Sij ,s �=s′
(xijs ∨ xijs′) (6)

The next set of clauses expresses the fact that no pair of symbols (a, a′) /∈ H
occur in consecutive horizontal positions at row i.

Horizontal(M, i) ≡
∧

(a,a′)/∈H,j∈{1,...,n−1}
(xija ∨ xi(j+1)a′) (7)

Similarly, the following set of of clauses expresses the fact that that no pair
of symbols (a, a′) /∈ V occurs in consecutive vertical positions at column j.

Vertical(M, j) ≡
∧

(a,a′)/∈V,i∈{1,...,m−1}
(xija ∨ x(i+1)ja′) (8)

Finally, we set the formula F (M) as follows.

F (M) ≡
m∧

i=1

Horizontal(M, i) ∧
n∧

j=1

Vertical(M, j)∧
∧

ij

OneSymbol(M, i, j) (9)

7 Lower Bound for Bounded Depth Frege Proofs

Let Pm,m−1 be the pigeonhole pictures as defined in Sect. 5. In this section
we will show that bounded-depth Frege refutations of the family of formulas
{F (Pm,m−1)}m∈N require exponential size. Recall that a Frege system is speci-
fied by a finite set of rules of the form

ϕ0(q1, ..., qm)
ϕ1(q1, ..., qm), ..., ϕr(q1, ..., qm) (10)

where q1, ..., qm are variables and ϕ0, ϕ1, ..., ϕr are formulas in the language ∨,
∧, ¬, 0, 1, and q1, ..., qm. The only requirement is that the rules are sound
and complete [6]. An instance of the rule is obtained by substituting particular
formulas ψ1, ..., ψm (in the language ∨, ¬, 0, 1, yij) for the variables q1, ..., qm.
A rule in which r = 0 is called an axiom scheme. The size of a formula F is
the number of symbols {∨,∧,¬} in it. The depth of a formula is the size of the
longest path from the root of F to one of its leaves. We say that a proof has
depth d if all formulas occurring in it have depth at most d.

Now consider the family of pigeonhole formulas {Hm}m∈N. For each m ∈ N,
Hm has variables yij for i ∈ {1, ...,m} and j ∈ {1, ...,m − 1} and the following
clauses.
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1. (yi,1 ∨ ... ∨ yi,m−1) for each i ∈ {1, ...,m}.
2. (¬yi,j ∨ ¬yk,j) for each i, k ∈ {1, ...,m}, j ∈ {1, ...,m − 1}.

Intuitively, when set to true, the variable yi,j indicates that pigeon i sits at
hole j. Clauses of the first type specify that each pigeon has to sit in at least
one hole, clauses of the second type specify that no two distinct pigeons sit in
the same hole. Clearly, the formula Hm is unsatisfiable for each m ∈ N. The
following theorem states that Hm is hard for bounded depth Frege systems.

Theorem 7.1 ([13,18]). For each Frege proof system F there exists a constant
c such that for each d, and each sufficiently large m, every depth-d refutation of
Hm must have size at least 2mc−d

.

Now let F (Pm,m−1) be the formula derived from the pigeonhole picture
Pm,m−1. This formula has the following variables1:

xi,j,bb, xi,j,bg, xi,j,gb, xi,j,gg i ∈ {1, ...,m}, j ∈ {2, ...,m} (11)

xi,1,b, xi,m+1,g, for i ∈ {1, ...,m} (12)

We will consider a substitution of variables that transforms the formula
F (Pm,m−1) into a formula F ′ in the variables yij used by the formula Hm.
Intuitively, the variable xi,j,rr which expresses that the pigeon i is being placed
at column j in a solution for the picture Pm,m−1, is mapped to the variable
yi,j−1 which expresses that the pigeon i is placed at hole j − 1. Note that the
j-th column of a solution for the picture Pm,m−1 is the (j − 1)-th hole. The
other variables are then mapped to a conjunction of disjunctions. For instance,
the variable xi,j,bb is true in an hypothetical satisfying assignment of F (Pm,m−1)
if and only if the pigeon at row i occurs after the j-th entry of this row, and the
pigeon at column j appears after the i-th entry of this column. Analogue sub-
stitutions can be made with respect to the other variables. These substitutions
are formally specified below.

1. For i ∈ {1, ...,m}:
(a) xi,1,b → (yi,1 ∨ ... ∨ yi,m−1)
(b) xi,(m+1),g → (yi,1 ∨ ... ∨ yi,m−1)

2. For i ∈ {1, ...,m}, j ∈ {2, ...,m}
(a) xi,j,rr → yi,(j−1)

(b) xi,j,bb → (yi,j ∨ ... ∨ yi,m−1) ∧ (yi+1,j ∨ ... ∨ ym,j)
(c) xi,j,bg → (yi,j ∨ ... ∨ yi,m−1) ∧ (y1,j ∨ ... ∨ yi−1,j)
(d) xi,j,gb → (yi,1 ∨ ... ∨ yi,j−2) ∧ (yi+1,j ∨ ... ∨ ym,j)
(e) xi,j,gg → (yi,1 ∨ ... ∨ yi,j−2) ∧ (y1,j ∨ ... ∨ yi−1,j)

1 Recall that the first and last columns of the pigeonhole picture do not correspond
to holes.
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Let F ′ be the formula that is obtained from F (Pm,m−1) by replacing its
variables according to the substitutions defined above. Then the formula F ′ has
only variables yij . Additionally, the implication Hm ⇒ F ′ can be proved by a
bounded depth Frege proof of polynomial size. Now suppose that Π is a depth-
d Frege refutation of the formula F (Pm,m−1) of size S. Then, if we replace
all variables occurring in formulas of Π according to the substitutions above,
we get a depth d + 2 Frege refutation Π ′ of the formula F ′ whose size is at
most O(m) · S. But since the implication Hm ⇒ F ′ has a Frege proof of size
poly(m), we have that Π ′ also can be used to construct a refutation of Hm of

size poly(m) ·S. Therefore by Theorem 7.1, the size of S must be at least 2mc′−d

for some constant c′ independent on m. �

Acknowledgments. This work was supported by the European Research Council,
grant number 339691, in the context of the project Feasibility, Logic and Random-
ness (FEALORA). The author thanks Pavel Pudlák and Neil Thapen for enlightening
discussions on Frege proof systems.

References

1. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. 22, 319–351 (2004)

2. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In:
Proceedings of the 37th Annual Symposium on Foundations of Computer Science,
pp. 274–282. IEEE (1996)

3. Buss, S.R., et al.: Resolution proofs of generalized pigeonhole principles. Theoret.
Comput. Sci. 62(3), 311–317 (1988)

4. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: resolution
refinements that characterize DLL algorithms with clause learning. Logical Meth.
Comput. Sci. 4, 1–18 (2008)

5. Cherubini, A., Reghizzi, S.C., Pradella, M., San, P.: Picture languages: Tiling
systems versus tile rewriting grammars. Theoret. Comput. Sci. 356(1), 90–103
(2006)

6. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symbol. Logic 44(01), 36–50 (1979)
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