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Abstract. A discrete space-filling curve provides a 1-dimensional index-
ing or traversal of a multi-dimensional grid space. Applications of
space-filling curves include multi-dimensional indexing methods, paral-
lel computing, and image compression. Common goodness-measures for
the applicability of space-filling curve families are locality and cluster-
ing. Locality reflects proximity preservation that close-by grid points
are mapped to close-by indices or vice versa. We present an analytical
study on the locality property of the 2-dimensional Hilbert curve family.
The underlying locality measure, based on the p-normed metric dy, is the
maximum ratio of dp,(u,v)™ to dp(u, V) over all corresponding point-pairs
(u,v) and (@, ¥) in the m-dimensional grid space and 1-dimensional index
space, respectively. Our analytical results identify all candidate represen-
tative grid-point pairs (realizing the locality-measure values) for all real
norm-parameters in the unit interval [1, 2] and grid-orders. Together with
the known results for other norm-parameter values, we have almost com-
plete knowledge of the locality measure of 2-dimensional Hilbert curves
over the entire spectrum of possible norm-parameter values.

Keywords: Space-filling curves - Hilbert curves - z-order curves -
Locality

1 Preliminaries

Discrete space-filling curves have many applications in databases, parallel com-
putation, algorithms, in which linearization techniques of multi-dimensional
arrays or grids are needed. Sample applications include heuristics for Hamil-
tonian traversals, multi-dimensional space-filling indexing methods, image com-
pression, and dynamic unstructured mesh partitioning.

For positive integer n, denote [n] = {1,2,...,n}. An m-dimensional (dis-
crete) space-filling curve of length n™ is a bijective mapping C : [n™] — [n]™,
thus providing a linear indexing/traversal or total ordering of the grid points in
[n]™. An m-dimensional grid is said to be of order k if it has side-length n = 2*;
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a space-filling curve has order k if its codomain is a grid of order k. The gener-
ation of a sequence of multi-dimensional space-filling curves of successive orders
usually follows a recursive framework (on the dimensionality and order), which
results in a few classical families, such as Gray-coded curves, Hilbert curves,
Peano curves, and z-order curves.

One of the salient characteristics of space-filling curves is their “self-
similarity”. Denote by H;" and Z;' an m-dimensional Hilbert and z-order,
respectively, space-filling curve of order k. Figure 1 illustrates the recursive con-
structions of H;® and Z;"* for m =2, and k = 1,2, and m = 3, and k = 1.

SO

Fig. 1. Recursive constructions of Hilbert and z-order curves of higher order (respec-
tively, Hj* and Z;') by interconnecting symmetric subcurves, via reflection and/or
rotation, of lower order (respectively, H;', and Z;*,) along an order-1 subcurve
(respectively, Hi" and Z{"): (a) Hi; (b) H3; (c) Hi; (d) Z7; (e) Z3; (f) Z7.

We measure the applicability of a family of space-filling curves based on:
(1) their common structural characteristics that reflect locality and clustering,
(2) descriptional simplicity that facilitates their construction and combinator-
ial analysis in arbitrary dimensions, and (3) computational complexity in the
grid space-index space transformation. Locality preservation reflects proximity
between the grid points of [n]™, that is, close-by points in [n|™ are mapped to
close-by indices/numbers in [n™], or vice versa. Clustering performance mea-
sures the distribution of continuous runs of grid points (clusters) over identically
shaped subspaces of [n]™, which can be characterized by the average number of
clusters and the average inter-cluster distance (in [n™]) within a subspace.

Empirical and analytical studies of clustering performances of various low-
dimensional space-filling curves have been reported in the literature (see [4] and
[6] for details). These studies show that the Hilbert and z-order curve families
manifest good data clustering properties according to some quality clustering
measures, robust mathematical formalism, and viable indexing techniques for
querying multi-dimensional data, when compared with other curve families.

The locality preservation of a space-filling curve family is crucial for the
efficiency of many indexing schemes, data structures, and algorithms in its
applications, for examples, spatial correlation in multi-dimensional indexings,
compression in image processing, and communication optimization in mesh-
connected parallel computing. To analyze locality, we need to rigorously define
its measures that are practical — good bounds (lower and upper) on the locality
measure translate into good bounds on the declustering (locality loss) in one
space in the presence of locality in the other space.
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A few locality measures have been proposed and analyzed for space-filling
curves in the literature. Denote by d and d,, the Euclidean metric and p-normed
metric (rectilinear metric (p = 1) and maximum metric (p = 00)), respectively.
Let C denote a family of m-dimensional curves of successive orders.

We [5] consider a locality measure conditional on a 1-normed distance of ¢
between points in [n]™:

Ls(C) = > li — j| for C e C.
i,jEm[i<j and di(C(0),C(j))=5

They derive exact formulas for Ls for the Hilbert curve family {H]* | k =
1,2,...} and z-order curve family {Z]* | k =1,2,...} for m = 2 and arbitrary ¢
that is an integral power of 2, and m = 3 and § = 1 (lower-order terms collected
in asymptotic form for brevity):

oL - 23k L O(2%) if 6 =1
L(S(ng) = { g . 93k+2logs 4 0(22k+310g6) otherwise,
23 + 0(2%) ifé6=1
L5(Zl§) = {23k+2 log é + O(22k:+310g 6) otherwise;
67 s
Li(H}) = 33 2°F 4+ O(2%%) and Ly(Z}) = 2°F + O(2%F).

With respect to the locality measure Ls and for sufficiently large k and
§ < 2%, the z-order curve family performs better than the Hilbert curve family
for m = 2 and over the §-spectrum of integral powers of 2. When § = 2*, the
domination reverses. The superiority of the z-order curve family persists but
declines for m = 3 with unit 1-normed distance for Ls.

For measuring the proximity preservation of close-by points in the indexing
space [n™], Gotsman and Lindenbaum [7] consider the following measures: for
Cec,

Lpin(C)= min —d(C(Z,)’ O,(])) and L. (C)=  max —d(C(z.), C‘(j)) .
i,j€[nm]|i<j li — 7] i,j€[n™]|i<j li — 4|

Alber and Niedermeier [1] generalize Lyax to L, by employing the p-normed
metric d,, for real norm-parameter p > 1 in place of the Euclidean metric d, which
is the locality measure studied in our work (and [5]). We summarize below:
(1) the representative lower- and upper-bound results and exact formulas for
the locality measure L,, of the 2-dimensional Hilbert curve family H? for various
norm-parameter p-values and grid-order k-values, and (2) the contribution of
our studies:

1. For p = 1: Niedermeier, Reinhardt, and Sanders [8] give a lower bound for
Li(H}): for all k > 1,

(3 . 2]{)71 _ 2)2

Ll(ng) > 4k—1 )

and Chochia et al. [3] provide a matching upper bound for L;(HZ) for all
k > 2. We [5] also provide the exact formula for Li(H?) for all k > 2.
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2. For p = 2: Gotsman and Lindenbaum [7] derive a lower and upper bounds
for Ly(H?): for all k > 6,

(2" —1)? 2
2 gk-2 4 1 < Ly(Hy) < 63,
3 3

and Alber and Niedermeier [1] improves the upper bound for Lo(HZ): for all
k>1,

1
Lo(Hf) < 65.

We [5] prove that the lower bound above [7] is the exact formula for Lo(H7):
for all k£ > 5,
22]{773 _ 2k:71 + 271

2\ _
LQ(Hk) =6- 92k—3 4 |

Bauman [2] obtains a matching lower and upper bounds for Lo(H?) for
k = oo:
Ly(H%) = 6.

3. For 2 < p < oo: Due to the monotonicity of the underlying p-normed met-
ric: for every grid-point pair (v,u), the p-normed metric dy(v,u) is strictly
decreasing in p € [1,00), we [5] prove the same exact formula for L,(HZ) as
for the case when p = 2:

22k73 _ 2k71 + 271

2\ _
LP(Hk) =6- 92k—3 4 1

for all reals p > 2.

When p = co, Alber and Niedermeier [1] establish a lower and upper bounds
for Lo (H?), respectively:

6(1—0(27%) < Loo(H?) < 6%.

Our proofs of the exact formulas of L,(HZ) for p € {1,2} in [5] follow
a uniform approach: identifying all the representative grid-point pairs, which
realize the L,(H?)-value, for each p € {1,2}. The analytical results close the
gap between the current best lower and upper bounds with exact formulas for
p € {1,2}, and extend to all reals p > 2. The identifications of candidate rep-
resentative grid-point pairs rely on sequences of reduction. A reduction of a
grid-point pair to another pair is based on the dominance of the underlying
locality-measure values of the corresponding grid-point pairs. The geometric
characteristics of the underlying p-norms (rectilinear and Euclidean metrics of
p =1 and p = 2, respectively) help distinguish candidate representative grid-
point pairs and verify tedious reductions.

Our study of 2-dimensional curve family H? is focused on the exact analysis
of L,(H ,f) for all reals p € [1, 2]. The intrinsic mathematical appeal in completing
the computation of L,(H?) for all possible norm-parameters p is our primary
motivation. While the three most obviously important p-values: {1,2,00} are
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intimately related to intuitive concepts, in some cases the structure of applica-
tions of the Hilbert curves may suggest a different choice of p-value as the most
natural setting for the underlying locality measure.

We present analytical and empirical studies on the locality measure L,, for
the 2-dimensional Hilbert curve family for all reals p € [1,2]. The underlying
locality measure L, based on the p-normed metric d,, is the maximum ratio of
dp(u,v)™ to d,(@, ) over all corresponding point-pairs (u,v) and (%,?) in the
m-dimensional grid space and (1-dimensional) index space, respectively:

1. We identify all the candidate representative grid-point pairs for all norm-
parameter p-values in [1,2] and grid-order k-values. Together with the known
results for other norm-parameter values, we have almost complete knowledge
of L,(H ,3) over the entire spectrum of possible norm-parameter values.

2. Our empirical study, which complements the analytical ones, shows that:
(1) The analytical results are consistent with program verification over var-
ious norm-parameter p-values and sufficiently large grid-order k-values, and
(2) As p increases over the real unit interval [1, 2], the locations of candidate
representative grid-point pairs agree with the intuitive interpolation effect
over the two delimiting p-values.

3. A practical implication of our results on L,(H?) is that the exact formulas
provide good bounds on measuring the loss in data locality in the index space,
while spatial correlation exists in the 2-dimensional grid space.

We present a high-level approach to the main results without any deriva-
tions and proofs, supplemented with an empirical study that verifies the analyt-
ical results for various p-values and sufficiently large k-values. Complete results:
illustrated figures, derivations, and proofs, and verifying computer programs are
available from the authors.

2 Analytical Studies of L,(H}?) with p € [1, 2]

For 2-dimensional Hilbert curves, the self-similar structural property guides us
to decompose H,f into four identical H %_1—subcurves (via reflection and rota-
tion), which are amalgamated together by an HZ-curve. Following the linear
order along this Hi-curve, we denote the four HZ ,-subcurves (quadrants) as
Q1(H?), Q2(H?), Qs(HE), and Q4(H?). We extend the notion to identify all
H["-subcurves of a structured H}* for all | € [k] inductively on the order in an
obvious manner.

For a space-filling curve C indexing an m-dimensional grid space, the notation
“p € C” refers to “grid point v indexed by C”, and C~*(v) gives the index of
v in the 1-dimensional index space. The locality measure in our study is, for all
reals p > 1,

L,(C) =
p( ) mdaceg%}é[nm] dp(

dp(C(0), CUN™ _ dp (v, u)"™
i"j) owec [C1(v) — C 1 (u)|’

When m = 2, we write L¢ p(u,v) = %
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For subcurves C1, Ca, Cf, and C} of C, a grid-point pair (vi,v2) € Cq x Cy is
reducible to a grid-point pair (v}, v5) € Cf x Cy if Lo p(v1,v2) < Lop(v],vh) —
denoted by (v1,v2) = (v, v4), and subcurve pair C; x Cs is reducible to subcurve
pair Cf x C} if for every (v1,v2) € Cy x Cy, there exists (v],v5) € Cf x C} such
that (v1,v2) is reducible to (v}, v5) — denoted by Cy x Cy <X C] x Ch. We define
the strict reducibility, denoted by <, for grid-point pairs and subcurve pairs via
the strict inequality of L p-values in an obvious manner.

A pair of grid points v and u indexed by C is representative for C' with
respect to L, if Lo p(v,u) = Ly(C), or, equivalently, for all v/, u" € C, (v/,u') <
(v, u). The identifications of candidate representative grid-point pairs for C' often
involve sequences of reductions — successive considerations of two grid-point pairs
and the comparisons of their £¢ ,-values. Our studies of L,(H?) cover all norm-
parameters p > 1. However, for all reals p € (1, 2), the lack of geometric clarity for
interpreting L,-values can adversely increase the complexity: (1) of identifying
candidate representative grid-point pairs, and (2) in comparing £ Hg,p—values
for reductions due to the complex interplay of the norm-parameter p-value and
grid-order k-value.

2.1 Reductions of Grid-Point Pairs and Subcurve Pairs

For two grid-point pairs (v1,v2) and (v],v5) (two subcurve pairs C; x Cy an
C1xC%) of HE, the reduction (v1,v2) = (v],v5) (C1 xCy < Cf x Ch, respectively)
eliminates (vy,v2) (Cy x Cy, respectively) from the candidacy for representative
grid-point pairs. We develop various sufficient conditions for reduction with an
example below.

For the grid space [2¥]? of a 2-dimensional Hilbert curve H? with a refer-
enced (z,y)-coordinate system (with origin (1, 1)) in a canonical orientation (see
Fig. 1(a) and (b)), we denote the z- and y-coordinates of a grid point v by z(v)
and y(v), respectively.

Lemma 1. For all norm-parameters p € [1,2] and three arbitrary grid points
u,v,v' € H? such that: (1) the sequence of three grid points: (u,v,v’)
is in indexing order (that is, (HZ) '(u) < (H?)"'(v) < (HH)'(v') or
(H) Y(u) > (HP) Y(w) > (H})()), and (2) the two sequences of
their x- and y-coordinates: (z(u),z(v),z(v")) and (y(u),y(v),y(v")) have the
same monotone property (both increasing or both decreasing), if |(HZ)™'(u) —
(H) " ()|@lx(u) — 2(v)l|z(v) — 2(v')] + |z(v) — 2(v)[* + 2/y(u) — y(v)[ly(v) -
()| +ly(v) —y(")*) = (HZ) ™ (v) = (HZ) " )| (|2(u) —2(0) [+ |y (u) —y(v)])* =
0 (>0), then (u,v) = (u,v") ((u,v) < (u,v')) via Lz, (u,v) < Lz p(u,v')
(L2 p(u,v) < Lz p(u,v'), respectively).

Note that the sufficient condition for the reduction is independent of the p-
value for L’H%p.

For reductions of grid-point pairs, we mostly use various p-independence suf-
ficient conditions as the one in Lemma 1. For reductions of subcurve pairs, simple
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ones are realized by symmetry arguments with regard to relative subcurve-
orientations or succinct geometric interpretations of the £ H2 p-computation if
possible.

For subcurves in the form of nested subquadrants of H?, we may prove the
reduction between subcurve pairs Cq x Cy < C] x C4 with a divide-and-conquer
approach by considering all possible reductions between quadrant-subcurve pairs
Qil (Cl) X Qi2 (02) (fOI" all 11,19 € [4]) to le (O{) X Qj2 (Cé) (fOI‘ some jl,j2 S
[4]). Some reductions of quadrant-subcurve pairs may be resolved by simple
symmetry/geometric arguments, while others may entail further reductions of
subquadrant-subcurve pairs. These nested reductions generally arrive at some
forms of recursive patterns, and mathematical induction is applied to resolve the
reductions.

2.2 Identification of Candidate Representative Grid-Point Pairs

The upper-bound argument [5] in establishing the exact formulas for L,(HZ)
for p € {1,2} does not translate into a viable application for p € (1,2).
For identifying all possible candidate representative grid-point pairs in HZ,
we consider all grid-point pairs in Q;(H?) x Q;(H7?) with 1 < i < j < 4
and their possible systematic reductions. Due to a simple reduction (Q1(H?) x
Qu(H2) = Qo(HZ) x Qs(H2)) and geometric symmetry (Qa(HZ) x Qa(HZ) to
Qu(H}P) x Qs(H}) and Qo(H2) x Qu(HE) to Qu(HE) x Qa(HE)), three cases
remain: Q1 (HZ)xQa2(HE), Q1(H?)xQ3(H?), and Q2(H?)x Q3(HE). An involved
analysis of Q1(H?) x Q3(H?) reveals that the quadrant-subcurve pair is void of
any candidate representative grid-point pairs.

We summarize the findings below in Theorem 1, in which the sources of (can-
didate) representative grid-point pairs (named A, B, and C) are illustrated in
Fig. 2 and elaborated with (local) (z,y)-coordinates and L2 -values in Table 1.
For brevity we omit the symmetry ones.

Theorem 1. Consider the following cases determined by the interplay of the
grid-order k > 1 and norm-parameter p € [1,2] of H?:

1. Case when k = 1:
For all p € [1,2): One representative grid-point pair with coordinates ((1,1),
(2%, 2)) and its symmetry.
For p = 2: Three representative grid-point pairs with coordinates
((1,1),(1,2%)), ((1,1), (2%, 2%)), and ((1,2%), (2¥,2%), and their symmetries.
2. Case when k € {2,3}:
For all p € [1,2]: One representative grid-point pair B and its symmetry.
3. Case when k = 4: The p-interval [1,2] is decomposed into two p-subintervals:
[1,p) and (p,2], where p = 1.825.
For all p € [1, p): One representative grid-point pair B and its symmetry.
For all p € (p,2]: One representative grid-point pair A and its symmetry.
For p = p: Two representative grid-point pairs B and A, and their
symmetries.
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4. Case when k > 5: For allp € [1,2]: 1+ (k—2)+(k—4) = 2k—5 candidate rep-
resentative grid-point pairs B,Cy,D1,Cy,...,Ci_5, Dg_5,Cr—4, Dg_4,Cg_3,
Clk—2, and their symmetries.

Refined analysis with further reductions eliminates Dy, ..., Dig_5 and Dy_4,
and their symmetries from the candidacy for representative grid-point pairs.

Theorem 2. For all grid-orders k > 5 and norm-parameters p € [1,2] of
H3?, the candidate representative grid-point pairs are B,Cy,Cs,. .., Cyx_5,Cl_4,
Dy_4, Cr_3,Ckx_2, and their symmetries.

For all norm-parameters p € [1,2], there exists a sufficiently large grid-order
ko > 5 such that for all grid-orders k > ko of HZ?, the candidate representa-
tive grid-point pairs are B,C1,Cs, ..., Cx_5,Ck_4,Cr_3,Cr_2, and their sym-
metries.

Our future work will be focused on establishing analytically the association of
representative grid-point pairs in {B,C1,Cs,...,Ck_s5,Cr_4, Cix—3, Cx—2} with
their £ Hﬁyp—dominance p-subintervals and relevant grid-orders.

3 Empirical Study on L,(H?) with p € [1, 2]

To complement the analytical results for L,(H7) for all reals p € [1,2], we con-
duct an empirical study on L,(H?) for all k € {2,3,...,12} and some reals
p € [1,2]. We cover the grid space [2¥]? of a 2-dimensional Hilbert curve HZ in
a canonical orientation with Cartesian coordinates: 2¥ columns (respectively,
rows) indexed by z-coordinates (respectively, y-coordinates) 1,2,...,2%. For
every grid-order k € {2,3,...,12} and real p € [1,2] with granularity of 0.01
(for 2 < k < 12), we locate with computer programs all representative grid-
point pairs for H ,f with respect to L,. Figure2(a) illustrates the three sources
{A, B,C?} of candidate representative grid-point pairs for k& > 2.

Source A identifies the grid-point pair (ua,va) = ((1,7 - 2% + 1), (1,2F))
and its symmetry. The pair (ua,va) serves as the representative grid-point pair
“briefly” — for k = 4 and 1.83 < p < 2.00.

Source B identifies the grid-point pair (ug,vg) = (2871, 1), (1,2*)) and its
symmetry. The pair (up, vg) serves as the representative grid-point pair for every
ke {2,3,...,12} and all reals p of a (shrinking) prefix-interval [1, p) C [1,2] —
with py decreasing as k increases.

Source C' identifies a sequence (C1,Cs, ..., Ck_2) of grid-point pairs:

1 3
Co = (uc,,ve,) = (28 +1,2571 +1), (- 25, 2571 4207271,

fort =1,2,...,k — 2, and their symmetries, with:

2k71 _ y(vct) —

x(vct+1) = ‘T(vct) and y(vct+1) -
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and eventually ve, converges to ve, _,. Note that, for ¢t = 0, the grid-point pair
Co = (ucy,vcy) = (328 + 1,281 1), (2 . 2k 271 4 2=2)) is not included in
C since C can not be a candidate representative grid-point pair (for any k and
real p € [1,2]):

b1 1P 4 (28 —1)P)5
Lz p(up,vp) = ( )22k—2( ")

(251 — )P 4 (2F2 —1)P)F
% . 92k—3 | % . 92k—4

> ‘CH,%,p(qu UCO) =

Empirically, for all & € {5,6,...,12} and all reals p of the (growing) suffix-
interval (py, 2] C [1, 2], all the representative grid-point pairs form a subsequence
C’ of C composed of: (1) a prefix of C' and (2) (uc,_,, Ve, _,)- The suffix-interval
(pr, 2] is partitioned into disjoint successive p-subintervals, each of which sup-
ports a grid-point pair in the subsequence C’ as the representative grid-point
pair for H? (for all reals p of the subinterval). The length of C’ (number of all
representative grid-point pairs from the source C') should depend on k in gen-
eral, and on the p-granularity in our empirical setting. Figure 2(b) depicts the
sequence of candidate representative grid-point pairs from the source C.

Fig. 2. Candidate representative grid-point pairs for Hi with respect to L, for k > 2:
(a) three sources {A, B,C} of candidate representative grid-point pairs; (b) detailed
view of the source C.

Table 1 tabulates: (1) foreach k € {2,3,...,12}, the partitioning p-subintervals
of [1,2], and the corresponding representative grid-point pair and its source; and
(2) Lz p(u,v) (= L,(H?)) for a representative grid-point pair (u,v) in the three
sources A, B, and C:
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Table 1. Representative grid-point pairs for H? with respect to Lyfork € {2,3,...,12}
and p € [1.00,2.00] with granularity of 0.01

A

‘ (z, y)-coordinates

representative grid-point pair

[coordinates in terms of k source
[2 [[1.00,2.00][((2,1), (1,4)) [(2F1 1), (1,2%) [B |
[3 ][00, 2.00][ (4, 1), (1, 8)) ("D, 1,25) B__]
4 [[1.00, 1.82][((8, 1), (1, 16)) ((2F~1,1), (1,2F)) B
[1.83,2.00][((1,5), (1, 16)) (1, 12" +1),(1,2%) A
5 [[1.00,1.61][((16, 1), (1, 32)) ((2F~1,1), (1,2F)) B
[1.62,2.00][((9, 17), (24, 17)) (- 2F 41,2 T+ 1), (3-2F 2" T +1)) C3
6 [[1.00,1.51][((32,1), (1,64)) ((2F71,1), (1, 2F)) B
[1.52,1.55]|((17, 33), (48, 40)) (L 2F £ 1,2F=T 1 1), (2. 2F 2F T L oF=3))[C,
[1.56,1.60][((17, 33), (48, 36)) (- 2F +1,2F"T 1 1), (3 . 2F 2F-T 1 oF=1))[C,
[1.61,2.00][((17, 33), (48, 33)) (L 2F 4 1,2F T 41) (2.2F 2F-T 1 1)) Cy
7 [[1.00,1.41][((64, 1), (1, 128)) ((2F~1,1), (1,2F) B
1.42,1.57][((33, 65), (96, 80)) (L 2F 4 1,2F" T4 1), (2. 2F oF T L oF=3))[C,
1.58,1.66][((33,65), (96, 72)) (X 2F 41,28 T 41), (3. 2F 2F T L oF 1)),
1.67,1.67][((33, 65), (96, 68)) (L 2F 4 1,2F T 11), (2. 2F 2F T L oF=%))[Cs
[1.68,2.00][((33, 65), (96, 65)) (L 2F 4 1,2F T 41), (2. 2F 2P T 1)) Cs
8 [[1.00,1.36][((128, 1), (1, 256)) ((2F~1,1), (1,2F) B
1.37,1.57]((65, 129), (192, 160)) ((F-2F 41,28 T4 1), (3. 2F 2F T 1 2F =3[y
1.58, 1.68]|((65, 129), (192, 144)) (2 2F y1,2F T 1), (3. 2F 2F T L oF=T))[C,
1.69, 1.72][((65, 129), (192, 136)) (L 2F 1,28 T 41), (3. 2F 2F T 1 2F%))[C;
[1.73,2.00][((65, 129), (192, 129)) (L 2F 4 1,2F T 1), (2.2F 2P~ T 1)) Cs
9 [[1.00,1.33][((256, 1), (1, 512)) ((2F~1,1), (1,2F)) B
[1.34,1.58][((129, 257), (384, 320)) (L 2F 4 1,2F T4 1), (2. 2F oF T L oF=3))[C,
[1.59,1.69][((129, 257), (384, 288)) (L -2F +1,2F T 1 1), (3. 2F 2F T L oF~T))[C,
1.70,1.75][((129, 257), (384, 272)) (L 2F 4 1,2F T4 1), (2. 2F oF T L oF=%))[Cs
1.76, 1.77]|((129, 257), (384, 264)) (L 2F 4 1,2F" T 1 1), (2. 2F 2F T L 9F=B))[C,
1.78,2.00][((129, 257), (384, 257) (3 2F +1,2F"T 1 1), (3 - 2F 2F-T 1 1)) Cr
10[[1.00, 1.32][((512, 1), (1, 1024)) ((2F~1,1), (1,2F)) B
[1.33,1.58][((257,513), (768, 640)) (L 2F 41,281 1), (3. 2F 2F T L oF=3))[C,
1.59,1.70][((257, 513), (768, 576)) (L 2F 4 1,2F T4 1), (2. 2F oF T L oF—%))[C,
1.71,1.76][((257, 513), (768, 544)) (L 2F £ 1,2F T 1 1), (2. 2F 2F T L oF=%))[C,
1.77,1.79][((257, 513), (768, 528)) (- 2F +1,2F"T 1 1), (3 . 2F 2F T 1 2F=0))[C,
[1.80, 1.80][((257, 513), (768, 520)) (L 2F 4 1,2F T4 1), (2. 2F oF T L oF=T))[Cs
[1.81,2.00][((257,513), (768, 513)) (L 2F 41,28 T 41), (3. 2F 2F~T 1)) Cs
11[[1.00, 1.31][((1024, 1), (1, 2048)) ((2F~1,1), (1,2F)) B
1.32,1.58][((513, 1025), (1536, 1280)) |((% -2F + 1,28 T 4 1), (3 - 2F, 2F T 1 2F =3))[C,
1.59, 1.70][((513, 1025), (1536, 1152)) [((% -2F + 1,28 T £ 1), (2 - 2F 2F~T 1 oF~T))[C,
[1.71,1.76][((513, 1025), (1536, 1088)) [((% - 2% +1,2F T 4 1), (3 - 2F, 2F =T L 2F=F))[Cy
[1.77,1.80][((513,1025), (1536,1056)) [((2 -2F +1,2F T+ 1), (3 . 2F 2F T 4 27 5))[C,
[1.81, 1.82][((513, 1025), (1536, 1040)) |[((% -2F +1,2F T 4 1), (3 - 2F, 2F T L 2F—T))[Cy
[1.83,2.00][((513, 1025), (1536, 1025)) [(( -2F +1,2F T 4+ 1), (2 . 2F 2F~T 1 1)) Cy
12[[1.00, 1.31]]((2048, 1), (1, 4096)) ((2F71,1), (1, 2F)) B
[1.32,1.58][((1025, 2049), (3072, 2560))[ (% - 2F 4 1,2F T 4 1), (3 . 2F 2F =T 1 2F=9))[Cy
[1.59,1.70][((1025, 2049), (3072,2304))[((2 - 2F + 1,2F T + 1), (3 . 2F 2F T 1 oF ")),
1.71,1.77][((1025, 2049), (3072, 2176)) [ (2 - 2F + 1,2F T 4 1), (3 . 2F, 2F "1 4 2F75))[C5
1.78,1.81][((1025, 2049), (3072, 2112))[((% - 2F + 1,2F =T 1 1), (3 . 2F 2F~T 1 2F=%))[C,
1.82, 1.83][((1025, 2049), (3072, 2080))[((% - 2F + 1,2F T + 1), (2 - 2F 2F~T L 2F~"))[C;
[1.84,1.84][((1025, 2049), (3072, 2064))[((% - 2F + 1,2F T 4 1), (3 - 2F, 2F =T L 2F=8))[C¢
[1.85,2.00][((1025,2049), (3072,2049)[((2 - 2F + 1,2F T+ 1), (3 - 2F 2F T+ 1)) Cio
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k—2__ 2 . . .
%7_41)1 if (u,v) is in A
5 +3 ,
(@' —nP+F-1)P)P
EHﬁ’p(u’,U> = k-1 22k72k 2 2
(QF~t—1)P(2F 2t _1)P)» T B i C
%,22k—3+%_22k—4—2t 1 (uvv) - (quUC’f,) m C,

where t =1,2,..., k — 2.

if (u,v) is in B

Figure 3(a) and (b) show the graphs, using the mathematical software Maple,

of the locality measure £ H? pu,v) for k = 4 and 12, respectively, for all reals

€ [1,2] and all (u,v) in the three sources A, B, and C. Our future work will

involve determining, for each k, the dominant functions/measures over successive

subintervals of [1,2], whose piece-wise combination yields the (overall) locality
measure L,(H?) for all reals p € [1,2].

k=4 k=12

—B Cl——C — - —-C4— -C5 C6—C7
— A B——Cl—-—C2 C8 ——C9 —-— CI0

(a) (b)

Fig. 3. Locality measures corresponding to the grid-point pairs in: (a) A, B, and C =
{C5} for k = 4 and p-granularity of 0.01; (b) B and C = {C; | 1 <t < k — 2} for
k = 12 and p-granularity of 0.01. (Color figure online)

For the extreme case of k = 4 with p-granularity of 0.01, two representa-
tive grid-point pairs emerge from the sources B and A over the partitioning
subintervals [1.00, 1.82] and [1.83,2.00], respectively.

For a more general case of k = 12 with p-granularity of 0.01, the representa-
tive grid-point pairs are from the sources B and C over the partitioning subin-
tervals [1.00,1.31] and [1.32, 2.00], respectively. Observe that the subsequence C’
of all representative grid-point pairs (from the source C = {C; | 1 <t < 10}) is
{Cl, 02, 03, 04, 05, 06, ClO}-

4 Conclusion

Our analytical study of the locality properties of the Hilbert curve family, { H |
k=1,2,...}, is based on the locality measure L, which is the maximum ratio
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of d,(u,v)™ to d, (%, 0) over all corresponding point-pairs (u,v) and (%, ?) in the
m-~dimensional grid space and index space, respectively. Our analytical results
identify all the candidate representative grid-point pairs of H,f from the three
sources A, B, and C (which realize L,(H?)-values) for all norm-parameters p €
[1,2] and grid-orders k, which enable us to have almost complete knowledge
of L,(H%) for all p > 1 — except for the relation between the candidate grid-
point pairs and their dominance p-subintervals. For all real norm-parameters p €
[1,2] with sufficiently small granularity and grid-orders k € {2,3,...,12}, our
empirical study reveals the three major sources (A, B, and C) of representative
grid-point pairs (v, u) that give Lpz (v, u) = L,(H}). The results also suggest
that all the representative grid-point pairs of B and C' are from B and C’, which
is a prefix-subsequence of C' together with Cj_o for some sufficiently large grid-
orders k € {5,6,...,12}. The study has shed some light on a continuing study of
determining the interplay pattern between the norm-parameter p and grid-order
k for emerging representative grid-point pairs.
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