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Abstract. A discrete space-filling curve provides a 1-dimensional index-
ing or traversal of a multi-dimensional grid space. Applications of
space-filling curves include multi-dimensional indexing methods, paral-
lel computing, and image compression. Common goodness-measures for
the applicability of space-filling curve families are locality and cluster-
ing. Locality reflects proximity preservation that close-by grid points
are mapped to close-by indices or vice versa. We present an analytical
study on the locality property of the 2-dimensional Hilbert curve family.
The underlying locality measure, based on the p-normed metric dp, is the
maximum ratio of dp(u, v)

m to dp(ũ, ṽ) over all corresponding point-pairs
(u, v) and (ũ, ṽ) in the m-dimensional grid space and 1-dimensional index
space, respectively. Our analytical results identify all candidate represen-
tative grid-point pairs (realizing the locality-measure values) for all real
norm-parameters in the unit interval [1, 2] and grid-orders. Together with
the known results for other norm-parameter values, we have almost com-
plete knowledge of the locality measure of 2-dimensional Hilbert curves
over the entire spectrum of possible norm-parameter values.

Keywords: Space-filling curves · Hilbert curves · z-order curves ·
Locality

1 Preliminaries

Discrete space-filling curves have many applications in databases, parallel com-
putation, algorithms, in which linearization techniques of multi-dimensional
arrays or grids are needed. Sample applications include heuristics for Hamil-
tonian traversals, multi-dimensional space-filling indexing methods, image com-
pression, and dynamic unstructured mesh partitioning.

For positive integer n, denote [n] = {1, 2, . . . , n}. An m-dimensional (dis-
crete) space-filling curve of length nm is a bijective mapping C : [nm] → [n]m,
thus providing a linear indexing/traversal or total ordering of the grid points in
[n]m. An m-dimensional grid is said to be of order k if it has side-length n = 2k;
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a space-filling curve has order k if its codomain is a grid of order k. The gener-
ation of a sequence of multi-dimensional space-filling curves of successive orders
usually follows a recursive framework (on the dimensionality and order), which
results in a few classical families, such as Gray-coded curves, Hilbert curves,
Peano curves, and z-order curves.

One of the salient characteristics of space-filling curves is their “self-
similarity”. Denote by Hm

k and Zm
k an m-dimensional Hilbert and z-order,

respectively, space-filling curve of order k. Figure 1 illustrates the recursive con-
structions of Hm

k and Zm
k for m = 2, and k = 1, 2, and m = 3, and k = 1.

(f)(e)(d)(c)(a) (b)

Fig. 1. Recursive constructions of Hilbert and z-order curves of higher order (respec-
tively, Hm

k and Zm
k ) by interconnecting symmetric subcurves, via reflection and/or

rotation, of lower order (respectively, Hm
k−1 and Zm

k−1) along an order-1 subcurve
(respectively, Hm

1 and Zm
1 ): (a) H2

1 ; (b) H
2
2 ; (c) H

3
1 ; (d) Z

2
1 ; (e) Z

2
2 ; (f) Z

3
1 .

We measure the applicability of a family of space-filling curves based on:
(1) their common structural characteristics that reflect locality and clustering,
(2) descriptional simplicity that facilitates their construction and combinator-
ial analysis in arbitrary dimensions, and (3) computational complexity in the
grid space-index space transformation. Locality preservation reflects proximity
between the grid points of [n]m, that is, close-by points in [n]m are mapped to
close-by indices/numbers in [nm], or vice versa. Clustering performance mea-
sures the distribution of continuous runs of grid points (clusters) over identically
shaped subspaces of [n]m, which can be characterized by the average number of
clusters and the average inter-cluster distance (in [nm]) within a subspace.

Empirical and analytical studies of clustering performances of various low-
dimensional space-filling curves have been reported in the literature (see [4] and
[6] for details). These studies show that the Hilbert and z-order curve families
manifest good data clustering properties according to some quality clustering
measures, robust mathematical formalism, and viable indexing techniques for
querying multi-dimensional data, when compared with other curve families.

The locality preservation of a space-filling curve family is crucial for the
efficiency of many indexing schemes, data structures, and algorithms in its
applications, for examples, spatial correlation in multi-dimensional indexings,
compression in image processing, and communication optimization in mesh-
connected parallel computing. To analyze locality, we need to rigorously define
its measures that are practical – good bounds (lower and upper) on the locality
measure translate into good bounds on the declustering (locality loss) in one
space in the presence of locality in the other space.
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A few locality measures have been proposed and analyzed for space-filling
curves in the literature. Denote by d and dp the Euclidean metric and p-normed
metric (rectilinear metric (p = 1) and maximum metric (p = ∞)), respectively.
Let C denote a family of m-dimensional curves of successive orders.

We [5] consider a locality measure conditional on a 1-normed distance of δ
between points in [n]m:

Lδ(C) =
∑

i,j∈[nm]|i<j and d1(C(i),C(j))=δ

|i − j| for C ∈ C.

They derive exact formulas for Lδ for the Hilbert curve family {Hm
k | k =

1, 2, . . .} and z-order curve family {Zm
k | k = 1, 2, . . .} for m = 2 and arbitrary δ

that is an integral power of 2, and m = 3 and δ = 1 (lower-order terms collected
in asymptotic form for brevity):

Lδ(H2
k) =

{
17
2·7 · 23k + O(22k) if δ = 1
17
2·7 · 23k+2 log δ + O(22k+3 log δ) otherwise,

Lδ(Z2
k) =

{
23k + O(2k) if δ = 1
23k+2 log δ + O(22k+3 log δ) otherwise;

L1(H3
k) =

67
2 · 31

· 25k + O(23k) and L1(Z3
k) = 25k + O(22k).

With respect to the locality measure Lδ and for sufficiently large k and
δ � 2k, the z-order curve family performs better than the Hilbert curve family
for m = 2 and over the δ-spectrum of integral powers of 2. When δ = 2k, the
domination reverses. The superiority of the z-order curve family persists but
declines for m = 3 with unit 1-normed distance for Lδ.

For measuring the proximity preservation of close-by points in the indexing
space [nm], Gotsman and Lindenbaum [7] consider the following measures: for
C ∈ C,

Lmin(C)= min
i,j∈[nm]|i<j

d(C(i), C(j))m

|i − j| and Lmax(C)= max
i,j∈[nm]|i<j

d(C(i), C(j))m

|i − j| .

Alber and Niedermeier [1] generalize Lmax to Lp by employing the p-normed
metric dp for real norm-parameter p ≥ 1 in place of the Euclidean metric d, which
is the locality measure studied in our work (and [5]). We summarize below:
(1) the representative lower- and upper-bound results and exact formulas for
the locality measure Lp of the 2-dimensional Hilbert curve family H2

k for various
norm-parameter p-values and grid-order k-values, and (2) the contribution of
our studies:

1. For p = 1: Niedermeier, Reinhardt, and Sanders [8] give a lower bound for
L1(H2

k): for all k ≥ 1,

L1(H2
k) ≥ (3 · 2k−1 − 2)2

4k−1
,

and Chochia et al. [3] provide a matching upper bound for L1(H2
k) for all

k ≥ 2. We [5] also provide the exact formula for L1(H2
k) for all k ≥ 2.
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2. For p = 2: Gotsman and Lindenbaum [7] derive a lower and upper bounds
for L2(H2

k): for all k ≥ 6,

(2k−1 − 1)2
2
3 · 4k−2 + 1

3

≤ L2(H2
k) ≤ 6

2
3
,

and Alber and Niedermeier [1] improves the upper bound for L2(H2
k): for all

k ≥ 1,

L2(H2
k) ≤ 6

1
2
.

We [5] prove that the lower bound above [7] is the exact formula for L2(H2
k):

for all k ≥ 5,

L2(H2
k) = 6 · 22k−3 − 2k−1 + 2−1

22k−3 + 1
.

Bauman [2] obtains a matching lower and upper bounds for L2(H2
k) for

k = ∞:
L2(H2

∞) = 6.

3. For 2 < p ≤ ∞: Due to the monotonicity of the underlying p-normed met-
ric: for every grid-point pair (v, u), the p-normed metric dp(v, u) is strictly
decreasing in p ∈ [1,∞), we [5] prove the same exact formula for Lp(H2

k) as
for the case when p = 2:

Lp(H2
k) = 6 · 22k−3 − 2k−1 + 2−1

22k−3 + 1
for all reals p ≥ 2.

When p = ∞, Alber and Niedermeier [1] establish a lower and upper bounds
for L∞(H2

k), respectively:

6(1 − O(2−k)) ≤ L∞(H2
k) ≤ 6

2
5
.

Our proofs of the exact formulas of Lp(H2
k) for p ∈ {1, 2} in [5] follow

a uniform approach: identifying all the representative grid-point pairs, which
realize the Lp(H2

k)-value, for each p ∈ {1, 2}. The analytical results close the
gap between the current best lower and upper bounds with exact formulas for
p ∈ {1, 2}, and extend to all reals p ≥ 2. The identifications of candidate rep-
resentative grid-point pairs rely on sequences of reduction. A reduction of a
grid-point pair to another pair is based on the dominance of the underlying
locality-measure values of the corresponding grid-point pairs. The geometric
characteristics of the underlying p-norms (rectilinear and Euclidean metrics of
p = 1 and p = 2, respectively) help distinguish candidate representative grid-
point pairs and verify tedious reductions.

Our study of 2-dimensional curve family H2
k is focused on the exact analysis

of Lp(H2
k) for all reals p ∈ [1, 2]. The intrinsic mathematical appeal in completing

the computation of Lp(H2
k) for all possible norm-parameters p is our primary

motivation. While the three most obviously important p-values: {1, 2,∞} are
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intimately related to intuitive concepts, in some cases the structure of applica-
tions of the Hilbert curves may suggest a different choice of p-value as the most
natural setting for the underlying locality measure.

We present analytical and empirical studies on the locality measure Lp for
the 2-dimensional Hilbert curve family for all reals p ∈ [1, 2]. The underlying
locality measure Lp, based on the p-normed metric dp, is the maximum ratio of
dp(u, v)m to dp(ũ, ṽ) over all corresponding point-pairs (u, v) and (ũ, ṽ) in the
m-dimensional grid space and (1-dimensional) index space, respectively:

1. We identify all the candidate representative grid-point pairs for all norm-
parameter p-values in [1, 2] and grid-order k-values. Together with the known
results for other norm-parameter values, we have almost complete knowledge
of Lp(H2

k) over the entire spectrum of possible norm-parameter values.
2. Our empirical study, which complements the analytical ones, shows that:

(1) The analytical results are consistent with program verification over var-
ious norm-parameter p-values and sufficiently large grid-order k-values, and
(2) As p increases over the real unit interval [1, 2], the locations of candidate
representative grid-point pairs agree with the intuitive interpolation effect
over the two delimiting p-values.

3. A practical implication of our results on Lp(H2
k) is that the exact formulas

provide good bounds on measuring the loss in data locality in the index space,
while spatial correlation exists in the 2-dimensional grid space.

We present a high-level approach to the main results without any deriva-
tions and proofs, supplemented with an empirical study that verifies the analyt-
ical results for various p-values and sufficiently large k-values. Complete results:
illustrated figures, derivations, and proofs, and verifying computer programs are
available from the authors.

2 Analytical Studies of Lp(H
2
k) with p ∈ [1, 2]

For 2-dimensional Hilbert curves, the self-similar structural property guides us
to decompose H2

k into four identical H2
k−1-subcurves (via reflection and rota-

tion), which are amalgamated together by an H2
1 -curve. Following the linear

order along this H2
1 -curve, we denote the four H2

k−1-subcurves (quadrants) as
Q1(H2

k), Q2(H2
k), Q3(H2

k), and Q4(H2
k). We extend the notion to identify all

Hm
l -subcurves of a structured Hm

k for all l ∈ [k] inductively on the order in an
obvious manner.

For a space-filling curve C indexing an m-dimensional grid space, the notation
“v ∈ C” refers to “grid point v indexed by C”, and C−1(v) gives the index of
v in the 1-dimensional index space. The locality measure in our study is, for all
reals p ≥ 1,

Lp(C) = max
indices i,j∈[nm]

dp(C(i), C(j))m

dp(i, j)
= max

v,u∈C

dp(v, u)m

|C−1(v) − C−1(u)| .

When m = 2, we write LC,p(u, v) = dp(u,v)2

|C−1(v)−C−1(u)| .
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For subcurves C1, C2, C ′
1, and C ′

2 of C, a grid-point pair (v1, v2) ∈ C1×C2 is
reducible to a grid-point pair (v′

1, v
′
2) ∈ C ′

1 × C ′
2 if LC,p(v1, v2) ≤ LC,p(v′

1, v
′
2) –

denoted by (v1, v2) � (v′
1, v

′
2), and subcurve pair C1×C2 is reducible to subcurve

pair C ′
1 × C ′

2 if for every (v1, v2) ∈ C1 × C2, there exists (v′
1, v

′
2) ∈ C ′

1 × C ′
2 such

that (v1, v2) is reducible to (v′
1, v

′
2) – denoted by C1 × C2 � C ′

1 × C ′
2. We define

the strict reducibility, denoted by ≺, for grid-point pairs and subcurve pairs via
the strict inequality of LC,p-values in an obvious manner.

A pair of grid points v and u indexed by C is representative for C with
respect to Lp if LC,p(v, u) = Lp(C), or, equivalently, for all v′, u′ ∈ C, (v′, u′) �
(v, u). The identifications of candidate representative grid-point pairs for C often
involve sequences of reductions – successive considerations of two grid-point pairs
and the comparisons of their LC,p-values. Our studies of Lp(H2

k) cover all norm-
parameters p ≥ 1. However, for all reals p ∈ (1, 2), the lack of geometric clarity for
interpreting Lp-values can adversely increase the complexity: (1) of identifying
candidate representative grid-point pairs, and (2) in comparing LH2

k,p-values
for reductions due to the complex interplay of the norm-parameter p-value and
grid-order k-value.

2.1 Reductions of Grid-Point Pairs and Subcurve Pairs

For two grid-point pairs (v1, v2) and (v′
1, v

′
2) (two subcurve pairs C1 × C2 an

C ′
1×C ′

2) of H2
k , the reduction (v1, v2) � (v′

1, v
′
2) (C1×C2 � C ′

1×C ′
2, respectively)

eliminates (v1, v2) (C1 × C2, respectively) from the candidacy for representative
grid-point pairs. We develop various sufficient conditions for reduction with an
example below.

For the grid space [2k]2 of a 2-dimensional Hilbert curve H2
k with a refer-

enced (x, y)-coordinate system (with origin (1, 1)) in a canonical orientation (see
Fig. 1(a) and (b)), we denote the x- and y-coordinates of a grid point v by x(v)
and y(v), respectively.

Lemma 1. For all norm-parameters p ∈ [1, 2] and three arbitrary grid points
u, v, v′ ∈ H2

k such that: (1) the sequence of three grid points: (u, v, v′)
is in indexing order (that is, (H2

k)−1(u) ≤ (H2
k)−1(v) ≤ (H2

k)−1(v′) or
(H2

k)−1(u) ≥ (H2
k)−1(v) ≥ (H2

k)−1(v′)), and (2) the two sequences of
their x- and y-coordinates: (x(u), x(v), x(v′)) and (y(u), y(v), y(v′)) have the
same monotone property (both increasing or both decreasing), if |(H2

k)−1(u) −
(H2

k)−1(v)|(2|x(u) − x(v)||x(v) − x(v′)| + |x(v) − x(v′)|2 + 2|y(u) − y(v)||y(v) −
y(v′)|+|y(v)−y(v′)|2)−|(H2

k)−1(v)−(H2
k)−1(v′)|(|x(u)−x(v)|+|y(u)−y(v)|)2 ≥

0 (> 0), then (u, v) � (u, v′) ((u, v) ≺ (u, v′)) via LH2
k,p(u, v) ≤ LH2

k,p(u, v′)
(LH2

k,p(u, v) < LH2
k,p(u, v′), respectively).

Note that the sufficient condition for the reduction is independent of the p-
value for LH2

k,p.

For reductions of grid-point pairs, we mostly use various p-independence suf-
ficient conditions as the one in Lemma 1. For reductions of subcurve pairs, simple



20 H.K. Dai and H.C. Su

ones are realized by symmetry arguments with regard to relative subcurve-
orientations or succinct geometric interpretations of the LH2

k,p-computation if
possible.

For subcurves in the form of nested subquadrants of H2
k , we may prove the

reduction between subcurve pairs C1 ×C2 � C ′
1 ×C ′

2 with a divide-and-conquer
approach by considering all possible reductions between quadrant-subcurve pairs
Qi1(C1) × Qi2(C2) (for all i1, i2 ∈ [4]) to Qj1(C

′
1) × Qj2(C

′
2) (for some j1, j2 ∈

[4]). Some reductions of quadrant-subcurve pairs may be resolved by simple
symmetry/geometric arguments, while others may entail further reductions of
subquadrant-subcurve pairs. These nested reductions generally arrive at some
forms of recursive patterns, and mathematical induction is applied to resolve the
reductions.

2.2 Identification of Candidate Representative Grid-Point Pairs

The upper-bound argument [5] in establishing the exact formulas for Lp(H2
k)

for p ∈ {1, 2} does not translate into a viable application for p ∈ (1, 2).
For identifying all possible candidate representative grid-point pairs in H2

k ,
we consider all grid-point pairs in Qi(H2

k) × Qj(H2
k) with 1 ≤ i < j ≤ 4

and their possible systematic reductions. Due to a simple reduction (Q1(H2
k) ×

Q4(H2
k) � Q2(H2

k) × Q3(H2
k)) and geometric symmetry (Q2(H2

k) × Q4(H2
k) to

Q1(H2
k) × Q3(H2

k) and Q3(H2
k) × Q4(H2

k) to Q1(H2
k) × Q2(H2

k)), three cases
remain: Q1(H2

k)×Q2(H2
k), Q1(H2

k)×Q3(H2
k), and Q2(H2

k)×Q3(H2
k). An involved

analysis of Q1(H2
k) × Q3(H2

k) reveals that the quadrant-subcurve pair is void of
any candidate representative grid-point pairs.

We summarize the findings below in Theorem 1, in which the sources of (can-
didate) representative grid-point pairs (named A, B, and C) are illustrated in
Fig. 2 and elaborated with (local) (x, y)-coordinates and LH2

k,p-values in Table 1.
For brevity we omit the symmetry ones.

Theorem 1. Consider the following cases determined by the interplay of the
grid-order k ≥ 1 and norm-parameter p ∈ [1, 2] of H2

k :

1. Case when k = 1:
For all p ∈ [1, 2): One representative grid-point pair with coordinates ((1, 1),
(2k, 2k)) and its symmetry.
For p = 2: Three representative grid-point pairs with coordinates
((1, 1), (1, 2k)), ((1, 1), (2k, 2k)), and ((1, 2k), (2k, 2k), and their symmetries.

2. Case when k ∈ {2, 3}:
For all p ∈ [1, 2]: One representative grid-point pair B and its symmetry.

3. Case when k = 4: The p-interval [1, 2] is decomposed into two p-subintervals:
[1, ρ) and (ρ, 2], where ρ ≈ 1.825.
For all p ∈ [1, ρ): One representative grid-point pair B and its symmetry.
For all p ∈ (ρ, 2]: One representative grid-point pair A and its symmetry.
For p = ρ: Two representative grid-point pairs B and A, and their
symmetries.
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4. Case when k ≥ 5: For all p ∈ [1, 2]: 1+(k−2)+(k−4) = 2k−5 candidate rep-
resentative grid-point pairs B,C1,D1, C2, . . . , Ck−5,Dk−5, Ck−4,Dk−4, Ck−3,
Ck−2, and their symmetries.

Refined analysis with further reductions eliminates D1, . . . , Dk−5 and Dk−4,
and their symmetries from the candidacy for representative grid-point pairs.

Theorem 2. For all grid-orders k ≥ 5 and norm-parameters p ∈ [1, 2] of
H2

k , the candidate representative grid-point pairs are B,C1, C2, . . . , Ck−5, Ck−4,
Dk−4, Ck−3, Ck−2, and their symmetries.

For all norm-parameters p ∈ [1, 2], there exists a sufficiently large grid-order
k0 ≥ 5 such that for all grid-orders k ≥ k0 of H2

k , the candidate representa-
tive grid-point pairs are B,C1, C2, . . . , Ck−5, Ck−4, Ck−3, Ck−2, and their sym-
metries.

Our future work will be focused on establishing analytically the association of
representative grid-point pairs in {B,C1, C2, . . . , Ck−5, Ck−4, Ck−3, Ck−2} with
their LH2

k,p-dominance p-subintervals and relevant grid-orders.

3 Empirical Study on Lp(H
2
k) with p ∈ [1, 2]

To complement the analytical results for Lp(H2
k) for all reals p ∈ [1, 2], we con-

duct an empirical study on Lp(H2
k) for all k ∈ {2, 3, . . . , 12} and some reals

p ∈ [1, 2]. We cover the grid space [2k]2 of a 2-dimensional Hilbert curve H2
k in

a canonical orientation with Cartesian coordinates: 2k columns (respectively,
rows) indexed by x-coordinates (respectively, y-coordinates) 1, 2, . . . , 2k. For
every grid-order k ∈ {2, 3, . . . , 12} and real p ∈ [1, 2] with granularity of 0.01
(for 2 ≤ k ≤ 12), we locate with computer programs all representative grid-
point pairs for H2

k with respect to Lp. Figure 2(a) illustrates the three sources
{A,B,C} of candidate representative grid-point pairs for k ≥ 2.

Source A identifies the grid-point pair (uA, vA) = ((1, 1
4 · 2k + 1), (1, 2k))

and its symmetry. The pair (uA, vA) serves as the representative grid-point pair
“briefly” – for k = 4 and 1.83 ≤ p ≤ 2.00.

Source B identifies the grid-point pair (uB , vB) = ((2k−1, 1), (1, 2k)) and its
symmetry. The pair (uB , vB) serves as the representative grid-point pair for every
k ∈ {2, 3, . . . , 12} and all reals p of a (shrinking) prefix-interval [1, ρk) ⊆ [1, 2] –
with ρk decreasing as k increases.

Source C identifies a sequence (C1, C2, . . . , Ck−2) of grid-point pairs:

Ct = (uCt
, vCt

) = ((
1
4

· 2k + 1, 2k−1 + 1), (
3
4

· 2k, 2k−1 + 2k−2−t)),

for t = 1, 2, . . . , k − 2, and their symmetries, with:

x(vCt+1) = x(vCt
) and y(vCt+1) − 2k−1 =

y(vCt
) − 2k−1

2
,
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and eventually vCt
converges to vCk−2 . Note that, for t = 0, the grid-point pair

C0 = (uC0 , vC0) = ((14 · 2k + 1, 2k−1 + 1), ( 34 · 2k, 2k−1 + 2k−2)) is not included in
C since C0 can not be a candidate representative grid-point pair (for any k and
real p ∈ [1, 2]):

LH2
k,p(uB , vB) =

((2k−1 − 1)p + (2k − 1)p)
2
p

22k−2

> LH2
k,p(uC0 , vC0) =

((2k−1 − 1)p + (2k−2 − 1)p)
2
p

1
3 · 22k−3 + 1

3 · 22k−4
.

Empirically, for all k ∈ {5, 6, . . . , 12} and all reals p of the (growing) suffix-
interval (ρk, 2] ⊆ [1, 2], all the representative grid-point pairs form a subsequence
C ′ of C composed of: (1) a prefix of C and (2) (uCk−2 , vCk−2). The suffix-interval
(ρk, 2] is partitioned into disjoint successive p-subintervals, each of which sup-
ports a grid-point pair in the subsequence C ′ as the representative grid-point
pair for H2

k (for all reals p of the subinterval). The length of C ′ (number of all
representative grid-point pairs from the source C) should depend on k in gen-
eral, and on the p-granularity in our empirical setting. Figure 2(b) depicts the
sequence of candidate representative grid-point pairs from the source C.

(a) (b)

..

.

B

A

C0

C1

Ck−2

C0

C1

C2

Ck−2

D0

D1

Fig. 2. Candidate representative grid-point pairs for H2
k with respect to Lp for k ≥ 2:

(a) three sources {A,B,C} of candidate representative grid-point pairs; (b) detailed
view of the source C.

Table 1 tabulates: (1) for eachk ∈ {2, 3, . . . , 12}, thepartitioningp-subintervals
of [1, 2], and the corresponding representative grid-point pair and its source; and
(2) LH2

k,p(u, v) (= Lp(H2
k)) for a representative grid-point pair (u, v) in the three

sources A, B, and C:
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Table 1. Representative grid-point pairs forH2
k with respect to Lp for k ∈ {2, 3, . . . , 12}

and p ∈ [1.00, 2.00] with granularity of 0.01

representative grid-point pair
k p (x, y)-coordinates coordinates in terms of k source

2 [1.00, 2.00] ((2, 1), (1, 4)) ((2k−1, 1), (1, 2k)) B

3 [1.00, 2.00] ((4, 1), (1, 8)) ((2k−1, 1), (1, 2k)) B

4 [1.00, 1.82] ((8, 1), (1, 16)) ((2k−1, 1), (1, 2k)) B

[1.83, 2.00] ((1, 5), (1, 16)) ((1, 1
4 · 2k + 1), (1, 2k)) A

5 [1.00, 1.61] ((16, 1), (1, 32)) ((2k−1, 1), (1, 2k)) B

[1.62, 2.00] ((9, 17), (24, 17)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 1)) C3

6 [1.00, 1.51] ((32, 1), (1, 64)) ((2k−1, 1), (1, 2k)) B

[1.52, 1.55] ((17, 33), (48, 40)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−3)) C1

[1.56, 1.60] ((17, 33), (48, 36)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−4)) C2

[1.61, 2.00] ((17, 33), (48, 33)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 1)) C4

7 [1.00, 1.41] ((64, 1), (1, 128)) ((2k−1, 1), (1, 2k)) B

[1.42, 1.57] ((33, 65), (96, 80)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−3)) C1

[1.58, 1.66] ((33, 65), (96, 72)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−4)) C2

[1.67, 1.67] ((33, 65), (96, 68)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−5)) C3

[1.68, 2.00] ((33, 65), (96, 65)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 1)) C5

8 [1.00, 1.36] ((128, 1), (1, 256)) ((2k−1, 1), (1, 2k)) B

[1.37, 1.57] ((65, 129), (192, 160)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−3)) C1

[1.58, 1.68] ((65, 129), (192, 144)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−4)) C2

[1.69, 1.72] ((65, 129), (192, 136)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−5)) C3

[1.73, 2.00] ((65, 129), (192, 129)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 1)) C6

9 [1.00, 1.33] ((256, 1), (1, 512)) ((2k−1, 1), (1, 2k)) B

[1.34, 1.58] ((129, 257), (384, 320)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−3)) C1

[1.59, 1.69] ((129, 257), (384, 288)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−4)) C2

[1.70, 1.75] ((129, 257), (384, 272)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−5)) C3

[1.76, 1.77] ((129, 257), (384, 264)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−6)) C4

[1.78, 2.00] ((129, 257), (384, 257) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 1)) C7

10 [1.00, 1.32] ((512, 1), (1, 1024)) ((2k−1, 1), (1, 2k)) B

[1.33, 1.58] ((257, 513), (768, 640)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−3)) C1

[1.59, 1.70] ((257, 513), (768, 576)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−4)) C2

[1.71, 1.76] ((257, 513), (768, 544)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−5)) C3

[1.77, 1.79] ((257, 513), (768, 528)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−6)) C4

[1.80, 1.80] ((257, 513), (768, 520)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−7)) C5

[1.81, 2.00] ((257, 513), (768, 513)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 1)) C8

11 [1.00, 1.31] ((1024, 1), (1, 2048)) ((2k−1, 1), (1, 2k)) B

[1.32, 1.58] ((513, 1025), (1536, 1280)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−3)) C1

[1.59, 1.70] ((513, 1025), (1536, 1152)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−4)) C2

[1.71, 1.76] ((513, 1025), (1536, 1088)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−5)) C3

[1.77, 1.80] ((513, 1025), (1536, 1056)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−6)) C4

[1.81, 1.82] ((513, 1025), (1536, 1040)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−7)) C5

[1.83, 2.00] ((513, 1025), (1536, 1025)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 1)) C9

12 [1.00, 1.31] ((2048, 1), (1, 4096)) ((2k−1, 1), (1, 2k)) B

[1.32, 1.58] ((1025, 2049), (3072, 2560)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−3)) C1

[1.59, 1.70] ((1025, 2049), (3072, 2304)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−4)) C2

[1.71, 1.77] ((1025, 2049), (3072, 2176)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−5)) C3

[1.78, 1.81] ((1025, 2049), (3072, 2112)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−6)) C4

[1.82, 1.83] ((1025, 2049), (3072, 2080)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−7)) C5

[1.84, 1.84] ((1025, 2049), (3072, 2064)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 2k−8)) C6

[1.85, 2.00] ((1025, 2049), (3072, 2049)) (( 1
4 · 2k + 1, 2k−1 + 1), ( 3

4 · 2k, 2k−1 + 1)) C10
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LH2
k,p(u, v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3·2k−2−1)2

5
3 ·22k−4+ 1

3
if (u, v) is in A

((2k−1−1)p+(2k−1)p)
2
p

22k−2 if (u, v) is in B

((2k−1−1)p+(2k−2−t−1)p)
2
p

1
3 ·22k−3+ 1

3 ·22k−4−2t if (u, v) = (uCt
, vCt

) in C,
where t = 1, 2, . . . , k − 2.

Figure 3(a) and (b) show the graphs, using the mathematical software Maple,
of the locality measure LH2

k,p(u, v) for k = 4 and 12, respectively, for all reals
p ∈ [1, 2] and all (u, v) in the three sources A, B, and C. Our future work will
involve determining, for each k, the dominant functions/measures over successive
subintervals of [1, 2], whose piece-wise combination yields the (overall) locality
measure Lp(H2

k) for all reals p ∈ [1, 2].

(a) (b)

Fig. 3. Locality measures corresponding to the grid-point pairs in: (a) A, B, and C =
{C2} for k = 4 and p-granularity of 0.01; (b) B and C = {Ct | 1 ≤ t ≤ k − 2} for
k = 12 and p-granularity of 0.01. (Color figure online)

For the extreme case of k = 4 with p-granularity of 0.01, two representa-
tive grid-point pairs emerge from the sources B and A over the partitioning
subintervals [1.00, 1.82] and [1.83, 2.00], respectively.

For a more general case of k = 12 with p-granularity of 0.01, the representa-
tive grid-point pairs are from the sources B and C over the partitioning subin-
tervals [1.00, 1.31] and [1.32, 2.00], respectively. Observe that the subsequence C ′

of all representative grid-point pairs (from the source C = {Ct | 1 ≤ t ≤ 10}) is
{C1, C2, C3, C4, C5, C6, C10}.

4 Conclusion

Our analytical study of the locality properties of the Hilbert curve family, {H2
k |

k = 1, 2, . . .}, is based on the locality measure Lp, which is the maximum ratio
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of dp(u, v)m to dp(ũ, ṽ) over all corresponding point-pairs (u, v) and (ũ, ṽ) in the
m-dimensional grid space and index space, respectively. Our analytical results
identify all the candidate representative grid-point pairs of H2

k from the three
sources A, B, and C (which realize Lp(H2

k)-values) for all norm-parameters p ∈
[1, 2] and grid-orders k, which enable us to have almost complete knowledge
of Lp(H2

k) for all p ≥ 1 – except for the relation between the candidate grid-
point pairs and their dominance p-subintervals. For all real norm-parameters p ∈
[1, 2] with sufficiently small granularity and grid-orders k ∈ {2, 3, . . . , 12}, our
empirical study reveals the three major sources (A, B, and C) of representative
grid-point pairs (v, u) that give LH2

k,p(v, u) = Lp(H2
k). The results also suggest

that all the representative grid-point pairs of B and C are from B and C ′, which
is a prefix-subsequence of C together with Ck−2 for some sufficiently large grid-
orders k ∈ {5, 6, . . . , 12}. The study has shed some light on a continuing study of
determining the interplay pattern between the norm-parameter p and grid-order
k for emerging representative grid-point pairs.
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