Chapter 2
Overview of Propensity Score Methods

Hua He, Jun Hu, and Jiang He

Abstract The propensity score methods are widely used to adjust confounding
effects in observational studies when comparing treatment effects. The propensity
score is defined as the probability of treatment assignment conditioning on some
observed baseline characteristics and it provides a balanced score for the treatment
conditions as conditioning on the propensity score, the treatment groups are
comparable in terms of the baseline covariates. In this chapter, we will first
provide an overview of the propensity score and the underlying assumptions for
using propensity score, we will then discuss four methods based on propensity
score: matching on the propensity score, stratification on the propensity score,
inverse probability of treatment weighting using the propensity score, and covariate
adjustment using the propensity score, as well as the differences among the four
methods.

1 Introduction

Since treatment selection is often influenced by subject characteristics, selection
bias is one of the major issues when we assess the treatment effect. This is especially
the case for observational studies. Most cutting-edge topics in statistical research in
causal inferences attempt to address this key issue of selection bias. Variables that
cause selection bias are called confounding variables, confounders, or covariates,
etc. When there are confounders, treatment effects cannot be simply assessed
as the observed group differences. The issue can be better illustrated under the
counterfactual outcome framework for causal inference.
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Suppose we are interested in the effect of a new treatment on an outcome, say
blood pressure, measured in a continuous scale. Suppose there are two groups of
patients, one receives the new treatment, and the other receives control such as
treatment as usual (TAU) or placebo. We are interested in assessing the treatment
effects. When there are no selection bias, i.e., if the two groups are similar before
the treatment, we can simply compare the observed outcomes, the blood pressures,
between the two groups of patients taking the two treatments. However, bias
inference may be resulted if there are selection bias, i.e., if the two groups receiving
the two treatments are very different.

Under the counterfactual outcome framework, we assume that for each subject,
there are two potential outcomes, one for each treatment, had the subject taken
the treatment. The treatment effect is defined for each subject based on his/her
differential responses to different treatments. This definition of treatment effect is
free of any confounder, because all the characteristics of the same patient are the
same for the two potential outcomes. However, since each subject can only take one
of the two treatments, only one of them is observed and the other is missing.

More precisely, let y;; denote the potential outcome for the ith subject under
the jth treatment, j = 1 for new treatment and j = 2 for control. We can observe
only one of the two outcomes, y; or y;», depending on the treatment received by
the patient. The difference between y;; and y;» can be attributed to the differential
effect of the treatment, since there is absolutely no other confounder in this case.
However, as one of y;; and y;, is always unobserved, standard statistical methods
cannot be applied, but methods for missing data can be used to facilitate inference.

Under this paradigm of counterfactual outcomes, the mean response
E (yi1 —yi2), albeit unobserved, represents the effect of treatment for the
population. Let z; be an indicator for the first treatment, then y; ; (y;2) is observable
only if z; = 1(2). Under simple randomization, the assignment of treatment is
random and free of any selection bias, that is

E(yij)=E@ijlz=j, 1<i<n 2.1)

This shows that missing values in the counterfactual outcomes y;; are missing
completely at random (MCAR) and can thus be completely ignored. It follows
that £ (y,- J) can be estimated based on the observed component of each subject’s
counterfactual outcomes corresponding to the assigned treatment. It is for this
reason that simple randomized controlled trials (RCTs) are generally considered as
the gold standard approach in making causal conclusions on the treatment effects.

However, simple randomization may not always be feasible. In clinical trials, it
may be preferable to adopt other randomization procedures because of cost, ethnic,
and scientific reasons. For example, in some studies we often need to oversample
underrepresented subjects to achieve required accuracy of estimations. In such
cases, it is important to deal with the treatment selection bias and the propensity
score is a very powerful tool for this task.



2 Overview of Propensity Score Methods 31
2 Definition of Propensity Score

To address the selection bias raised in the above more complex randomization
schemes or non-randomized observational studies, assume that the treatment assign-
ments are based on X;, a vector of covariates, which is always observed. In such
cases, the missing mechanism for the unobserved outcome no longer follows
MCAR, but rather follows missing at random (MAR) as defined by

irsyi2) Lz | xi (2.2)

Although unconditionally non-randomized , the assignment is randomized given the
covariates X;, thus

EQii|x)—EQi2 |x)=EQi1|lz=1x)—EQi2|z=2,%).

So, within each pattern of the covariate x;, the treatment effect can be estimates
simply by those subjects receiving the two treatments.

Within the context of causal inference, the MAR condition in (2.2) is known
as the strongly ignorable treatment assignment assumption [38]. Although the
treatment assignments for the whole study do not follow simple randomization,
the ones within each of the strata defined by the distinct values of x; do. Thus,
if there is a sufficient number of subjects within each of the strata defined by
the unique values of x;, then E (y;; | X;) and E (y;2 | X;) can be estimated by the
corresponding sample means within each strata. The overall treatment effect can
then be estimated by a weighted average of these means, the weights are assigned
based on the distribution of x;. The approach may not result in reliable estimates or
simply may not work if some groups have a small or even 0 number of subjects for
one or both treatment conditions. This can occur if the overall sample size is relative
small, and/or the number of distinct values of x; is large such as when x; contains
continuous components and/or X; has a high dimension. However, the propensity
score can help facilitate the dimension reduction.

The propensity score (PS) is defined as

e(x;)) =Pr(z; = 1| x;), (2.3)

the probability of treatment assignment conditioning on the observed covariate X;
[38]. For simple randomized clinical trials, this will be a constant (and usually
0.5 if subjects are equally allotted to the two groups). However, for observational
studies, subjects often make their decisions based on their own perspective of their
conditions (characteristics).

Conditioning on any given propensity score, the counterfactual outcomes are
independent of the treatment assignment, i.e., for any e € (0, 1),

E(yixlzi=1l,e,=e) =E(ix|ei=¢), k=12. (2.4)
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This follows directly from (2.2), using the iterated conditional expectation argument
(see [37-39)).

From (2.4), the treatment effect for subjects with a given propensity score can
be estimated by the subjects actually receiving the two treatments. Thus, using the
propensity score we can reduce the dimension of the covariates from dim(x;) to 1.
However, if there are continuous covariates, and hence e is also continuous, (2.4)
is still not directly applicable. Methods of propensity score matching, stratification,
weighting, and covariate adjustment have been developed to facilitate the causal
inference using propensity scores [15, 38, 39, 43].

3 Causal Inference Based on Propensity Scores

The equation in (2.4) is fundamental to the application of propensity scores. It
implies that for a given propensity score, the two treatments are directly comparable.
A straightforward application would be comparing the two treatment for each given
propensity score and then combining the treatment effect across all the propensity
scores. First, the comparison can be performed by matching subjects in the two
treatment groups by the propensity scores. This is the propensity score matching
method. Instead of individual level matching, we can divide the data into subgroups
according to the propensity scores, with subjects in the same subgroup having
similar propensity scores, thus according to (2.4) the treatment effect for each
subgroup can be estimated. This is the idea of propensity score stratification [39].
Since the propensity score is the probability of being selected for the treatment,
another approach is using the inverse probability weighting method. Finally, we can
treat propensity score as a covariate in regression models to control for the selection
bias.

In the following we will discuss these four approaches in details, based on the
assumption that the propensity score is available either by design as in some clinical
trials or estimated based on some models. When the propensity scores need to be
estimated, logistic regression models can be applied to model the binary treatment
assignment z;. Probit and Complementary log-log models can also be applied. The
independent variables in the logistic regression models should include variables that
are associated with the treatment assignment and the outcome.

3.1 Propensity Score Matching

In observational studies, it is not uncommon that there are only a limited number
of subjects in the treatment group, but a much larger number of subjects in the
control group. An example is that physicians have data available from hospital
records for patients treated for a disease, but there is no data for subjects who don’t
have the disease (control). In such cases, they often seek large survey data to find
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controls. For example, in the study of metabolic syndrome among patients receiving
clozapine by Lamberti et al. [25], they treated 93 outpatients with schizophrenia and
schizoaffective disorder with clozapine. For treatment comparison purpose, they
obtained a control group with more than 2700 subjects by matching the subjects
in the treatment group from the National Health and Nutrition Examination Survey.

When there is a very large pool of control subjects to match, we can match
each subject in the treatment group with all the key covariates. However, if the
pool of control subjects is not so large and/or there are many control covariates,
then the propensity score matching approach will be a useful tool because of the
reduced dimensionality. The matching can be performed with 1:1 matching or more
generally 1:n matching.

Different matching methods have been proposed. First, we can simply match the
subjects based on the (estimated) propensity scores. When there are continuous or
high dimensional covariates, we may not always be able to find subjects with the
exact same propensity score to match. In this case, we can match the subject with
the closest propensity score. It is recommended to select the subjects based on the
logit scale (logit of the propensity score), rather than the propensity score itself. This
approach is simple and easy to implement, however, it may be important to control
(match) some key covariates as well. A Mahalanobis metric matching is to select
the control subject with the minimum distance based on the Mahalanobis metric of
some key covariates and the logit of propensity scores. For subjects with u for the
key covariates and v for the logit of the propensity score, the Mahalanobis distance
is defined as

dij = (u— v) ' C N u—v),

where C is the sample covariance matrix of these variables for the full set of control
subjects.

To give the propensity score a higher priority, one may combine the two matching
methods. We can first select a subgroup of the control subjects based on the logit of
propensity scores (caliper), and then select the control subjects from this subgroup
based on the Mahalanobis metric. This approach is in general preferred over the
above two methods [5, 11, 38, 40, 41].

Based on the selection criteria, the propensity score matching approach can be
processed as follows. For the first subject in the treatment group, select the control
subject(s). Remove them to a new data set, and repeat the process for the second
subject, etc., until all the subjects in the treatment group are removed to the new
data set. Ultimately, we have a new data set with matched subjects with treatment
and control conditions. In these procedures, once a control is selected, it cannot
be selected again to match another treated subject. This is called greedy algorithm.
If the pool of control subjects is not big, one can consider reusing the matched
control subjects, i.e., by putting the matched subjects back for matching again.

We may check that covariates are balanced across treatment and control groups,
and then analysis can be performed based on new sample [2]. Note that the sample
does not satisfy the common i.i.d assumption anymore because of the matching,
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hence common methods for cross-sectional data do not apply. Paired 7-test may be
applied for simple group comparison if the matching is 1 to 1. As for 1 to n matching,
methods for dependent outcomes such as generalized estimating equations can
be applied to assess the treatment effects, which has already been adjusted for
covariates.

The propensity score matching approach is not only very popular in practice, but
also an active methodological research topic. Applications of the propensity score
matching for different scenarios, variations of the matching procedures, and new
methods of inferences have been proposed, see, for example, [1-3, 5, 6, 9, 10, 12,
21, 27-29, 33, 48].

One disadvantage of the propensity matching approach is that subjects may not
be able to find a matched subject in the control group. For example, if the treatment
and control groups have comparable sample size, it will be very likely that there
will be more subjects with high propensity scores in the treatment group than in
the control group. Similarly, there will be more subjects with low propensity scores
in the control group than in the treatment group. This will result in more difficulty
in matching, i.e., more subjects without matched subjects. This not only suffers
information loss, but also raises the question of what the matched sample represents,
and hence may introduce another source of selection bias. Thus, the propensity score
matching method is preferred when the control group is large so that there is no
problem for every subject in the treatment group to find a matching subject.

3.2 Propensity Score Stratification

When the control group is much larger than the treatment group, the propensity
score matching approach usually only selects a small portion of subjects in the
control group, although there may be more subjects with good matching in the
propensity score and key covariates available. In this case, the propensity score
matching approach suffers low power. To make use of all the subjects in the control
group, another common approach called stratification or subclassification can be
applied. Instead of matching each individual, the propensity score stratification
approach divides subjects into subgroups according to the propensity scores. More
precisely, let 0 = ¢y < ¢ < ¢ < ... < ¢, = 1, then we can separate the sample
into m groups, where the kth group consists of subjects with propensity scores
falling within I; = (cx—1, ¢x]. Under the regularity assumption that the treatments
effect is a continuous function of the propensity scores, i.e., E (yi1 —yi2 | & =€)
is continuous in e, which means that subjects with comparable propensity scores
should show similar treatments effect, i.e.,

E(y[J|€i€Ik) %E(yiJ|zi=j,ei€Ik),fork= 1,2,...,m,j= 1,2
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Hence, within each subgroup, we can estimate the treatment effects for each
treatment condition by the observed outcomes for that subgroup, i.e.,

E . Vil E . Yi2
irej€ly,zi=1 = iiej€ly,zi=2""
———————  E@iz | € f) = ——————,
Nkl 17%)

/E\(Yi,l |eie ) =

where ny; and ny, are the number of subjects in the kth subgroup for the treatment
and control group, respectively. So the treatment effect for the kth subgroup can be
estimated by

EQiilei€l)—E®yia|e€h).

Based on the estimated treatment effect for each subgroup, we can estimate the
treatment effects for the whole sample. Note that the overall treatment effects for
the whole sample can be expressed as

/ [E(vi1 | ei=e)—E(yi2 | e = e)]f(e)de, (2.5)

where f(e) is the density function of the propensity score e. If E (y;1 | e; = e) is
approximately a constant over (cx—1, ¢x], then

/ k E(yij | e: =€) f(e)de = [E (yij | ei € Ik)]/ k f(e)de

k—1

= [E (yiJ | e € Ik)] Pr(e,- € [k)-

Thus, approximately, the overall treatment effect is

Z [E (y“ | e; € Ik) — EO’:’,Z | e; € Ik)] Pr(e,- € Ik),

k=1

which is a weighted average of the treatment effects across the subgroups. Pr(e € I;)
can be estimated by the sample proportion

Pr(e e 1) = ML T M2
n

where n is the total sample size.

This approach can be viewed as a numeric estimate of the overall treatment
effect (2.5). Since the over treatment effect is an integral over the propensity score e;,
which is a scalar-valued function of x; regardless of the dimensionality and density
of the range of x;, we can estimate the integral (2.5) as a Riemann sum.

Under the propensity score stratification approach, we need to decide the cut
points for the classification. In general, we can divide the subjects into comparable
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subgroups, i.e., based on the quantiles of the estimated propensity scores for the
combined groups. In general, 5-10 groups is sufficient, and simulation studies show
that such a partition seems to be sufficient to remove 90 % of the bias [39]. In the
case where the treatment group is small, such a division may result in subgroups
with few subject to the treatment and hence produce instable inference. In such
cases, one may also choose the cut points based on the quantiles of the estimated
propensity scores based on the treatments group only in order to obtain subgroups
with comparable number of the subjects receiving the treatment [42, 44].

3.3 Propensity Score Weighting

Instead of comparing the treatment and control groups at each propensity score
or a small interval of propensity scores, we can also correct the selection bias
by the propensity score weighting approach. Note that the propensity score is
the probability of a subject being assigned to a treatment group, thus, a subject
in a treatment group with propensity score ¢ = 0.1 would be thought of as a
representative of a total é = 10 subjects with similar characteristics, hence in the
analysis we would assign a weight of % = 10 to that subject when estimate the
treatment effect. Similarly, since a subject in control group with propensity score
e = 0.1 has a probability of 1 — e = 0.9 being assigned to the control group, it also
would be thought of as a representative of a total IL_e = 1.1 subjects in the control
group with similar characteristic, hence in the analysis we would assign a weight
of ﬁ = 1.1 to the subject in estimating the treatment effect. This is the inverse
probability weighting (IPW) approach, which has a long history in the analysis of
sample survey data [22].
The mathematical justification of the propensity score weighting is the fact that

; 1—z
E (gy,-,l) = E(y;2) and E(l Z‘yi.Z) =E@i1). (2.6)

This weighting approach can also be applied to regression analysis. For example,
suppose that there is no interaction between the treatment and the covariates, so we
can assume that

Yij = az; =+ IBX,’, J =1,2. 2.7)

The two regression models for the potential outcomes y;; (2.7) can be expressed in
one model of the observed outcome y;,

yi = az + Bx;, (2.8)
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with Welght for z; = 1 and = for z; = 0. To justify this, one can easily check
that the followmg estimating equatlon (EE):

% > ;Var()’i | xi) i — (ozi + Bx))] = 0 29)
i=1""

is unbiased. To account for the variation associated with estimating the propensity
score, we can combine this EE in (2.9) with estimating equations for the propensity
score. Note that even when e; is known, the estimated propensity score is often
preferred over the true e; because it may fit the observed data better [20].

For the propensity score weighting approach, to provide valid inference, we need
0 < ¢ < 1, so that each subject has a positive probability to be assigned to
both treatment and control groups. In other words, the subgroups must have their
representatives observed in both groups. For subjects in the treatment group with
extremely small e;s, the inverses of such e; can become quite large, yielding very
highly volatiled estimates. Similarly, subjects in the control group with extremely
large e;s (close to 1), the weights can also become quite large and cause the estimates
to be highly volatile. So, to ensure good behaviors of estimates, we need to assume

€i>C>0, ifZl'Zl and €i<1—6‘, ifZiZO,

where ¢ is some positive constant. This assumption is similar to the bounded away
from O assumption for regular inverse probability weight approaches for missing
values.

To reduce bias and improve the stability of the propensity score weighting
approach, some modified propensity score methods including the double robust
estimator have been developed and discussed, see [7, 13, 16, 17, 24, 26, 27, 30,
38, 45, 47].

3.4 Propensity Score Covariate Adjustment

Propensity scores can also be used as a covariate in regression models to adjust
the selection bias [11, 38, 43]. Based on (2.4), treatment effect is a function of
the propensity score. Thus, without any further assumption, we can apply the non-
parametric regression model

E(yj|e) =EQ; |z =j.e) =fie), (2.10)

to assess the causal effect. Without any further assumption, we can apply nonpara-
metric curve regression methods such as local polynomial regressions to the two
groups separately to estimate the two curves [8, 14]. Treatment effect may then be
assessed by comparing these two estimated curves.



38 H. He et al.

If we assume that the treatment effect is homogeneous across all the propensity
scores, then fi(e) — f>(e) is a constant, and o = fj(e) — f>(e) is the treatment effect.
Then (2.10) can be written compactly as

E(y; | e) = azi + f(e), (2.11)
where « is the treatment effect. If the function f(e) is further linear in e, then
E(yj | e) = az; + Be. (2.12)

Conditioning on the propensity score, since the mean of the potential outcome
equals to the mean of the observed outcome, the two regression equations in (2.12)
for the two groups can be written in a regular regression model

E(y) = az; + Be, (2.13)

and again the parameter « carries the information for treatment effect.

In the arguments above, the assumption of homogeneous treatment effects (2.11)
is important to provide valid inference. It has been proved that under the homoge-
neous treatment effect, the regression model (2.13) will provide robust inference
about the treatment effect, even when the parametric assumption, i.e., the function
form for f(e) in (2.11) is not correctly specified [11, 36]. One may check the
homogeneity assumption (2.11) by testing if the interaction between the treatment
and propensity score is significant. Using the propensity score stratification, we can
also compare the estimated treatment effect across the groups, and test if they are
the same.

Note that this propensity score covariate regression adjustment is similar to the
regular covariate adjustment in regression analysis. In fact, Rosenbaum and Rubin
showed the point estimate of the treatment effect is the same if the same x; is used
in the estimation of the propensity score and the treatment effect and the propensity
score is a linear function of x; (this can only be approximately true since logistic
functions are not linear). The two-step procedure of propensity score covariate
adjustment has the advantage that one can apply a very complicated propensity score
model without worrying about the problem of over-parameterizing the model [11].

The covariate adjustment is commonly used in practice, and the methods are
generalized for different scenarios [23, 46]. However, the covariance adjustment
should be performed with caution [11, 19]. Standard linear regression models are
based on the homoscedasticity, so it may be a problem if the variance in the
treatment and control groups is very different. The above arguments are based
on linear model for continuous outcomes, their application to nonlinear cases
is questionable. For example, for nonlinear regression models such as logistic
regression models, Austin et al. found there are considerable bias associated with
treatment effect estimate if the propensity score is used as a covariate for the
adjustment [4]. Even for linear models, Hade and Lu also investigated the size of
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the bias and recommended adjusting for the propensity score through stratification
or matching followed by regression or using splines [19].

4 Example: The Genetic Epidemiology Network of Salt
Sensitivity (GenSalt) Study

We use the baseline information of the Genetic Epidemiology Network of Salt
Sensitivity (GenSalt) Study as an example to illustrate the methods. The objective
of the GenSalt Study is to localize and identify genes related to blood pressure
responses to dietary sodium and potassium intervention [18]. For each of the
3,153 participants recruited for GenSalt Study a standardized questionnaire was
administered by trained staff at the baseline examination to obtain information about
demographic characteristics such as age, gender, marital status, education level,
employment status and baseline BMI, personal and family medical history such
as history of hypertension, and lifestyle risk factors (including cigarette smoking,
alcohol consumption, and physical activity level). More detailed information can be
found in [18, 35]. In the example, we are interested in the effect of sport activity on
blood pressure outcome at baseline.

Outcomes The primary outcome is the blood pressure (BP). In the study, there are
three measures about the blood pressure, systolic BP (SBP), diastolic BP (DBP), and
the mean arterial pressure (MAP) which is defined as a summation of one third of
SBP and two thirds of DBP (1/3*SBP+2/3*DBP). We use MAP in this example as it
involves both SBP and DBP. The baseline BP was measured every morning during
the 3-day baseline observation period by trained and certified individuals using a
random-zeroi sphygmomanometer according to a standard protocol adapted from
procedures recommended by the American Heart Association [34]. When BP was
measured, participants were in the sitting position after they had rested for 5 min.
Participants were advised to avoid consumption of alcohol, coffee, or tea, cigarette
smoking, and exercise for at least 30 min before their BP measurements.

Treatment Conditions The Paffenbarger Physical Activity Questionnaire was
adapted for the measurement of physical activity level [31]. Data was collected
on the number of hours spent in vigorous and moderate activity on a usual
day during the previous 12 months for weekdays and weekends separately to
account for anticipated daily variability in energy expenditure. Examples provided
for vigorous activity included shoveling, digging, heavy farming, jogging, brisk
walking, heavy carpentry, and bicycling on hills, and examples of moderate activity
included housework, regular walking, yard work, light carpentry, and bicycling
on level ground. The physical activity score was dichotomized into more activity
and less activity using a cut point of 51.1 based on the 50 % sample quantile.
Participants with at least 51.1 in their physical activity score were considered as
receiving physical activity treatment and thus consist of the treatment group while
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the participants with physical activity score less than 51.1 were considered as
control. We expect that participants in the treatment group would have a lower blood
pressure than participants in the control group.

Covariates In addition to the demographic information such as age, gender, marital
status, education level, employment status, baseline BMI, smoking and drinking
status, we also considered personal medical history such as stroke, hypertension,
and high cholesterol and blood chemistry results such as glucose, creatinine, total
cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides. All the covariates
were compared between the treatment and control groups by chi-square tests
for categorical variables and Wilcoxon Rank-sum tests for continuous variables.
Most of the variables are significantly different between the two groups. We also
compared the BP difference between the two groups, the sample difference is
4.16 mm Hg in MAP with the control group having higher MAP.

Next, we will apply propensity score methods to examine the effects of physical
activity on BP.

4.1 Estimating the Propensity Score

All covariates above that were identified as potential confounder were included in
the selection model to estimate the propensity scores. A forward model selection
was applied to select potential interactions. The selected final model for estimating
the propensity score is summarized in Table 2.1.

The Hosmer and Lemeshow goodness-of-fit test was performed to check if the
model fits the data well. The p-value for the Hosmer and Lemeshow test is 0.4632,
indicating that the model to estimate the propensity scores fits the data pretty well.

4.2 Propensity Score Matching

Based on the estimated propensity scores, we can match the subjects in the treatment
group with subjects in the control group. In this example, we match subjects with
more activity with subjects with less activity. We use the SAS macro function
provided in [32] to obtain 818 pairs of matched subjects. We checked the balance
of the matched groups in terms of covariates, and the propensity score matching
succeeded in reducing the selection bias between the two groups. Summarized in
Table 2.2 are the p-values of comparisons of covariates between the two groups
mentioned above, before and after the matching.

While most of variables showed significant difference before the propensity score
matching, there was no significant difference at all in the matched sample.

Paired r-test was then applied to assess the physical activity on the blood pressure
based on the matched sample. After adjusting for the confounders, the treatment
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Table 2.1 Parameter estimations of the propensity score model

Parameter DF |Estimate | Standard error | Wald x> | Pr> x>

Intercept 1 —2.0373 | 1.6769 1.4761 | 0.2244
Age 1 0.0477 0.0174 7.5367 | 0.0060
BMI 1 —0.0684 |0.0310 4.8653 | 0.0274
Gender 1 1 —0.5493 | 0.2421 5.1474 | 0.0233
High education 0 1 —1.9179 |0.2766 48.0890 | <.0001
Field center 1 1 —0.3707 | 0.4453 0.6929 | 0.4052
Field center 2 1 —0.6963 | 0.3666 3.6073 | 0.0575
Marital 0 1 2.9975 | 0.6468 21.4801 | <.0001
Employment 1 1 1.0841 | 1.0879 0.9931 | 0.3190
Employment 2 1 —1.7077 | 2.1545 0.6283 | 0.4280
Drinking 0 1 0.9670 | 0.3802 6.4677 | 0.0110
High cholesterol 0 1 —0.4714 |0.1629 8.3748 | 0.0038
Stroke 0 1 —0.9449 | 0.2406 15.4205 | <.0001
Creatinine 1 0.0231 | 0.00641 13.0451 0.0003
GFR 1 0.0138 | 0.00483 8.1560 | 0.0043
HDL cholesterol 1 —0.0240 | 0.00465 26.5825 | <.0001
LDL cholesterol 1 0.00677 | 0.00184 13.5709 | 0.0002
Age*gender 1 1 0.00772 | 0.00292 6.9849 | 0.0082
Age*high education 0 1 0.0289 | 0.00392 54.1961 | <.0001
BMI*drinking 0 1 —0.0366 |0.0158 5.3762 | 0.0204
Drinking*gender 0 |1 |1 —0.1678 | 0.0851 3.8930 | 0.0485
High cholesterol*gender |0 |1 |1 —0.3899 0.1613 5.8402 | 0.0157
Creatinine*field center 1 1 —0.00654 | 0.00406 2.5877 | 0.1077
Creatinine*field center 2 1 0.0112 | 0.00356 9.9319 | 0.0016
GFR*High Education 0 1 0.00471 | 0.00196 5.7722 | 0.0163
Age*marital 0 1 —0.0160 | 0.00469 11.7031 | 0.0006
BMI*marital 0 1 —0.0840 | 0.0290 8.3982 | 0.0038
Field center*marital 1 |0 |1 —0.2416 | 0.1438 2.8224 | 0.0930
Field center*marital 2 10 |1 0.3918 |0.1259 9.6792 | 0.0019
Age*employment 1 1 —0.0324 |0.0172 3.5625 | 0.0591
Age*employment 2 1 0.0437 1 0.0338 1.6680 | 0.1965
Field center*employment |1 |1 |1 —0.1481 | 0.2314 0.4098 | 0.5221
Field center*employment |1 |2 |1 —0.2715 ]0.4233 0.4114 | 0.5213
Field center*employment |2 |1 |1 0.5910 |0.1862 10.0806 | 0.0015
Field center*employment |2 |2 |1 0.0311 | 0.3466 0.0081 | 0.9285

group that has more physical activity has 1.6598 mm Hg lower in MAP than the
control group with less activity. The standard error is 0.5994, and the corresponding
p-value for the treatment effect is 0.0058. The adjusted effect is smaller than the
unadjusted effect 4.16 mm Hg.
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Table 2('2 Group Variable Before PS matching | After PS matching

comparisons pre and post

propensity score matching Age <0001 0.4485
BMI 0.3598 0.9901
Gender <.0001 0.9605
High education | <.0001 0.6923
Field center <.0001 0.4893
Marital <.0001 0.4355
Employment <.0001 0.3460
Drinking <.0001 0.9096
High cholesterol | <.0001 1.0000
Hypertension <.0001 1.0000
Stroke <.0001 0.7622
Creatinine 0.3870 0.9054
GFR <.0001 0.7215
HDL cholesterol | 0.0016 0.6370
LDL cholesterol | <.0001 0.3858

Table 2.3 Estimates of treatment effect for each subgroup

Less activity More activity Mean
Sample Sample

Group | size Mean SD size Mean SD Difference

1 106 88.0712788 | 11.2485418 | 503 88.857227 9.8108938 | —0.7859482

185 91.555956 | 11.7847044 | 424 88.0452481 | 10.8572098 | 3.5107079
255 89.8928105 | 11.9811255 | 354 90.0043942 | 11.9086026 | —0.1115837
403 91.8189505 | 14.1950911 | 206 88.9489392 | 13.4397874 | 2.8700113
547 96.8985036 | 14.8599617 | 62 89.9868578 | 12.0791987 | 6.9116458

N B W N

4.3 Propensity Score Stratification

In the above propensity score matching approach, only a little bit more than half
of the subjects were matched. Unmatched subjects were used in the estimation of
the propensity score, but their information were otherwise ignored in assessing the
treatment effect. To utilize all the information, we then use the propensity score
stratification approach to estimate the treatment effect. We divide the whole sample
into 5 subgroups according to the propensity scores. The propensity scores range
from 0.0260582 to 0.2436369, 0.2437835 to 0.3666789, 0.3668133 to 0.5341626,
0.5342977 to 0.7668451 and 0.7670692 to 0.9999613 for the five subgroups,
respectively. Summarized in Table 2.3 are the sample size for each subgroup for
the two treatment groups, their mean/sd in blood pressures, as well as the mean
difference between the two groups.

Included in the last column are the difference in the means of the blood pressure.
These were the estimates of the treatment effects for the subgroups. It is clear that the
treatment effects are not homogeneous across the different propensity score levels.
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In groups 2, 4, and especially 5, there were benefits of physical activity, but no
benefits for the physical activity were shown in groups 1 and 3.

The overall treatment effect estimated by the weighted average of the subgroup
difference was 2.48. The higher activity group had 2.48 mm Hg lower than the less
activity group in MAP. The p-value for testing the null hypothesis of no difference
was 0.0001, indicating the difference was significant.

4.4 Propensity Score Weighting

We can also use the propensity score weighting approach to correct the selection
bias. Using the blood pressure measures as the response and the treatment as the
only predictor and weighting each subject by their inverse of the propensity scores
of being assigned to the treatment group, the estimated treatment effect was —2.38
with standard error 0.45185. The more activity group had 2.38 mm Hg lower than
the less activity group in MAP. The p-value was less than .0001, which indicated that
the more activity group had a significant lower MAP than the less activity group.
Note that there are subjects with propensity scores as small as 0.0260582 and as big
as 0.9999613, so we need to be cautious about subjects with potential high influence.
In fact, there are 5 subjects with weight larger than 20, with the highest weight being
47.0519.

If the subject with the highest weight is removed from the data, the estimated
treatment effect would be —2.4238. In fact, this observation is not the only one with
the highest impact on the estimate of treatment effect. Thus, in such situations where
we have subjects with large weights, we should use the propensity score weighting
approach with caution.

In the above analysis using propensity score weighting approach, the estimated
propensity scores were used. For rigorous statistical inference, we should take
into account the variation associated with the estimation of the propensity score.
Unfortunately many inverse weighting procedures treat the weights as fixed, and
do not have the capability of taking into account such variation. However, in our
example, this may not be a concern since the p-value is very small.

4.5 Propensity Score Covariate Adjustment

Based on the analysis using the propensity score stratification approach, the
treatment effects across the propensity scores did not seem to be homogeneous
in this example. We can formally test this by testing the interaction between the
treatment and the propensity score. The p-value for testing the interaction was
<.0001, which indicated that there was significant interaction between treatment
and the propensity score. We can also compare the 5 subgroups to test the null
hypothesis of no treatment effect differences among the 5 subgroups. The p value
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for the test was 0.0005. This further confirmed that the treatment effects were
significantly different across the propensity score levels.

The significant interaction between the treatment and the propensity score
implies that a simple covariate adjustment is not appropriate in this case. However,
for illustrative purpose, we still applied the propensity score covariate adjustment
approach. We applied a linear regression model with the blood pressure measures
as the response and the treatment and the propensity score as the predictor and
covariate to assess the treatment effect. The estimated treatment effect was —1.86
with an SE of 0.53354, and a p-value of 0.0005. Instead of using the exact propensity
score, we also used the stratified ranks as covariate. The estimated treatment effect
was —2.05 with a SE of 0.5290, and a p-value of 0.0001.

So far, we have illustrated all the propensity score approaches using the Gensalt
study as an example. Based on results obtained from different approaches of
adjustment based on the propensity scores, the estimated treatment effects range
from 1.86 to 2.37, which are smaller than the unadjusted difference of 4.16 mm Hg
in MAP. All the results shows that more activity is beneficial to the blood pressure
outcome.

5 Discussion

Selection bias may produce biased estimates in observational and non-randomized
studies if it is not appropriately addressed. Propensity score is a powerful tool
in adjusting such selection bias. In this book chapter, we discussed several com-
mon approaches based on propensity scores to correct selection bias. All these
approaches depend on the validity of the propensity score model, i.e., a model
for the treatment assignment to estimate the probability of treatment assignment.
Among the approaches, the propensity score weighting and covariate adjustment
approaches directly use the propensity scores in the analysis while propensity score
matching and stratification methods do not explicitly rely on the propensity scores
in subsequent analysis. They only use the propensity score to find matched subjects
either at an individual or group level. Thus the propensity score matching and
stratification approaches may be less sensitive to misspecification of the propensity
score model.

It is important to note that all the approaches based on propensity scores can
only address observed selection bias. All the arguments are based on the assumption
that the propensity score, as the probabilities of being assigned to the treatment is
correctly modeled and estimated. The propensity score approaches do not have any
capability to account for unobserved factors.

We have discussed the use of propensity scores in the context of assessment of
treatment effect. Since the methods essentially deal with the missing values in the
potential outcomes, the methods can be naturally adapted to handle missing values.
For example, we have successfully applied the stratification of propensity scores to
verification bias problems in statistical analysis of diagnostic studies [20].
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Appendix: SAS Program Codes

All the analysis for the examples in Sect. 4 were performed using SAS. The SAS
program codes are included here for readers who are interested in applying the
methods for their data analyses.

* Logistic regression model for estimation of the propensity scores.
» The fitted values are saved in variable prob in data set preds.

proc logistic data=path.comb;

class High Cholesterol Stroke Drinking Gender High Education
Field Center Marital Employment;

model act_b50=Age BMI Gender High Education Field Center
Marital Employment

Drinking High Cholesterol Stroke Creatinine GFR

HDL_Cholesterol LDL_ Cholesterol AgexGender AgexHigh Education
BMI+Drinking Drinking+Gender High CholesterolxGender Creatinine
*Field Center CreatininexField Center

GFR+*High Education AgexMarital BMIxMarital Field CenterxMarital
Field CenterxMarital AgexEmployment AgexEmployment Field Center
*Employment

Field CenterxEmployment Field CenterxEmployment Field Center
*Employment/lackfit;

output out=preds pred=prob;

run;

Macro %OneToManyMTCH was used for the propensity score matching. The
macro can be copied from [32]

$OneToManyMTCH (work, preds,act b50,hid,pid,Matches, 1) ;
* Paired #-test for matched subjects

x» first generate paired variables
proc sort data=Matches;

by match 1 act b50;

run;

data paired;

set Matches;

control=B MAP;

treated=1lag (B_MAP) ;

if mod( n ,2)=0 then output;
run;

* paired t-test

proc t-test data=dd ;

paired treatedx control;
run;
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* Propensity score stratification

proc rank data=preds groups=5 out=r;
ranks rnk;

var prob;

run;

* Propensity score weighting

data preds;set preds;
w=1/prob* (1-act_b50)+act b50%1/ (1-prob) ;
run;

proc reg data=preds;

weight w;
model B _MAP=act Db50 ;
run;

* Propensity score covariate adjustment

proc reg data=preds;
model B _MAP=act b50 prob;
run;
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