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Abstract. In this paper an all–optical soliton method for calculating
the FFT (Fast Fourier Transform) algorithm is presented. The method
comes as an extension of the calculation methods (soliton gates) as they
become possible in the Cubic Nonlinear Schrödinger Equation (3NLSE)
domain, and provides a further proof of the computational abilities of
the scheme. The method involves collisions entirely between first order
solitons in optical fibers whose propagation evolution is described by
the Cubic Nonlinear Schrödinger Equation. The main building block
of the arrangement is the half–adder processor. Expanding around the
half–adder processor, the “Butterfly” calculation process is demonstrated
using first order solitons, leading eventually to the realisation of an equiv-
alent to a full Radix–2 FFT calculation algorithm.
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1 Introduction

There is a number of studies in which the use of soliton optical pulses for the pur-
poses of carrying out computations has been investigated [1,2]. In this present
paper only temporal solitons (involving a balance between Kerr type nonlinearities
and dispersive effects in glass fibres) are concerned. At this early point the fact that
the interactions between solitons of this type can be a relatively long–range phe-
nomenon need to be emphasised, because the Kerr nonlinearity is a relatively weak
effect. Temporal solitons in optical fibres where the nonlinearity is of the Kerr type,
are well described by the 3NLS Equation which, for very short (fs) pulses, requires
corrections to account for “Higher Order Dispersion”, “Raman scattering” etc. If
pulse widths are such that these higher order effects can be neglected, then solitons
in optical fibres, are solutions of the integrable nonlinear Schrödinger equation and
since collisions between fibre solitons are elastic they were not previously consid-
ered to be capable of useful computation [2].

In what follows in this introduction section, a brief description of the back-
ground theory is presented for the benefit of the reader. For a more extensive and
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thorough discussion the reader is referred to [3,4] where the application of first
order and second order solitons, following the Toffoli gates prototype as well as
others, has been presented and verified regarding their computational abilities
in terms of logic gates formations.

When higher order dispersive and nonlinear effects are neglected, short pulse
propagation in nonlinear optical guides is described by the integrable Cubic Non-
Linear Schrödinger (3NLSE) Equation. A positive value for “Dispersion” parame-
ter describes the formation of bright optical solitons whilst a negative value leads
to the formation of dark solitons. The 3NLS Equation in general, describes a modu-
lated wave packet propagating through a nonlinear dispersive medium with a con-
stant velocity. For certain initial pulse shapes (the “Reflectionless Potentials”), the
3NLSE is completely integrable and the evolution of the soliton can be found in
closed formbymeans of the Inverse ScatteringTransform (IST) [7]. Solitons arising
out of a balance between dispersive and Kerr nonlinearity effects possess dominant
characteristic features one of which is the elastic collisions between them. Solutions
described by non–integrable nonlinear wave equations on the other hand are usu-
ally referred to as solitary waves and collisions between solitary waves are inelastic
and more complex in character. A solution of the integrable 3NLSE applicable to
pulse propagation in optical fibres is the hyperbolic secant where an arbitrary pos-
itive number representing the soliton order, the distance along the fibre, and time,

Fig. 1. A collision between two solitons. The second soliton is a “Time–Gated” input
soliton.
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all in normalised dimensionless units, are the main parameters forming the initial
soliton propagation envelope. By coupling pulses in and out of a fibre at appro-
priate points (distance and time), useful computation could be possible based on
collisions between solitons within the fibre.

The material presented in [3,4] shows that in situations where optical solitons
are formed within optical fibres (simulations have been carried out using the
Split–Step Fourier Technique (SSFT)), with appropriate practical arrangements,
computationally universal systems based on collisions between first order solitons
are possible using logical gates based on the “Controlled” type of gates originally
proposed by Toffoli and Fredkin [5,6]. As an extension to what presented in the
above mentioned papers, in this present paper, the numerical study of collisions
between first order solitons is expanded leading towards an all–optical FFT
(Fast Fourier Transform) calculation. The CN and CCN soliton gates continue
to be the essential ingredient of the computational model.

In what follows in this paper, the encoding rules for the bit/s representation
into our system (by admitting the existence of only two solitons, one with a
phase value of π and one with a phase value of 0) follow exactly those outlined
in [3,4] where the reader is referred for more details. This way there can only
two types of collisions exist between solitons in our system: (a) two solitons

Fig. 2. Collision between three solitons in the cubic 3NLSE domain. The third of the
solitons taking part in the collision is a “Time–Gated” soliton in phase with the initial
two.
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collide and are in phase (Figs. 1 and 2) or, (b) two solitons collide and are out
of phase (Fig. 4). This way we can directly use the solitons themselves as input
values to a soliton logic gate. The most important fact of all is that these two
types of collisions possess the property of sequencing, so they can be cascaded.
Using this definition we can go a bit further and consider the collision between
solitons, as the inner process of the soliton logic gate and the two recovered with
their original state after the collision solitons, as the output values of the logic
gate. So, basically, we split the whole process of a collision into two important
parts. The first part consists of the logic gate length, bounded between initially
the point at which solitons begin to propagate through the medium, and the
point at which the two solitons collide, creating a characteristic for their phase
values “Collision Envelope”. The second part starts from the point of collision,
extending all the way up to the point where the two solitons recover their initial
time positions in reverse order after the collision.

2 The Half–Adder Processor Scheme

The half–adder processor scheme, first introduced in [3], forms the essential
central building block on which the overall FFT soliton computational scheme
is wrapped around. The system reads the collision envelopes at distance and
time specified points and uses this information to generate solitons with an
appropriate phase value to represent the output of each “gate”. The phase values
of two of the output solitons determine the “sum” and “carry” outputs at the
end of the computation process whilst all other solitons are superfluous to this
calculation. By definition the half–adder (the sum implementation) is given by:

(
X · Ȳ

) · (
X̄ · Y

)
(1)

In Fig. 3 the equivalent soliton scheme, originally presented in [3], is repro-
duced for convenience. The points highlighted in this schematic representation
by means of a bold circle indicate functional points at which a soliton collision,
part of a gate, takes place; while, X and Y denote the initial input data. Full
“gate” arrangements have been named and numbered (e.g. NAND (*), indicates
the first NAND in the computational arrangement, NAND (**) the second, etc.).

In Figs. 4 and 5, the “Input” and the “Output” of the schematic representa-
tion of Fig. 3 is reflected on actual soliton collision simulations. Each individual
gate–soliton collision is presented in a separate figure for clarity and comparison
purposes. The simulation figures are to be followed in a top–to–bottom approach
in the schematic representation of Fig. 3.

In all the figures the input–output “gate” sequence follows the soliton prop-
agation direction. The point at which the soliton propagation begins (point 0 in
the propagation scale across the depth of the figure) also reflects the input side
of the “gate” and respectively, the point at which the soliton propagation ends
(point 100 in the propagation scale across the depth of the figure) reflects the
output side of the “gate”.
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Fig. 3. The half–adder processor.

The half–adder computational arrangement plays a vital role in what is to fol-
low as is this particular arrangement the one that is lying at the heart of the more
general “Multiplier” arrangement, about to be presented later on, and required
for the realisation in the end of the complete “Butterfly” calculation process
which directly leads to the all–optical soliton FFT computational arrangement.

At this point and for the approach used for the presentation of the material
to follow in this paper to become clear, we need to stretch–out the fact that the
computational complexities involved are extensively simplified if can become
apparent that the scheme is flexible enough to be gradually get “packed” in
fixed–purpose calculation lengths. This approach doesn’t suppress the system
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Fig. 4. The soliton “gate” NOT(*). The number in the brackets next to each soliton
description is the bit value carried by the soliton.

from its generalisation properties, as the fixed reading points (as these have
been identified and introduced in [3,4]) still hold their properties and continue
to provide the system with all the capabilities initially identified as inherently
characteristic of the computational system at hand.

This systematic type of approach, will give us the ability to investigate the
properties (as well as the validity) of each individual computational block in turn
and, when the individual parts are finally interconnected to form one “Butterfly”
arrangement, to do the same regarding the properties and validity of the overall
computational scheme.

3 The Two 2-Bit Numbers Multiplier

In this section we present the “Two 2–bit Numbers Multiplier”, which involves a
half–adder as its lying–in–its–heart functional unit (“Three–bit Adder Arrange-
ment”). The particular arrangement forms the compact small–scale equivalent
of the “Two maximum–number–of–bits Numbers Multiplier”, which for gen-
eral purpose calculations must involve full–adders as well as half–adders in its
arrangement.

The reason behind choosing the Two 2–bit Numbers Multiplier is only the fact
that the particular arrangement possesses all the functionalities and properties
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Fig. 5. The soliton “gate” NAND(****). The number in the brackets next to each
soliton description is the bit value carried by the soliton.

need to be demonstrated, while at the same time gives us the ability to keep the
material presented at a minimum of extension and complexity in this paper.

Starting from the half–adder arrangement, if we now take a closer look in
Fig. 3 we will notice that all the output solitons need to be ignored after reading
and only the output soliton representing the “carry” value is to be allowed to
propagate further on and enter the cascading second half–adder arrangement.
Is exactly this soliton–bit that is required for the arrangement to complete the
Three–bit Adder Arrangement output calculation as presented in a conventional
block diagram in Fig. 6. This “Soliton Suppression” requirement at the very end

Fig. 6. The three-bit adder.
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Fig. 7. The alternative half-adder arrangement.

of a computational arrangement is not characteristic only of the computational
scheme here presented but rather a common characteristic requirement in soliton
computational arrangements as, for example, of the one introduced in [8], where
the additional property of not intersecting (solitons crossing paths but not col-
liding) is also a vital system characteristic requirement. The usual formal term
coined for such kind of solitons is “Garbage Solitons” and is chosen to emphasise
the fact that these solitons are to play no active role in the cascading calculations
following the output of an arrangement. The way this “Soliton Suppression” can
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Fig. 8. The “Two 2-bit Numbers Multiplier”.

be physically achieved is, in general terms, a technicality, requiring some hands–
on experimental work, in order for different methods and their correspond-
ing effects on the overall computational arrangement to be properly studied.
For these reasons we postpone, at this point, the explanation of how this “Soli-
ton Suppression” can be accomplished.

In order to present a complete picture of the soliton arrangements as well as
the almost unlimited flexibility possessed by the computational system (another
reason is that in the view of the author the concept of “Garbage Solitons”
is neither entirely satisfactory nor properly defined in its physical terms), in
Fig. 7 an alternative soliton arrangement is presented which doesn’t need “Soli-
ton Suppression” any more in order for the cascading half–adder arrangement
to commence calculation.

In this new arrangement the general soliton pattern remains the same as in
the original version, with the only difference that now the third control soliton
is starting propagation at a time position shifted to the left (top) by four time
slots (in Fig. 7 the original third control soliton propagation route has been
maintained as well for comparison purposes). The order in which the individual
gates are presenting their results is slightly changed as well. Shifting the third
control soliton by four time slots to the left (top) of the arrangement has as a
result for the soliton carrying the “carry” value to appear at the end (bottom)
of the output soliton order. So, this soliton can now be taken as the first input
soliton of the new half–adder arrangement (literally, as it possesses the same
propagation angle as the original input solitons to the half–adder arrangement)
which, by use of a second appropriate input soliton and three control solitons,
as required by the scheme, can provide us with the final computational result,
without the need to include any kind of “Soliton Suppression” procedure.

Having established and demonstrated the Three–bit Adder Arrangement, we
can now build around it the full Two 2–bit Numbers Multiplier. The overall
arrangement requires the addition of another four AND gates, to accommodate
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Fig. 9. Part of the “Two 2-bit Numbers Multiplier” (including two of the initial AND
gates and the half-adder arrangement without the corresponding generated solitons).

initial bit multiplications. The conventional diagram arrangement for the multi-
plier is as presented in Fig. 8.

In Fig. 9 part of the Two 2–bit Numbers Multiplier is presented. For illus-
tration purposes Generated Solitons in Fig. 9 are shown to be closer together
than they should be in an actual computational arrangement without loosing
in computational properties or upsetting the result. Circular soliton collision
points indicate collisions taking place during the initial AND gates calculations,
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while square soliton collision points indicate collisions taking place as part of the
half–adder calculation process. The arrangement in Fig. 9 illustrates a certain
degree of parallelism in the calculation process, which contributes significantly
in increasing the overall computational speed of the arrangement. It comes with-
out saying that the Two 2–bit Numbers Multiplier arrangement illustrated can
be extended to cover any bit length required for the multiplication between
two individual numbers. Again, the purpose here was to keep the length of the
illustration to a minimum.

4 The “Butterfly” Soliton Arrangement

For the remaining part of the “Butterfly” calculation process, we need a soliton
arrangement to convert a positive bit–number to a negative one. In order to
achieve this we adopt the method of complementing each digit in a bit–number
in turn (change 1 for 0 and 0 for 1) and then add 1 to the result. That way, the
bit–number taken out of the procedure corresponds to a bit–number representing
the negative equivalent of the initial bit–number.

A series of collisions between the solitons carrying the bit–number values
and a single control soliton with a phase value opposite to the one possessed by
the control soliton that generated the initial bit–number, is enough to produce
the bit–number complement. Since all the control solitons used so far in the

Fig. 10. The full-adder (conventional logic arrangement).

Fig. 11. Basic “Butterfly” computation in the decimation–in–time FFT algorithm.
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Fig. 12. The “Butterfly” soliton arrangement. [(1) Multiplier arrangement, (2) Nega-
tion arrangement, (3) Addition arrangement, (4) Addition arrangement].

computational arrangements presented had a phase value of π, corresponding
to a bit value of 1, the appropriate control soliton to achieve the complement
calculation must possess a phase value of 0, in turn corresponding to a bit value
of 0. The addition of 1 to the complement can be easily achieved by means of
full–adder arrangements internally consisting of two interconnecting half–adder
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arrangements and an OR gate, according to the conventional logic scheme pre-
sented in Fig. 10.

After the complement of a bit–number has been calculated, subtracting it
from another bit–number requires the addition between the complement cal-
culated and the second bit–number. That way only half–adder and full–adder
arrangements are required for the realisation of all the calculations involved in
the “Butterfly” arrangement. Addition and subtraction calculations appear at
the final stages of the “Butterfly” (Fig. 11), those that actually are giving the
result and passing the values calculated to the next processing stage of the overall
FFT calculation arrangement.

Having completed the presentation of the individual parts out of which the
soliton “Butterfly” arrangement consists of, we can now present the schematic
of the overall arrangement required. Figure 12 presents the soliton “Butterfly”
arrangement to full extend omitting, by means of a “black box” representation,
those parts of the arrangement which have been previously analysed and illus-
trated. “Adder Output” (D) and “Adder Output” (E) appear at the end of the
arrangement as required for the cascading “Butterfly” arrangements to continue
further processing the data. All the output soliton propagation routes shown are
indicative, since in an actual calculation of bit–numbers more than one solitons
will represent the output bit–number of each block of calculation. As it is the
case with the conventional Radix–2 FFT algorithm the first and the second dec-
imation process results in a “shuffling” of the input data sequence, which has a
well–defined order.

5 Conclusions

In this paper we surveyed the possibilities of an all–optical soliton FFT calculation
and shown how this can become possible within the boundaries of the optical soli-
ton 3NLSE domain. The outcome of this investigation is leading the way towards
a fast all–optical soliton FFT calculation with the FFT phasors (roots of unity)
to be represented directly by solitons of corresponding phase values, currently
under extensive research by the author. In such a scheme the 8–point FFT pha-
sors, for example, can be directly represented as: W 0

8 → Soliton phase value =
2π, W 1

8 → Soliton phase value = π
4 , W 2

8 → Soliton phase value = π
2 ,

W 3
8 → Soliton phase value = 3π

4 , W 4
8 → Soliton phase value = −2π,

W 5
8 → Soliton phase value = 5π

4 , W 6
8 → Soliton phase value = 6π

4 , W 7
8 →

Soliton phase value = 7π
4 , W 8

8 → Soliton phase value = 2π, while the soliton
phase values of π and 0 remain reserved to represent digit 1 and digit 0 respectively
for the control and data solitons involved. This additional ability, when prop-
erly specified, will provide the overall computational scheme with a separate, well
defined, and of a smaller fixed length FFT calculation arrangement without the
need for it to consist of individual calculation arrangements based on the scheme’s
“gates”.
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