
Performance, Design, and Autotuning
of Batched GEMM for GPUs

Ahmad Abdelfattah1(B), Azzam Haidar1, Stanimire Tomov1,
and Jack Dongarra1,2,3

1 Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, USA

{aahmad2,haidar,tomov,dongarra}@eecs.utk.edu
2 Oak Ridge National Laboratory, Oak Ridge, USA

3 University of Manchester, Manchester, UK

Abstract. The general matrix-matrix multiplication (GEMM) is the
most important numerical kernel in dense linear algebra, and is the key
component for obtaining high performance in most LAPACK routines.
As batched computations on relatively small problems continue to gain
interest in many scientific applications, a need arises for a high perfor-
mance GEMM kernel for batches of small matrices. Such a kernel should
be well designed and tuned to handle small sizes, and to maintain high
performance for realistic test cases found in the higher level LAPACK
routines, and scientific computing applications in general.

This paper presents a high performance batched GEMM kernel on
Graphics Processing Units (GPUs). We address batched problems with
both fixed and variable sizes, and show that specialized GEMM designs
and a comprehensive autotuning process are needed to handle problems
of small sizes. For most performance tests reported in this paper, the pro-
posed kernels outperform state-of-the-art approaches using a K40c GPU.

Keywords: GEMM · Batched GEMM · HPC · GPU computing ·
Autotuning

1 Introduction

Scientific computing applications extract their high-performance (HP) and effi-
ciency through fast linear algebra libraries, and most notably the GEMM routine.
Indeed, in the area of dense linear algebra (DLA), algorithms are designed as
much as possible to use GEMM, e.g., as in the LAPACK library. For exam-
ple, direct solvers for large dense linear system and least squares problems
require O(n3) floating point operations (flops), of which O(n3) are in GEMM.
Consequently, they run as fast/efficiently as running GEMM. Application areas
that rely on DLA, and therefore GEMM, are computational electromagnetics,
material science, fluid dynamics, applications using boundary integral equa-
tions, computational statistics, econometrics, control theory, signal processing,
curve fitting, and many more. Therefore, even a slight improvement in GEMM,
is extremely valuable and has great impact.
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 21–38, 2016.
DOI: 10.1007/978-3-319-41321-1 2

22 A. Abdelfattah et al.

Aside from scientific computing that requires large DLA, numerous other
applications, that will normally require sparse linear algebra computations, use
domain decomposition type frameworks where the overall computation is cast
in terms of many, but small enough, problems/tasks to fit into certain levels
of the machines’ memory hierarchy. Many times it is advantageous to represent
these small tasks as DLA problems on small matrices, as in applications such as
astrophysics [16], metabolic networks [11], CFD and the resulting PDEs through
direct and multifrontal solvers [22], high-order FEM schemes for hydrodynam-
ics [5], direct-iterative preconditioned solvers [9], and some image [17] and signal
processing [3]. Moreover, even in the area of DLA itself, large dense matrices can
be broken into tiles and the algorithms expressed in terms of small tasks over
them [2]. Also note that, implementation-wise, large GEMMs are parallelized
on current computing architectures, including GPUs, as many small GEMMs.
Under these circumstances, the only way to achieve good performance is to find
a way to group these small inputs together and run them in large “batches.” The
most needed and performance-critical kernel here is a batched GEMM [4,7,8].
Finally, tensor contractions, used to model multilinear relations in areas of recent
interest like big-data analytics and machine learning, as well as large scale high-
order FEM simulations, can also be reduced to batched GEMMs [1].

To address the needs for batched linear algebra on new architectures, as
outlined above, we designed high-performance batched GEMM algorithms for
GPUs. We consider batched problems with both fixed and variable sizes. While
we leverage optimization techniques from the classic GEMM kernel for one mul-
tiplication at a time, we also developed a different design scheme for the tuning
process that can flexibly select the best performing set of tuning parameters.
For variable size problems, we propose new interfaces, as well as techniques,
to address the irregularity of the computation. We show that aside from the
performance critical algorithmic designs and innovations, a comprehensive auto-
tuning process is needed in order to handle the enormous complexity of tuning
all GEMM variants resulting from our designs. The complexity is further exac-
erbated by targeting problems for entire ranges of small sizes (vs. for a few dis-
crete sizes). Using a K40c GPU, the proposed kernels outperform state-of-the-art
approaches (e.g., cuBLAS and MKL libraries) in most of the performance tests
reported in this work.

2 Related Work

To enable GPUs for a large-scale adoption in the HP scientific computing arena,
a fast GEMM had to be developed. This became feasible with the introduction of
shared memory in the GPUs. While general purpose GPU computing was possi-
ble before that, performance was memory bound, as data - once read - could not
be reused in many computations. The availability of shared memory made data
reuse possible, and the first compute-bound GEMM for GPUs was developed
in 2008 [21]. As the GPUs continued improving, new GEMM algorithms had to
be developed to better use to the evolving architecture, especially its memory

Batched Matrix Multiplication on GPUs 23

hierarchy. In particular, [18] presented a GEMM algorithm and implementation
(in MAGMA, later incorporated in cuBLAS) that applied hierarchical commu-
nications/blocking on all memory levels available at the time, including a new
register blocking. Blocking sizes, along with other performance-critical choices
were parametrized and used in autotuning frameworks [12,14], but improvements
were limited to certain very specific matrix sizes. Coding these multilevel block-
ing types of algorithms in native machine language was used to overcome some
limitations of the CUDA compiler or warp scheduler (or both) to achieve bet-
ter performance [19]. Similarly, assembly implementations [6,13] are used today
in cuBLAS for Kepler and Maxwell GPUs to obtain higher performance than
corresponding CUDA codes.

Besides the batched GEMM in cuBLAS, there have been a number of research
papers on batched GEMM, developed as needed for particular applications. For
example, a batched GEMM for very small sizes (up to 16) was developed for a
high-order finite element method (FEM) [10]. Tensor contraction computations
for large scale high-order FEM simulations were reduced to batched GEMM [1],
obtaining close to peak performance for very small matrices (90+% of a the-
oretically derived peak) using some of the techniques that we developed and
describe in detail here. Matrix exponentiation from the phylogenetics domain
was reduced to batched GEMMs on small square matrices [15], obtaining very
good performance for fixed sizes (4, 20, and 60) in single precision.

3 Batched GEMM Design and Implementation Details

This section discusses the main design and tuning approaches for batched GEMM
kernels that support both fixed and variable sizes. From now on, variable size
batched GEMM is abbreviated as vbatched GEMM. Our goal is to minimize coding
effort and to design one kernel that could be easily adapted for use in both
fixed and variable size batched GEMM. We begin by considering only fixed size
batched problems. We then discuss the modifications we incorporated to handle
a variable size problem at the end of the section.

Routine Interface. Each GEMM in a batch routine has the form of the stan-
dard BLAS GEMM:

C = α · op(A) × op(B) + β · C,

where A, B, and C are matrices, α and β are input scalars, and op() specifies
whether an input matrix is transposed. The interface of a batched/vbatched
kernel must manage independent multiplications of matrices that are not nec-
essarily stored contiguously in memory. As a result, the batched kernel requires
the address of every individual matrix. It also requires the size and the leading
dimension of every matrix. While such information can be passed using single
integers in the fixed sizes case, arrays of integers are needed for the vbatched
problems. Our kernels support multiplications with different values for α and β.
We also add an extra input argument batchCount that indicates the number of
matrices in the batch. Table 1 summarizes an example of the interface written
in the C language for the batched/vbatched DGEMM routine.

24 A. Abdelfattah et al.

Table 1. Interface of batched and vbatched matrix multiplication kernel against stan-
dard BLAS interface (GEMM: C = α · op(A) × op(B) + β · C).

Argument Description BLAS Batched Vbatched

TRANSA op(A) char char char

TRANSB op(B) char char char

M Rows of op(A)/C int int int*

N Columns of op(B)/C int int int*

K Columns of op(A)/rows of op(B) int int int*

α Alpha double double* double*

A Input matrix double* double** double**

LDA Leading dimension of A int int int*

B Input matrix double* double** double**

LDB Leading dimension of B int int int*

β Beta double double* double*

C Input/output matrix double* double** double**

LDC Leading dimension of C int int int*

batchCount Number of matrices N/A int int

Fig. 1. Example of blocking in the GEMM kernel.

Kernel Design. To design a GEMM kernel in CUDA and take advantage of the
available threads, thread blocks and multiprocessors of a GPU, the computation
must be partitioned into blocks of threads (also called thread blocks, or simply
TBs) that execute independently from each other on the GPU multiprocessors.
To do that, as shown in Fig. 1, the matrix C can be subdivided into rectangular
blocks of size BLKM × BLKN , and each of these blocks computed by one TB.

Batched Matrix Multiplication on GPUs 25

Specifics on how to do this efficiently, e.g., using hierarchical blocking of both
communications and computations, as noted in Sect. 2, are given in a design
by Nath et al. [18], which is also available in the MAGMA library [20]. We
use these ideas to build an extended CUDA kernel that is efficient for batched
computations (note that the batched GEMM in cuBLAS also uses this early
MAGMA GEMM kernel). However, some rules change here in the case of small
matrices. For example, the standard GEMM kernel design tries to maximize the
use of shared memory while for batched small GEMM, we should minimize the
use of shared memory to allow more than one TB to be executed on the same
multiprocessor. The results obtained by our autotuning framework, described
below, prove this choice.

The TBs computing a single matrix C can be specified as a 2D grid of size
(
⌈

M
BLKM

⌉
,

⌈
N
BLKN

⌉
). A TB processes an entire slice of A and an entire slice of

B to perform the necessary multiplication. The reading from global memory is
blocked, so that the kernel loads a BLKM × BLKK block of A and a BLKK × BLKN
block of B into shared memory, where the multiplication can benefit from the
fast shared memory bandwidth. Moreover, a double buffering technique is used
to enforce data prefetching into registers, where the computation is additionally
blocked. For multiple/batched GEMMs, each C can be computed independently
by its 2D grid of TBs, similarly to the standard case. Thus, we design a batched
GEMM for a 3D grid of TBs, where one dimension specifies a particular GEMM,
and the 2D subgrid specifies the TBs for computing that particular GEMM.

The kernel has many tuning parameters such as the BLK M, BLK N, and BLK K
illustrated in Fig. 1, and DIM X and DIM Y used to configure the number of threads
in a TB, among others to specify algorithmic variations. For example, a key
distinction with the case of single GEMM is that matrices can be very small,
e.g., sub-warp in size. Therefore, instead of having multiple TBs working on a
single C matrix, we have parametrized the basic kernel to allow configurations
where a TB computes several GEMMs. This design is critical for obtaining close
to peak performances for very small sizes [1].

Search Space Generation and Pruning. The MAGMA batched GEMM ker-
nel has a total of 10 tuning parameters, which can produce millions of combi-
nations if we use a brute-force generator. In can be computationally infeasible
to search in an enormous design space like this. Therefore, to reduce it, we use
generator rules that accept two sets of constraints in order to prune the parame-
ter space. The first set corresponds to the hardware constraints, as defined by
the GPU generation and model. Two examples of such constraints are the maxi-
mum number of threads in a TB (e.g., 1, 024 for a Kepler GPU), and the amount
of shared memory required per TB (48 KB). Violation of hardware constraints
usually leads to compilation errors or kernel launch failures.

The second set represents soft constraints that rule out kernel instances that
are unlikely to achieve good performance for batched workloads. Violation of
such constraints can still produce runnable kernels, but they are predictably
not good candidates from a performance perspective. Specifying the rules is
important in order to avoid mispredicting and consequently ruling out good

26 A. Abdelfattah et al.

candidates. For example, our experience shows that configurations that use a
small number of threads per TB and small amounts of shared memory can be
very efficient for batched computations. The explanation for this observation is
that multiple TBs can run concurrently on the same Streaming Multiprocessor
(SM), thus maximizing throughput. Therefore, we consider kernels that use a
number of threads as small as 32, and rule out kernels that tend to maximize the
occupancy per TB, e.g., the ones using more than 512 threads per TB. We point
out that this is the opposite of a previous work that targeted classic GEMM
operations [12], where the soft constraints were set to rule out kernels using
less than 512 threads. Our search space generator ended up with 6, 400 eligible
GEMM kernels. Since the autotuning experiment is performed once per a GPU
model, we found that a brute-force approach is feasible to test all the eligible
kernels within a reasonable amount of time.

Test Cases. A classical test case for a GEMM kernel is to tune for square
matrices which is a good choice if only large matrices are targeted. However,
this scenario rarely appears in higher-level LAPACK routines, such as the LU
and QR factorizations, where the multiplication usually involves rectangular
matrices (tall-skinny and short-wide matrices), with relatively small values of
K compared to M and N. For small matrices computation, K gets even smaller.
For example, the batched LU factorization [7] uses a panel of width up to 128,
but it performs the panel factorization recursively as two panels of width 64,
each factorized as two panels of width 32. Eventually, each panel of width 32 is
factorized as four panels of size 8. Figure 2 shows this recursive nested blocking
in the batched LU factorization for small matrices. As a result, in addition to
the square sizes, we define our test cases as having discrete small values of K (8,
16, 32, etc.), while varying M and N.

For simplicity, all performance tests are conducted for fixed size batched
computations, so that we can specify a winning kernel instance for every tested
size. The vbatched GEMM kernel is assumed to have the same tuning decision
as the fixed size batched GEMM.

Fig. 2. Recursive nested panel factorization in batched LU.

Batched Matrix Multiplication on GPUs 27

Autotuning Output Analysis. For every test case – specified by precision, a
transposition mode that we call shape, and (M, N, K) sizes – we run all eligible
GEMM kernels. We developed an automated selection process that sorts all ker-
nels according to their performances at each data point, and stores the ID of the
kernel instance with the best performance. After repeating the same step for all
data points, the automated process selects the five (this number can be chosen
by the user) most frequent kernel instances that scored the best performance
across all data points. We also plot the maximal and the minimal performance
obtained by all the kernels at every data point. For a fixed size GEMM: for
every shape (e.g., NN, NT, etc.), every test case (e.g., square, tall-skinny K= 8
tall-skinny K= 32, wide, etc.), one or multiple winning versions can be selected
in such a way as to provide the best performance for the entire range of sizes. For
variable size GEMM: for every shape, we select one winning version that scores
a performance within 5–10% of the best achievable performance and that fits all
the sizes for a specific test case. The details for these choices are described below.

Performance Sensitivity and Software Framework. Figure 3 shows exam-
ple performance graphs for some test cases, where the five best performing kernel
instances are nominated by our selection process. We observe that not only dif-
ferent test cases have different winning versions, but also a single test case may
have two or three winning versions according to the ranges of M and N. Unlike
tuning for big matrices [12], which ended up with four kernels across all test
cases, we observe that the performance is very sensitive for small matrices, and
an efficient software framework that can call the correct winning version for each
test case is required. Such a framework should be able to handle a large number
of versions while preserving reasonable programming and coding effort. It should
also provide an easy-to-modify code structure for future tuning experiments.

Template-Based Design. The original tuning of the classic GEMM kernels [18]
resulted in finding a few versions, best for different cases. Each version is instan-
tiated in a separate file where the corresponding tuning parameters are listed
using compile-time macros (#define). This structure is impractical if many ker-
nel versions are considered. Another drawback of such a design is that a kernel
version must have all shapes covered. This is an unnecessary restriction, since
we might need more kernels for the NN shape than for the NT shape, for example.
It is more flexible to decouple GEMM shapes from each other.

Therefore, we use CUDA C++ templates to enable a unified code base for
the batched/vbatched GEMM kernels. Templates enable an easy instantiation
of a kernel with specific precision and tuning parameters. Figure 4 shows an
example for the DGEMM routine using templates. Each set of tuning parame-
ters is described as an array of integers. In addition, switching among versions
becomes as simple as changing a single number, namely the kernel ID passed to
the instance macro. We point out that the condition list in Fig. 4 is relatively
short in practice, since our experiments show that we need less than a handful
of versions per precision. The only cost, which is paid once, is the need to gen-
erate all possible combinations of tuning parameters using the space generator.
Once this step is finished, any future changes to the code in Fig. 4 become very

28 A. Abdelfattah et al.

Fig. 3. GEMM performance of the five most frequent, best performing kernels in
selected test cases. Each instance is associated with an ID and the number of occur-
rences. batchCount= 500. (Color figure online)

simple. In addition, there is no need to keep the same number of kernels across
all shapes, or keep different DGEMM versions in separate files.

Now we describe how we move from the fixed size batched GEMM to the
vbatched GEMM. There are two main approaches to address a vbatched prob-
lem on GPUs. The first assumes that a vbatched kernel is launched directly from
the CPU side. Since the launch involves configuration of TBs, the kernel must
be configured to accommodate the largest matrix dimensions in the batch. As a
result, subgrids assigned to smaller matrices will have some threads (or even full
TBs) with no work. We developed Early Termination Mechanisms (ETMs) to
solve this problem. An ETM is a lightweight software layer that, at the beginning

Batched Matrix Multiplication on GPUs 29

Fig. 4. DGEMM routines using templates with flexible switching.

of a kernel launch, identifies threads with no work and immediately terminates
them to avoid over-occupancy and memory access violations. ETMs are imple-
mented at the level of a thread, so that each thread can independently determine
whether it should proceed with the execution or not. Note that such an approach
requires these maximal dimensions to be known on the CPU side prior to the
kernel launch.

The second approach is based on the relatively new CUDA GPUs technology
called dynamic parallelism. It enables a GPU kernel to launch another GPU
kernel. In this case, a vbatched kernel is launched from the GPU side. The CPU
role is to launch a parent kernel with a total number of CUDA threads equal to
the number of matrices in the batch. Each CUDA thread then launches a GPU
GEMM kernel for one matrix based on its dimensions. As opposed to the first
approach, dynamic parallelism waives the need to know the largest dimensions
across all matrices. However, it assumes that the underlying CUDA runtime
will schedule execution of the child kernels efficiently on the GPU, which is not

30 A. Abdelfattah et al.

always the case, as described in Sect. 4. Dynamic parallelism is a technology that
is available only on GPUs with compute capability 3.5 (Kepler) or higher.

The vbatched GEMM kernel uses the same code base as the fixed size batched
routine, with the use of either ETMs or dynamic parallelism. Examples for both
approaches are highlighted in Fig. 5. Shown are the output matrices of three
independent GEMMs. The first approach (ETMs) requires knowledge about the
maximum values of M, N, and K across all matrices. Note that such values do not
necessarily belong to one matrix. Based on these values, it determines the GEMM
kernel version to be called. As shown in Fig. 5(a), all matrices are processed
using a single kernel that is called from the CPU. Each subgrid is responsible
for one matrix. All matrices are subdivided using the same blocking size. The
ETM layer is responsible for terminating TBs marked by ×, which do not have
any work. The second approach, which is based on dynamic parallelism, lets
the CPU launch a parent kernel with a number of master threads. Each master
thread launches a GEMM kernel for its assigned matrix, and it chooses the best
working GEMM instance for it. Consequently, this approach allows matrices to
be subdivided using different blocking sizes.

Fig. 5. Approaches for vbatched GEMM.

4 Performance Results and Analysis

System Setup. Performance tests are conducted on a machine equipped with
two 8-core Intel Sandy Bridge CPUs (Intel Xeon E5–2670, running at 2.6 GHz),
and a Kepler generation GPU (Tesla K40c, running at 745 MHz, with ECC on).
CPU performance tests use Intel MKL Library 11.3.0. GPU performance tests
use CUDA Toolkit 7.0. Due to space limitations, we show results for double
precision only. We point out that the proposed tuned kernels support all other
precisions, with roughly similar performance behavior. The performance of the
MAGMA GEMM kernel is compared against the cuBLAS batched GEMM kernel,
the cuBLAS classic GEMM kernel offloaded to concurrent streams, and the MKL
GEMM kernel running on 16 CPU cores. The MKL library is configured to assign

Batched Matrix Multiplication on GPUs 31

Fig. 6. Fixed size batched DGEMM performance for shape NN. (Color figure online)

one core per matrix at a time, and is used within an OpenMP parallel loop that
is dynamically unrolled to balance the workload among cores.

Fixed Size. Figure 6 shows the performance for the NN shape, with different
problem sizes that are typically used in higher-level factorization and solve algo-
rithms. The tuned MAGMA kernel achieves the best performance when K is
small, regardless of M, and N. In Figs. 6(a) through 6(d), it scores speedups of
up to 87 %, 38 %, 86 %, and 26 % against the best competitor (cuBLAS batched),
respectively. Starting K = 32, the MAGMA DGEMM kernel loses its advantage to
the streamed GEMM, except for the small range of M and N, which is of particular

32 A. Abdelfattah et al.

Fig. 7. Fixed size batched DGEMM performance for shape NT. (Color figure online)

importance for batched computation. In Fig. 6(e) and (f), MAGMA is generally
faster than the batched cuBLAS kernel, achieving up to 43 % and 35 % speedups,
respectively. However, the streamed GEMM, apart from some drops in Fig. 6(e),
becomes the best performing kernel when M and N are around 200. A similar
behavior is observed in Fig. 7 for the NT shape. MAGMA scores speedups up to
48 %, 39 %, 96 %, and 16 % against the batched cuBLAS kernel, for Figs. 7(a)
through 7(d), respectively. When K gets larger as in Fig. 7(e) and (f), MAGMA
has the advantage for relatively small values of M and N, with a 45 % speedup
against batched cuBLAS for K = 32, and a slightly better better performance

Batched Matrix Multiplication on GPUs 33

Fig. 8. Impact of batchCount on performance (DGEMM, shape NN, K=32, N=M).
(Color figure online)

for the square case. Otherwise, the streamed cuBLAS kernel mostly achieves the
best performance, except for the midrange in Fig. 7(e), where MAGMA takes
over.

Figure 8 shows an example of the effect of batchCount on performance. As
expected, a larger batchCount can affect the performance significantly for small
matrix sizes, with at least 40 % performance difference for sizes less than 50. This
is because the GPU is not saturated with enough work for small batchCount of
such size range. Such performance difference decreases consistently as the sizes
get larger. We observe that, in most of our tests, there is negligible impact of
batchCount on performance after size 256.

Variable Size. Now considering the matrix test suites for the vbatched GEMM,
each point M on the x-axis in Figs. 9 and 10 represents a distribution of sizes.
Given a maximum value of M, the interval [1:M] is sampled randomly according
to a certain distribution in order to generate the sizes. In this paper, we show
results for uniform and Gaussian distributions.

Figure 9 shows the performance for the vbatched DGEMM kernel against a
uniform distribution for the NN shape, while Fig. 10 considers the NT shape.
In both shapes, the MAGMA DGEMM based on ETMs has a clear advantage
in Figs. 9(a) through 9(d), and 10(a) through 10(d). The MAGMA DGEMM
kernel based on dynamic parallelism is either equal to or better than the former
approach for relatively large sizes in the cases of K = 32 and square matrices.
The asymptotic speedups scored by the ETM-based kernel against streamed
GEMM/MKL are 6.73×/5.47×, 5.45×/2.18×, 3.75×/10.20×, and 4.34×/11.06×
in Figs. 9(a) through 9(d), and 8.34×/10.52×, 4.82×/7.86×, 4.20×/9.38×, and
3.80×/9.86× in Figs. 10(a) through 10(d), respectively. In Figs. 9(e) and 10(e),
there is no winning kernel for all sizes. The two MAGMA kernels outperform
other competitors for Maximum M up to 300. The streamed GEMM dominates
the midrange, and then gets nearly matched or slightly outperformed by the

34 A. Abdelfattah et al.

Fig. 9. Vbatched DGEMM performance for shape NN with uniform distribution. (Color
figure online)

MAGMA kernel based on dynamic parallelism. For the case of square matrices
(Figs. 9(f) and 10(f)), the streamed GEMM achieves the best performance unless
matrices are too small, where the ETM-based MAGMA kernel is the best choice.
We observe a similar behavior when we repeat all the above test cases based on
the Gaussian distribution. For space limitations, we highlight only two test cases
for the NN shape in Fig. 11.

Batched Matrix Multiplication on GPUs 35

Fig. 10. Vbatched DGEMM performance for shape NT with uniform distribution (Color
figure online)

Sub-warp Sizes. Finally, we want to point out that the framework presented
was also used to find batched GEMM kernels for very small (sub-warp in size)
matrices. Performance there is memory bound and can be modeled. Results show
that we obtain close to peak performance [1] (90+% of the theoretically derived
peak) to significantly outperform cuBLAS on GPUs and MKL on CPUs.

36 A. Abdelfattah et al.

Fig. 11. Vbatched DGEMM performance for shape NN with Gaussian distribution
(Color figure online)

5 Conclusion and Future Work

This paper presented a design and autotuning framework for fixed and variable
size batched matrix-matrix multiplication using GPUs. Similarly to the GEMM
routine, batched GEMMs on small matrices are needed in many applications
from big-data analytics to data mining, and more. The work focused on the
algorithmic design and performance autotuning for small fixed and variable sizes
on test cases found in batched LAPACK factorization and solve algorithms.
With a comprehensive autotuning process and a flexible software framework,
we are able to find and call the best kernel configuration (within our design
space) according to many deciding factors. The flexible software scheme ensures
minimal coding effort if future changes are required, and can be used efficiently
for other computational kernels that have a large number of tuning parameters.

Future directions include adding support for multiplications with different
shapes within the same GPU kernel, thorough testing of the vbatched routine
against different size distributions, and performance analysis and profiling of
the dynamic-parallelism based kernels in order to analyze and understand their
behavior and overhead. Work on applying and tuning the batched GEMMs in
specific applications, e.g., using application-specific knowledge, especially in com-
puting applications requiring variable sizes like direct multifrontal solvers for
sparse matrices, is of high interest and subject to future work.

Acknowledgment. This work is based upon work supported by the National Science
Foundation under Grants No. ACI-1339822 and CSR 1514286, NVIDIA, the Depart-
ment of Energy (LLNL subcontract under DOE contract DE-AC52-07NA27344), and
in part by the Russian Scientific Foundation, Agreement N14-11-00190.

Batched Matrix Multiplication on GPUs 37

References

1. Abdelfattah, A., Baboulin, M., Dobrev, V., Dongarra, J., Earl, C., Falcou, J.,
Haidar, A., Karlin, I., Kolev, T., Masliah, I., Tomov, S.: High-performance tensor
contractions for GPUs. In: International Conference on Computational Science
(ICCS 2016). Elsevier, Procedia Computer Science, San Diego, CA, USA, June
2016

2. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the
PLASMA and MAGMA projects. J. Phys.: Conf. Ser. 180(1), 012037 (2009)

3. Anderson, M., Sheffield, D., Keutzer, K.: A predictive model for solving small
linear algebra problems in GPU registers. In: IEEE 26th International Parallel
Distributed Processing Symposium (IPDPS) (2012)

4. Dong, T., Haidar, A., Luszczek, P., Harris, A., Tomov, S., Dongarra, J.: LU Fac-
torization of small matrices: accelerating batched DGETRF on the GPU. In: Pro-
ceedings of 16th IEEE International Conference on High Performance and Com-
munications (HPCC 2014) August 2014

5. Dong, T., Dobrev, V., Kolev, T., Rieben, R., Tomov, S., Dongarra, J.: A step
towards energy efficient computing: redesigning a hydrodynamic application on
CPU-GPU. In: IEEE 28th International Parallel Distributed Processing Sympo-
sium (IPDPS) (2014)

6. Gray, S.: A full walk through of the SGEMM implementation (2015). https://
github.com/NervanaSystems/maxas/wiki/SGEMM

7. Haidar, A., Dong, T., Luszczek, P., Tomov, S., Dongarra, J.: Batched matrix
computations on hardware accelerators based on GPUs. Int. J. High Per-
form. Comput. Appl. (2015). http://hpc.sagepub.com/content/early/2015/02/06/
1094342014567546.abstract

8. Haidar, A., Dong, T.T., Tomov, S., Luszczek, P., Dongarra, J.: A framework for
batched and GPU-resident factorization algorithms applied to block householder
transformations. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance 2015.
LNCS, vol. 9137, pp. 31–47. Springer, Heidelberg (2015)

9. Im, E.J., Yelick, K., Vuduc, R.: Sparsity: optimization framework for sparse
matrix kernels. Int. J High Perform Comput. Appl. 18(1), 135–158 (2004).
http://dx.doi.org/10.1177/1094342004041296

10. Jhurani, C., Mullowney, P.: A GEMM interface and implementation on NVIDIA
GPUs for multiple small matrices. CoRR abs/1304.7053 (2013). http://arxiv.org/
abs/1304.7053

11. Khodayari, A., Zomorrodi, A.R., Liao, J.C., Maranas, C.: A kinetic model of
escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab.
Eng. 25C, 50–62 (2014)

12. Kurzak, J., Tomov, S., Dongarra, J.: Autotuning GEMM kernels for the Fermi
GPU. IEEE Trans. Parallel Distrib. Syst. 23(11), 2045–2057 (2012)

13. Lai, J., Seznec, A.: Performance upper bound analysis and optimization of SGEMM
on Fermi and Kepler GPUs. In: Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), CGO 2013, pp. 1–
10. IEEE Computer Society, Washington, DC, USA (2013). http://dx.doi.org/10.
1109/CGO.2013.6494986

14. Li, Y., Dongarra, J., Tomov, S.: A note on auto-tuning GEMM for GPUs. In: Allen,
G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2009, Part I. LNCS, vol. 5544, pp. 884–892. Springer, Heidelberg (2009)

https://github.com/NervanaSystems/maxas/wiki/SGEMM
https://github.com/NervanaSystems/maxas/wiki/SGEMM
http://hpc.sagepub.com/content/early/2015/02/06/1094342014567546.abstract
http://hpc.sagepub.com/content/early/2015/02/06/1094342014567546.abstract
http://dx.doi.org/10.1177/1094342004041296
http://arxiv.org/abs/1304.7053
http://arxiv.org/abs/1304.7053
http://dx.doi.org/10.1109/CGO.2013.6494986
http://dx.doi.org/10.1109/CGO.2013.6494986

38 A. Abdelfattah et al.

15. Lopez, M., Horton, M.: Batch matrix exponentiation. In: Kindratenko, V. (ed.)
Numerical Computations with GPUs, pp. 45–67. Springer International Publishing
(2014), http://dx.doi.org/10.1007/978-3-319-06548-9 3

16. Messer, O.E.B., Harris, J.A., Parete-Koon, S., Chertkow, M.A.: Multicore and
accelerator development for a leadership-class stellar astrophysics code. In: Man-
ninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 92–106. Springer,
Heidelberg (2013)

17. Molero, J., Garzón, E., Garćıa, I., Quintana-Ort́ı, E., Plaza, A.: Poster: a batched
Cholesky solver for local RX anomaly detection on GPUs, PUMPS (2013)

18. Nath, R., Tomov, S., Dongarra, J.: An improved magma GEMM for fermi graph-
ics processing units. Int. J. High Perform. Comput. Appl. 24(4), 511–515 (2010).
http://dx.doi.org/10.1177/1094342010385729

19. Tan, G., Li, L., Triechle, S., Phillips, E., Bao, Y., Sun, N.: Fast implementation
of DGEMM on Fermi GPU. In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2011, pp.
35:1–35:11. ACM, New York (2011). http://doi.acm.org/10.1145/2063384.2063431

20. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parellel Comput. Syst. Appl. 36(5–6), 232–
240 (2010)

21. Volkov, V., Demmel, J.: Benchmarking GPUs to tune dense linear algebra. In:
SC 2008: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pp.
1–11. IEEE Press, Piscataway (2008)

22. Yeralan, S.N., Davis, T.A., Ranka, S.: Sparse mulitfrontal QR on the GPU. Techni-
cal report, University of Florida Technical Report (2013). http://faculty.cse.tamu.
edu/davis/publications files/qrgpu paper.pdf

http://dx.doi.org/10.1007/978-3-319-06548-9_3
http://dx.doi.org/10.1177/1094342010385729
http://doi.acm.org/10.1145/2063384.2063431
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_paper.pdf
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_paper.pdf

http://www.springer.com/978-3-319-41320-4

	Performance, Design, and Autotuning of Batched GEMM for GPUs
	1 Introduction
	2 Related Work
	3 Batched GEMM Design and Implementation Details
	4 Performance Results and Analysis
	5 Conclusion and Future Work
	References

