
Chapter 3
Searching for Named Entities

In the previous chapter,we searched for the specific composerLudwig vanBeethoven.
But what if we wanted to find sentences about any classical music composer, or even
more generally, about any composer? So far our strategy has consisted of starting
with a URI, finding possible alternative surface forms, and looking for sentences
in which they occur. If we follow the same strategy in the case of composers, we
can find the URI dbr:Composer in DBpedia and discover some of its surface forms
(e.g., music composer, musical composer, and even author) through the predicate
dbo:wikiPageRedirects.

Would a search in a corpus for sentences containing these surface forms be likely
to lead us to information about composers? Perhaps it would, but it is certain that the
recall performance of such approach will be quite low. For example, if we attempt
the above strategy on the BeethovenCorpus from the previous chapter (see Table2.1
in Sect. 2.1), we find a single sentence (sentence no. 6) among the 10 sentences about
composers, which explicitly uses the word composer.

An alternative approach, presented in this chapter, is to consider Composer as an
entity type, also referred to as entity class. An entity type, or entity class, represents
a set of individuals, and we will develop text mining strategies for finding the
individuals which belong to this class.

The first strategy is using a list of the individuals in the class. For example, we
can gather a list of composers, such as L.V. Beethoven, W.A. Mozart, and J.S. Bach,
and search for them in text. In NLP, such list is often referred to as a gazetteer.

The second strategy is to search for regularities in the way of expressing the
individuals in the class. The type Composer is likely not the best candidate for this
strategy, although being a subclass of Person, we can expect the same regularity in
a composer’s name than in a person’s name. Such regularity could be a sequence
of two capitalized words (e.g., [F]rank [Z]appa), although we can imagine such
regularity leading to many other entity types than Person, such as City (e.g., [N]ew
[Y]ork) or Country (e.g., [S]ri [L]anka). Other entity types, such as Date or Time,
are better candidates for this regularity detection strategy.

© Springer International Publishing Switzerland 2016
C. Barrière, Natural Language Understanding in a Semantic Web Context,
DOI 10.1007/978-3-319-41337-2_3

23

http://dx.doi.org/10.1007/978-3-319-41337-2_2
http://dx.doi.org/10.1007/978-3-319-41337-2_2

24 3 Searching for Named Entities

We will look at various entity types in this chapter, as well as the use of gazetteers
and the detection of regularities through a very powerful tool, regular expressions.
We will also continue with the experiment-based learning approach promoted in this
book, by defining an experiment to test the precision and recall of regular expressions
in search of Date in a corpus.

3.1 Entity Types

Composer is simply an example of an entity class, also called an entity type, a
semantic type, or a category. Symphony would be another example, as would be
Author, Company, and City. Entity types are at the core of knowledge organization,
since they provide a structure for our understanding of the world.

And because entity types play a central role in our quest for information, we will
often return to these notions, and even debate their definitions. For example, is cell
phone an entity type? Not in the same way as Composer is, yet we can talk about
cell phones in general, and individual phones do exist under the broader umbrella of
CellPhone. Although in our quest for information, we would rarely be interested in
the specific phone Mr. X owns, but we might be interested in a particular Samsung
or Nokia phone, just being put on the market. My purpose here is not to enter in
a philosophical debate about ontological commitment or separation of classes and
individuals. I simply want to bring awareness to the impact the difference between
searching for entity types versus individuals can have on searching strategies and
search results.

Compared to the previous chapter, in which we discussed generic and specific
entities, notice how the current chapter introduces a different terminology, more
commonly used in NLP and in the Semantic Web, of individuals and entity types. In
the previous chapter, we used the term specific entity to refer to an individual and
generic entity to refer to an entity type.

Interest in individuals and entity types is pervasive in the Semantic Web and NLP
communities. The term Named Entity Recognition, abbreviated NER, refers to
an important field of research within NLP aiming at recognizing named entities in
corpus. We yet introduce another term: named entity which sense is closest to what
we had called specific entity. In a strict sense, a named entity is an instance of an
entity class, uniquely identified via a name. In this same strict sense, named entities
are unique individuals. People, organizations, locations, and dates are all examples of
things that are unique in our world. But a NER searchmight be interested in detecting
other important information in a text, such as amounts of money or quantities. This
extends the definition of named entity toward a less strict sense including individuals
as well as other precise and important information.

As the reader, you might find this confusing to be introduced to many similar
terms having partially overlapping meaning. It is confusing, but it is important to
know about all these terms, since you are likely to encounter them in different books
and research articles written over many years. The effort to define types of named

3.1 Entity Types 25

entities and recognize them in text goes back twenty years to The Sixth Message
Understanding Conference during which an NER task was introduced. At that time,
the named entities to be recognized were given one of three possible labels:

• ENAMEX: Person, Organization, Location

• TIMEX: Date, Time

• NUMEX: Money, Percentage, Quantity

Later, efforts were made to define more fine-grained lists of entity types, some
examples being:

• PERSON: actor, architect, doctor, politician

• ORGANIZATION: airline, sports_league, government_agency, news_agency

• LOCATION: city, country, road, park

• PRODUCT: car, camera, computer, game

• ART: film, play, newspaper, music

• EVENT: attack, election, sports_event, natural_disaster

• BUILDING: airport, hospital, hotel, restaurant

• OTHER: time, color, educational_degree, body_part, tv_channel, religion,

language, currency

Beyond these more generic entity type lists, efforts have also been made in indi-
vidual domains to define entity types specific to them (e.g., gene and protein in
biology).

Once entity types are defined, how would we devise a text mining process to
identify in a corpus sentences mentioning these types. A first strategy is to use lists
of individuals belonging to these types, as we see next.

3.2 Gazetteers

One approach to finding named entities in text is to have lists of the individuals,
often referred to as gazetteers. On the Web (e.g., in Wikipedia), we can find lists of
just about anything imaginable: varieties of rice, car brands, romantic symphonies,
countries, and so on. Let us take art museums as an example. The following query
submitted to DBpedia SPARQL endpoint would provide a long list of hundreds of
museums:

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?X where {

?X rdf:type dbr:Art_museum .

}

26 3 Searching for Named Entities

This list could easily become a gazetteer for an ArtMuseum entity type to be used
for searches in text. Table3.1 provides some examples. Each of the entities has a
variety of surface forms, all of which could be used in a search.

Table 3.1 Gazetteer for ArtMuseum

No. Museum label

1 Berkshire Museum

2 The Louvre

3 Museum of Modern Art, Antwerp

4 Hirshhorn Museum and Sculpture Garden

5 Museum of Fine Arts of Lyon

6 Kosova National Art Gallery

7 Art Gallery of Algoma

8 National Gallery of Canada

9 Museu Picasso

Similarly, using the following query into DBpedia SPARQL endpoint, we can
find many composers classified under the Viennese Composers category in Yago.1

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns\#>

prefix yago: <http://dbpedia.org/class/yago/>

select ?X where {

?X rdf:type yago:VienneseComposers

}

Results of the query can be used to generate a gazetteer for the VienneseComposer

entity type, as in Table3.2. This list would include many contemporaries of Ludwig
van Beethoven, the individual of our earlier investigation.

Table 3.2 Gazetteer for VienneseComposer

No. Composer label

1 Wolfgang Amadeus Mozart

2 Franz Schubert

3 Johann Strauss I

4 Franz Lehar

5 Ludwig van Beethoven

6 Johannes Brahms

7 Joseph Haydn

8 Anton Webern

9 Alban Berg

10 Arnold Schoenberg

1Yago is a large Semantic Web resource, described at http://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/yago-naga/yago/.

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/

3.2 Gazetteers 27

An unfortunate drawback to all lists is that they are likely to be incomplete and
thus insufficient. Despite this, lists are important in the search for named entities,
and are widely used, most often in combination with other strategies. In Chap.13, as
we revisit entity types as constraints for relation search, we will investigate voting
strategies to combine gazetteers with other methods of entity type validation.

For now, let us explore a second strategy for finding mentions of an entity type in
a corpus, using regular expressions.

3.3 Capturing Regularities in Named Entities: Regular
Expressions

Certain entity types have fairly regular ways of expressing their individuals, which
we can easily detect. The individuals for the entity type ArtMuseum, as shown in
Table3.1, do include a few words that appear repeatedly (museum, fine art, art
gallery), but still, we would have to consider more data to better convince ourselves
of regularity within that class. What about an entity type Symphony, to continue on
our musical theme, would that contain regularities?

Table 3.3 Examples of instances of the Symphony type

No. Symphonies

1 Symphony no. 8

2 Beethoven’s symphony no. 6

3 Symphony no.4, op. 47

4 Symphony no 5 in b flat

5 Symphony no. 1 in d minor

6 Schubert’s Symphony no. 4

7 Symphony “pathetique”

8 Symphony no. 3 in b-flat minor

9 Abel’s Symphony no. 5, op. 7

Consider a short list of individuals, belonging to the Symphony type, as shown in
Table3.3. As you can see, there is still quite a lot of variation within these examples,
but we can identify certain patterns emerging. In an attempt to concisely capture and
represent the variations seen here, we turn to regular expressions.

Regular expressions provide a concise way of expressing particular sequences of
text. Although they can seem intimidating at first, it is essential to master them for
NLP, since they provide a very flexible and powerful tool for text search. Most
programming languages define text search libraries allowing the use of regular
expressions. The best way to become familiar with writing these expressions is

http://dx.doi.org/10.1007/978-3-319-41337-2_13

28 3 Searching for Named Entities

simply to practice. The process is comparable to learning a new language, practice
is key.2

Below are examples of what regular expressions can capture in text:

• single character disjunction: [tT]able → table, Table
• range: [A-Z]x → Ax, Bx, Cx, Dx, ... Zx
• explicit disjunction: [a-z|A-Z] → all letters
• negation: [ˆSs] → everything except uppercase and lowercase ‘s’
• previous character optional: favou?r → favor, favour
• repetition of 0 or more times: argh* → arghhhhhhh, arghh, arg
• repetition of 1 or more times: x+ → x, xx, xxx
• wildcard on a single character: ax.s → axis, axes
• specification of number of characters: x{2,4} → xx, xxx, xxxx
• escape for special characters: \(a → (a

As you can see, the language provided by regular expressions includes five impor-
tant aspects: repetition, range, disjunction, optionality, and negation. As we can
combine these aspects in various ways and apply them on either single characters
or groups of characters, there is an infinite number of text segments which can be
captured with regular expressions. That explains how regular expressions capture the
representation of very long lists within a single expression.

Granted, for the Symphony type, it may be possible to list all the existing sym-
phonies, but what about entity types such as Date, PhoneNumber, or EmailAddress?
Regular expressions allow for the concise representation of variations within these
non-enumerable entity types. Table3.4 shows examples of different regular expres-
sions to recognize particular entities.

2There are some online regular expression testers, such as Regexpal, available at http://regexpal.
com/ which allow you to write regular expressions and use them to search in text. You can also use
the regular expression matcher libraries within your favourite programming language to write and
test the search capacity of regular expressions.

http://regexpal.com/
http://regexpal.com/

3.3 Capturing Regularities in Named Entities: Regular Expressions 29

Table 3.4 Examples of regular expressions for specific entity types

RegEx Examples

Abbreviated winter month, optional final period

(Jan|Feb|March).* Jan. / Feb

Any year between 1000 and 3000

[12][0–9]{3} 1977 / 2015

Postal codes in Canada

[A-Z][0–9][A-Z][0–9][A-Z][0–9] H2X3W7 / Q1Z4W8

Avenue names

(1rst|2nd|3rd|[4–20]th) (Avenue|Ave.|Ave) 3rd Avenue / 6th Ave.

Any street name

[A-Z][a-z|A-Z]* (Street|St.|St) Wrench St. / Lock Street

North American phone numbers

\([1–9]{3}\) [1–9]{3}(-*|)[0–9]{4} (456) 245–8877 / (123) 439
3398

Symphony name

[Ss]ymphony [Nn]o.* *[1–9] Symphony no.4 / symphony
No 5

Notice how we require repetition for capturing sequences of 3 digits in a row for
telephone numbers, range for capturing the notion of a digit (1–9), disjunction to
provide alternatives for months, and optionality to allow street names to contain a
period after St or not. Out of the five aspects of regular expressions, only negation
is missing in Table3.4.

Now, let us design an experiment to put regular expressions to the test and study
their behavior in an entity type search.

3.4 Experiment — Finding DATE Instances in a Corpus

Let us now tackle the problem of finding dates. Dates are important in Informa-
tion Extraction, since we often want to know when things happen. Moreover, they
represent a type of entity for which the enumeration of instances would be much
too lengthy to be practical. Because of this, Date is an entity type where regular
expressions should prove quite useful.

3.4.1 Gold Standard and Inter-Annotator Agreement

First, we need to establish a gold standard against which we can evaluate our algo-
rithm through its phases of development. Table3.5 provides such a possible gold
standard.

30 3 Searching for Named Entities

Table 3.5 Examples of sentences containing (or not) a Date

No. Sentence Date instance?

1 He was born on the 8th of July 1987. Yes

2 Cancel the flight 2000 by Sept. 10th to avoid paying fees. No

3 A date to remember is August 10, 1999. Yes

4 I wrote “10/04/1999” on the form, next to my name. Yes

5 Class 20–09, that was a nice course. No

6 The wedding was in 2008, on April 20th exactly. Yes

7 Flight Air Canada 1987, is 6th in line to depart. No

8 The expiration date is 15/01/12. Yes

9 Your appointment is on October 31, 2012. Yes

10 It is Dec. 15 already, hard to believe that 2011 is almost over. Yes

11 November 1986, on the 7th day, the train departed. Yes

12 There was 5000mm of rain in 7 days. No

13 He was in his 7th year in 1987. No

14 The product code is 7777–09. No

15 He arrived 31st in rank at the 2005 and 2008 runs. No

16 The event happens March 10–12 2015. Yes

17 The big day is November 20th, 2017 Yes

When creating a gold standard, it is tempting to include only target sentences. In
our case, this would mean exclusively including sentences that contain dates. The
problem with this approach is that it would not allow us to evaluate the number of
false positives produced by our algorithm. After all, if all the sentences qualify for
our search, then we have not given the algorithm the chance to falsely identify one
as qualifying when it does not. And, as we saw in Chap.2, Sect. 2.2, identifying false
positives is an important part of the evaluation of an algorithm’s precision.

For this reason, we should intentionally include non-date sentences in our gold
standard. To further ensure the precision of our algorithm, we should contrive these
negative examples to differ only slightly from the positive ones. You can think of
this as testing the algorithm’s precision by including sentences that are almost, but
not quite, what we are looking for, and seeing whether it ‘takes the bait’.

In the last column of Table3.5, you will notice that I have marked examples as
either positive or negative. Do you agree with my decisions? We might agree on
some, but probably not all examples. Since there are many possible interpretations
of what qualifies as a positive or negative example of an entity, annotators (human
judges) are rarely in full agreement until the task is very well defined. I will reiterate
my classifications below (Judge 1) and invent another hypothetical set, which I will
attribute to a fictive other judge (Judge 2).

Judge 1: {1, 3, 4, 6, 8, 9, 10, 11, 16, 17}
Judge 2: {1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 15, 16, 17}

http://dx.doi.org/10.1007/978-3-319-41337-2_2

3.4 Experiment — Finding Date Instances in a Corpus 31

What we now have before us is a problem of inter-annotator agreement. Within
NLP,we talk of inter-annotator agreement to represent the degree towhich twohuman
judges agree on a particular annotation task. In the current example, the annotation
was to determine Yes/No for each sentence, as containing an instance of a Date or
not. Inter-annotator agreement is an important concept to understand, since it will
come back again and again in the development of NLP evaluation sets.

Certain measures have been proposed for the specific purpose of determining
levels of inter-annotator agreement. One such measure is Cohen’s Kappa. This
measure requires a matrix similar to the contingency table we used earlier (see
Sect. 2.2) for comparing an algorithm to a gold standard. Table3.6 shows where
we (Judge 1 and Judge 2) agreed and disagreed in our earlier classifications of date
and non-date sentences.

Table 3.6 Judge comparison for Date search example

Judge 2

correct incorrect

Judge 1 correct
incorrect

10
3

0
4

The Kappa measure also requires that we account for agreement that could occur
by chance alone. In other words, what is the probability Pr(e) that closing our eyes
and marking Yes/No beside the various sentences would result in agreement? Once
we know the value of Pr(e), we can compare our actual agreement Pr(a) against
it. Both Pr(a) and Pr(e) are part of the Kappa measure, as shown in Eq.3.1.

κ = Pr(a) − Pr(e)

1 − Pr(e)
(3.1)

Since we only have two classes in this case (Yes/No), our probability Pr(e) of
agreement by chance is 50%. If there were ten different classes, the probability of
two judges agreeing would be reduced to 10%. In cases of open set of annotations,
when the number of classes is not set in advance, measuring such agreement becomes
quite difficult.

Our actual agreement Pr(a) is the number of times both judges said Yes (10
times) + the number of times both judges said No (4 times) divided by the total
number of examples (17).

Pr(a) = (10 + 4)

17
= 0.824

Pr(e) = 0.5

κ = (0.824 − 0.5)

1 − 0.5
= 0.65

http://dx.doi.org/10.1007/978-3-319-41337-2_2

32 3 Searching for Named Entities

So, does a κ of 0.65meanwe agree?How shouldwe interpret this result?Although
there is no universal standard for interpreting Kappa scores, the scale below is often
used.

κ < 0 would indicate no agreement
0 > κ < 0.20 slight agreement
0.21 > κ < 0.40 fair agreement
0.41 > κ < 0.60 moderate agreement
0.61 > κ < 0.80 substantial agreement
0.81 > κ < 1.00 almost perfect agreement

Basedon this scale,wehave attained substantial agreement. This is not a bad result,
but we could do better. A less-than-perfect measure of inter-annotator agreement can
be taken in two ways: either the task is not well defined or the task really is highly
subjective. In our case, we could potentially reach a higher level of agreement if we
refine the definition of our task. In order to accomplish this, we should ask ourselves
certain questions: What does it mean to find dates? Are we only interested in finding
full dates that we can map to a calendar day? Do we want year only mentions to be
included? Do we want to include ranges of dates?

The answers to these questions will be determined by how we intend to apply
our results. To clarify this intention, we should consider why we are extracting dates
and what will we do with them once we have them. In our current experiment, we
have not yet defined a particular application, but we can still try to be as specific as
possible in defining our task. My criterion for answering Yes in Table3.5 was that
the sentence must contain a date specific enough that I can map it to a calendar day.
Knowing this, do you now agree with my classifications? If so, what would our new
Kappa be?

3.4.2 Baseline Algorithm: Simple DATE Regular Expression

For our first exploration, let us come up with two regular expression baselines, one
generic (high recall) andonevery specific (highprecision), anddefine them.Although
up to now we have mostly seen regular expressions written as one long string, when
programming them we can take advantage of the fact that programming languages
allow us to use variables to contain strings. This further allows us to define partial
elements of the regular expressions and to later combine them in different ways.
In the example below, I first define regular expressions for months, years, and days
and then I show how to combine them using a string concatenation operator (+), to
generate the two baselines:

Year = [12][0–9]{3}
Month = (January|February|March|April|May|June|July|

August|September|October|November|December)
DayNum = ([1–9]|[1–2][0–9]|30|31)
Baseline 1 : Year
Baseline 2 : Month + ” ” + DayNum + ”, ” + Year

3.4 Experiment — Finding Date Instances in a Corpus 33

The regular expression for Year allows a range from year 1000 to 2999, forcing
the first digit to be 1 or 2, and then requiring 3 consecutive digits, each in the range
0–9. The regular expression forMonth is simply a list of possible month names. The
regular expression forDayNum allows a range of 1 to 31, by combining 4 subranges:
between 1 and 9, or between 10 and 29, or 30, or 31.

The baseline 1 for high recall only uses the regular expression for the Year. The
baseline 2 for high precision requires a sequence of Month followed by a space,
followed by a Day, a comma, another space, and a Year (e.g., January 5, 1999).

Table3.7 displays theYes/No results of these two baseline algorithms, in compari-
sonwith the gold standard defined by Judge 1 earlier. Table3.8 shows the contingency
tables for both algorithms.

Table 3.7 Results of two baseline algorithms for the extraction of Date instances

No. Sentence Judge 1 Baseline 1 Baseline 2

1 He was born on the 8th of July 1987. Yes Yes No

2 Cancel the flight 2000 by Sept. 10th to avoid paying
fees.

No Yes No

3 A date to remember is August 10, 1999. Yes Yes Yes

4 I wrote “10/04/1999” on the form, next to my name. Yes Yes No

5 Class 20–09, that was a nice course. No No No

6 The wedding was in 2008, on April 20th exactly. Yes Yes No

7 Flight Air Canada 1987, is 6th in line to depart. No Yes No

8 The expiration date is 15/01/12. Yes No No

9 Your appointment is on October 31, 2012. Yes Yes Yes

10 It is Dec. 15 already, hard to believe that 2011 is
almost over.

Yes Yes No

11 November 1986, on the 7th day, the train departed. Yes Yes No

12 There was 5000mm of rain in 7 days. No No No

13 He was in his 7th year in 1987. No Yes No

14 The product code is 1111–09. No Yes No

15 He arrived 31st in rank at the 2005 and 2008 runs. No Yes No

16 The event happens March 10–12 2015. Yes Yes No

17 The big day is November 20th, 2017 Yes Yes No

Table 3.8 Contingency table for baseline algorithms

Judge 1 (Gold standard)

correct incorrect

Baseline 1 correct
incorrect

8
1

6
2

Baseline 2 correct
incorrect

2
7

0
8

34 3 Searching for Named Entities

From Table3.8, we can evaluate recall, precision, and F1 measures for both algo-
rithms, as following:

Baseline 1—High recall

Recall = 8

9
= 88.9%

Precision = 8

14
= 57.1%

F1 = 2 ∗ 88.9 ∗ 57.1

88.9 + 57.1
= 69.6%

Baseline 2—High precision

Recall = 2

9
= 22.2%

Precision = 2

2
= 100.0%

F1 = 2 ∗ 22.2 ∗ 100

22.2 + 100
= 36.4%

As expected, the first baseline shows quite high recall, and the second baseline
shows low recall but high precision. We now try to refine our regular expressions to
maintain a high recall, but not at the expense of a low precision.

3.4.3 Refining the DATE Expressions

At this point, we will have to engage in what is essentially a process of trial and
error, where we observe the data and try to find expressions that maximize both
recall and precision. Both the individual elements defined earlier (the patterns for
months, years, and days) and the patterns of combination can be refined to create
different options. Here are some ideas:

Year = [12][0–9]{3}
Month = (January|February|March|April|May|June|July|

August|September|October|November|December)
MonthShort = (Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec).*
DayNum = ([1–9]|[1–2][0–9]|30|31)
DayEnd = (1rst|2nd|3rd|[4–9]th|1[0–9]th|21rst|22nd|

23rd|2[4–9]th|30th|31rst)
RegExDate1 = ”(” + Month + ”|” + MonthShort + ”)” + ” ” +

”(” + DayNum + ”|” + DayEnd + ”)” + ”, ” + Year
RegExDate2 = DayNum + ”/” + MonthNum + ”/” + [0–9]{2}

How far did that refinement take us? Well, an extraction process relying on both
RegExDate1 and RegExDate2 now finds August 10, 1999, 10/04/19, 15/01/12,
and October 31, 2012 and provides a recall of 33%. Although this is still not high,
it is higher than baseline 2, which had recall of 20%. The precision is now at 75%,
right between baselines 1 and 2. I will leave it as an exercise for the reader to verify
the precision/recall of this extraction process, and more importantly, to continue the
iterative cycle of development and evaluation, as to further refine the set of regular
expressions used for extracting instances of Date.

At the end of this iterative refinement process, the real test for our strategywould
come from gathering a completely new and unseen set of sentences, generate a new
gold standard by annotating the sentences as to their mention Yes/No of a Date,
perform the extraction process on that new set of sentences, and evaluate the results

3.4 Experiment — Finding Date Instances in a Corpus 35

against the new gold standard. Since we used the set of sentences from Table3.5
during the refinement cycle, we should refer to these sentences as our development
set. It is too lenient to evaluate strategies on the development set, since that is the
set on which we tried to optimize both precision and recall. The final evaluation of a
strategy should be on a test set, never seen during the refinement cycle. It is important
to understand the difference between the two sets and the variation on results which
can occur, depending onwhich set we evaluate on. Being aware of this differentiation
can help sometimes understand why results presented in research articles may vary
widely, not just because of their variation in terms of strategies, but also in terms of
their evaluation method.

When test sets are not available, an approximation of an algorithm’s performance
in test condition can be measured using a cross-validation approach. The idea in
cross-validation is to separate the development set into N subsets, develop the rules
based on N−1 subsets, and test them on the Nth subset, repeating such process
N times and averaging the results. Cross-validation is most often optimistic in its
evaluation, as it is based on a somewhat artificial setting, which in theory is valid,
but where in practice, “pretending” that we have not seen part of the data either for
rule development or feature development (in machine learning approaches) is not
realistic. Still, cross-validation is widely used as an evaluation approach for many
different categorization tasks.

3.5 Language Dependency of Named Entity Expressions

In Chap.2, Sect. 2.6, we discussed the fact that entities themselves are referred to
differently in different languages. But what about entity classes? Well, if we were to
try to find information about an entity class in a multilingual setting (e.g., Composer),
using gazetteers of entities (e.g., L.V. Beethoven and W.A. Mozart), we would find
ourselves once again faced with the original problem, this time generalized to all
entities of a class.

When it comes to classes that are better represented by regular expressions (e.g.,
non-enumerable entities), there is equal potential for linguistic and/or cultural varia-
tion. When searching in different languages and/or in text written in different coun-
tries, we should be aware that this variation affects even the simplest of writing
practices. Dates, for example, can be represented in many different ways, and a men-
tion like 11/12/2016 could refer to the 11th day of the 12th month, or to the 12th day
of the 11th month, depending on the country.

Dates are just one example. The writing of numbers can vary as well, with some
countries using a comma to represent decimals, and others using a period (e.g., 2.54
versus 2,54). Other examples include elements of daily life in text, such as phone
numbers and zip/postal codes. These too have different formats depending on the
country.

If we wish to define and test regular expressions for particular entity types, and
if we aspire to have them work in a multilingual setting, it is essential that we create

http://dx.doi.org/10.1007/978-3-319-41337-2_2

36 3 Searching for Named Entities

a gold standard that contains positive and negative sentences from the languages we
intend to cover. This process might begin with writing regular expressions that are
language independent, but they would eventually be refined to be language specific.

3.6 In Summary

• The term named entity can be interpreted in a strict sense to mean entities that can
be uniquely identified, or in a looser sense to mean any identifiable information
that would be of importance in text understanding.

• Different authors have proposed varying lists of named entity types, some more
coarse-grained, others more fine-grained.

• Regular expressions serve as a good alternative (or complement) to lists/gazetteers,
which themselves are never complete.

• Regular expressions provide a powerful way of expressing certain entity types, in
order to search for them in text.

• An iterative refinement process can be used for the development of regular expres-
sions, which aims at maximizing both recall and precision on a development
dataset.

• When it comes to classification tasks, people are not always in agreement.Cohen’s
Kappa is useful for evaluating inter-annotator agreement.

• Low inter-annotator agreement can be interpreted in two ways: either the task is
not well defined or the task is very subjective.

• In a multilingual context, entities are often expressed in slightly different ways.
We should not assume that previously defined regular expressions are simply
transferable from one language to another.

3.7 Further Reading

Entity types: Early definitions of named entities, in the Message Understanding
Conference (MUC-6), are found in Sundheim (1995). An example of a fine-grained
list, the Extended Named Entity list, is presented in Sekine et al. (2002) and further
described at http://nlp.cs.nyu.edu/ene/version7_1_0Beng.html. Some examples of
entity types presented in this chapter are taken from another fine-grained list used in
Ling and Weld (2012).

Named Entity Recognition: A survey of NER is presented in Nadeau and Sekine
(2007). In Ratinov and Roth (2009), the emphasis is on challenges and misconcep-
tions in NER. In Tkachenko and Simanovsky (2012), the focus is rather on features
important to the NER task. The references above will at one point mention the use
of gazetteers as an important element in NER.

Inter-Annotator Agreement: Cohen’s kappa is presented in the Wikipedia page
http://en.wikipedia.org/wiki/Cohen’s_kappa which also describes some variations.
The Kappa interpretation scale presented in this chapter was proposed by Koch and
Landis (1977).

http://nlp.cs.nyu.edu/ene/version7_1_0Beng.html
http://en.wikipedia.org/wiki/Cohen's_kappa

3.8 Exercises 37

3.8 Exercises

Exercise 3.1 (Entity types)

a. In Sect. 3.1, we presented a fine-grained list of entity types. For each entity type
in the list (e.g., actor, airline, religion, and restaurant), determine which of the
two approaches, either gazetteers or regular expressions, would be the most appropriate
in an extraction process. Discuss your choices and provide examples to support them.

Exercise 3.2 (Regular expressions)

a. Go to the site http://regexpal.com/, which allows you to enter regular expressions
and test them on different texts. You can also use the regular expression matcher
libraries within your favourite programming language if you prefer. Make up
test sentences and try the regular expressions defined in Table3.4 to extract vari-
ous type of information. Try new expressions. Play around a little to familiarize
yourself with regular expressions.

b. Write a regular expression that would be able to detect URLs. Then, write another
one for emails and a third for phone numbers.

c. Find ways to make the regular expressions in Table3.4 more general. How would
you go about this?

d. Go back to Table3.3 and write regular expressions to cover all the variations
shown.

Exercise 3.3 (Gold standard development and inter-annotator agreement)

a. What would be the impact of choosing negative examples for the entity Date that
do not contain any numbers? Discuss.

b. Assuming you have access to a large corpus, what could be a good way of gath-
ering sentence candidates for positive and negative examples for the Date entity
type?

c. In assessing the presence of dates in the examples of Table3.5, assume a third
judge provided the following positives: {1, 3, 4, 5, 6, 8, 10, 11, 15, 16, 17}. What
would be her level of agreement with the other two judges?

Exercise 3.4 (Iterative development process)

a. Continue the development of regular expressions for finding dates in Table3.5.
Try to achieve 100% recall and 100% precision on that development set. Then,
develop a new test set, including positive and negative examples, or better yet, to
be completely unbiased, ask one of your colleagues to build that test set for you.
Try the set of regular expressions you had developed. Do you still achieve good
recall and precision? How much does the performance drop? Discuss.

b. Assuming we want to extract a person’s birthdate from the short abstract (in
DBpedia) describing that person’s life. Write a set of regular expressions which
automatically extract the birth date from the abstracts for some well-known peo-
ple. Develop the regular expressions in your program using a first development

http://regexpal.com/

38 3 Searching for Named Entities

set of 10 famous people and then perform a final test of your program using a
new test set of 10 other famous people.

c. Choose 5 entity types fromExercise 3.1 forwhich you thought regular expressions
would be appropriate. Gather examples for these types from DBpedia (or another
resource). For each type, gather 10 examples for your development set, and 10
examples for your test set. Use your development set to create regular expressions.
Then, test your regular expressions on the test set. Do results vary depending on
the entity type? Discuss.

http://www.springer.com/978-3-319-41335-8

	3 Searching for Named Entities
	3.1 Entity Types
	3.2 Gazetteers
	3.3 Capturing Regularities in Named Entities: Regular Expressions
	3.4 Experiment --- Finding Date Instances in a Corpus
	3.4.1 Gold Standard and Inter-Annotator Agreement
	3.4.2 Baseline Algorithm: Simple Date Regular Expression
	3.4.3 Refining the Date Expressions

	3.5 Language Dependency of Named Entity Expressions
	3.6 In Summary
	3.7 Further Reading
	3.8 Exercises

