Chapter 2
Modulo Addition and Subtraction

In this Chapter, the basic operations of modulo addition and subtraction
are considered. Both the cases of general moduli and specific moduli of
the form 2"—1 and 2"+ 1 are considered in detail. The case with moduli of the
form 2"+ 1 can benefit from the use of diminished-1 arithmetic. Multi-operand
modulo addition also is discussed.

2.1 Adders for General Moduli

The modulo addition of two operands A and B can be implemented using the
architectures of Figure 2.1a and b [1, 2]. Essentially, first A + B is computed and
then m is subtracted from the result to find whether the result is larger than m or not.
(Note that TC stands for two’s complement.) Then using a 2:1 multiplexer, either
(A+B) or (A +B—m) is selected. Thus, the computation time is that of one n-bit
addition, one (n + /)-bit addition and delay of a multiplexer. On the other hand, in
the architecture of Figure 2.2b, both (A + B) and (A + B—m) are computed in
parallel and one of the outputs is selected using a 2:1 multiplexer depending on
the sign of (A+B—m). Note that a carry-save adder (CSA) stage is needed for
computing (A + B—m) which is followed by a carry propagate adder (CPA). Thus,
the area is more than that of Figure 2.2a, but the addition time is less. The area A and
computation time A for both the techniques can be found for n-bit operands
assuming that a CPA is used as

© Springer International Publishing Switzerland 2016 9
P.V. Ananda Mohan, Residue Number Systems, DOI 10.1007/978-3-319-41385-3_2

10 2 Modulo Addition and Subtraction

A B
a 4 ¢ ¢ B b
TC of m
Adder v A4 ¢ v ¢
Add CSA
¢ TC of m e
Y v v
Adder Adder
A+B A+B
v A+B-m
y v AtB-m 2:1 MUX
2:1 MUX |, ¢
¢ (4+B) mod m

(A+B) mod m
Figure 2.1 Modulo adder architectures: (a) sequential (b) parallel
Figure 2.2 Modular adder

X Y
due to Hiasat (adapted from n/i/ n/i/
[6] ©IEEE2002)

SAC

B |2 o |a

CPG
P |G [P_[9
——1 I
CLA for
COUt
1
MUX
CLAS

/lL’n

Acascade = (2n 4+ 1)Apa + nAg.amux + Ay, Acascade = (20 + 1)Apa + Avimux + Ay
Aparatiet = (3n 4+ 2)Apa + nAn.amux + nAvy, Aparatier = (1 + 2)Apa + Avayux + Ay
(2.1)

where Aga, Az.imux, and Apyy are the delays and Aga, As.imux and Ay are the
areas of a full-adder, 2:1 Multiplexer and an inverter, respectively. On the other

2.1 Adders for General Moduli 11

hand, by using VLSI adders with regular layout e.g. Brent—Kung adder [3], the area
and delay requirements will be as follows:

Acascade = 2n(logyn + 1)Apa + nAsapux + nAivy, Acascade = 2(10gyn + 1)Apa + Apyy,
Aparaier = (n + 1 4 logyn +log, (n + 1) 4 2)Apa + nAyamux + nApy,
Aparatier = ((logon + 1) +2)Apa + Apamux + Ay

(2.2)

Subtraction is similar to the addition operation wherein (A—B) and (A—B + m)
are computed sequentially or in parallel following architectures similar to
Figure 2.1a and b.

Multi-operand modulo addition has been considered by several authors. Alia and
Martinelli [4] have suggested the mod m addition of several operands using a CSA
tree trying to keep the partial results at the output of each CSA stage within the
range (0, 2") by adding a proper value. The three-input addition in a CSA yields n-
bit sum and carry vectors S and C. S is always in the range {0, 2"}. The computation
of 2C+S),, is carried out as 2C+S),,=L+H+2T-+Ts=L+H+T+km where
k>0 is an integer. Note that L =2(C—T¢) and H=S—-Tg were Tg= s,,,12”_1 and
Te=cy 12" " +¢,_ 52" 2 Thus, using s,_1, cy_1, Cn_» bits, T can be obtained using
a 7:1 MUX and added to L, H. Note that L is obtained from C by one bit left shift
and H is obtained as (n—1)-bit LSB word of S.

All the operands can be added using a CSA tree and the final result
Ur=2Cr+SF is reduced using a modular reduction unit which finds Ug, Ug—m,
Ur—2m and Urp—3 m using two CLAs and based on the sign bits of the last three
words, one of the answers is selected.

Elleithi and Bayoumi [5] have presented a 6(1) algorithm for multi-operand
modulo addition which needs a constant time of five steps. In this technique, the two
operands A and B are written in redundant form as A;, A, and B, B,, respectively.
The first three are added in a CSA stage which will yield sum and carry vectors.
These two vectors templ and temp2 and B, are added in another CSA which will
yield sum and carry vectors temp3 and temp4. In the third step, to temp3 and temp4
vectors, a correction term (2"—m) or 2(2"—m) is added in another CSA stage
depending on either one or both carry bits of templ and temp2 are 1 to result in
the sum and carry vectors temp5 and temp6. Depending on the carry bit, in the next
step (2"—m) is added to yield final result in carry save form as temp7 and temp8.
There will be no overflow thereafter.

Hiasat [6] has described a modulo adder architecture based on a CSA and
multiplexing the carry generate and propagate signals before being driven to the
carry computation unit. In this design, the output carry is predicted that could result
from computation of A + B + Z where Z = 2"—m. If the predicted carry is 1, an adder
proceeds in computing the sum A + B + Z. Otherwise, it computes the sum A + B.
Note that the calculation of Sum and Carry bits in case of bit z; being 1 or 0 is quite
simple as can be seen for both these cases:

12 2 Modulo Addition and Subtraction

si=a;®b;, ciy1=ab; and §;=a; Db, Ciy1=a;+b

Thus, half-adder like cells which give both the outputs are used. Note that s;, ¢/,
Si, Cii1 serve as inputs to carry propagate and generate unit which has outputs P;,
G, pi» gi corresponding to both the cases. Based on the computation of ¢,,, using a
CLA, amultiplexer is used to select one of these pairs to compute all the carries and
the final sum. The block diagram of this adder is shown in Figure 2.2 where SAC is
sum and carry unit, CPG is carry propagate generate unit, and CLA is carry look
ahead unit for computing C,,,. Then using a MUX, either P, G or p, g are selected to
be added using CLA summation unit (CLAS). The CLAS unit computes all the
carries and performs the summation P; & ¢; to produce the output R. This design
leads to lower area and delay than the designs in Refs. [1, 5].

Adders for moduli (2"—1) and (2" + 1) have received considerable attention in
literature which will be considered next.

2.2 Modulo (2"—-1) Adders

Efstathiou, Nikolos and Kalamatinos [7] have described a mod (2"—1) adder. In this
design, the carry that results from addition assuming carry input is zero is taken into
account in reformulating the equations to compute the sum. Consider a mod 7 adder
with inputs A and B. With the usual definition of generate and propagate signals, it
can be easily seen that for a conventional adder we have

co = Go + Poc_4 (23&)
c1 =G+ Pic (23b)
2 =Gy + PGy + PP g (2.3¢)

Substituting c_; in (2.3a) with ¢, due to the end-around carry operation of a mod
(2"—1) adder, we have

co = Gy + PoGa + PoP2G + GoP2P1Gy = Gy + PoGa + PoP2Gy (2.4)
c1 =G+ PGy + P PyG, (253.)
c, = Gy, + PGy + P,PG, (2.5b)

An implementation of mod 7 adder with double representation of zero
(i.e. output=7 or zero) is shown in Figure 2.3a where s; = P; & ¢;_;. A simple
modification can be carried out as shown in Figure 2.3b to realize a single zero.
Note that the output can be 2"—1, if both the inputs are complements of each other.
Hence, this condition can be used by computing P = PoPP5. . .P,_, and modifying
the equations as

2.2 Modulo (2"—1) Adders

13

a X, P,
—_— {>°
JE— |
Y, Go .
Py
X,)) e
Yl_ | |
Gy —
L/ Co S
P
D >
Y, —
G R
’),
b P
Y, | A '
0
—] C-1
Py
=D - > P
Yl_ NSy]
Gy ‘)
! L J Co "
P
X, 2
1) >
Y2_
G, L J

[S,

Figure 2.3 (a) Mod 7 adder with double representation of zero (b) with single representation of
zero (adapted from [7] ©IEEE1994)

14 2 Modulo Addition and Subtraction

s,-z(P,«i—P)@c,;l for 0<i<n-—1. (2.6)

The architectures of Figure 2.3, although they are elegant, they lack regularity.
Instead of using single level CLA, when the operands are large, multiple levels can
also be used.

Another approach is to consider the carry propagation in binary addition as a
prefix problem. Various types of parallel-prefix adders e.g. (a) Ladner—Fischer [8],
(b) Kogge-Stone [9], (c) Brent—Kung [3] and (d) Knowles [10] are available in
literature. Among these, type (a) requires less area but has unlimited fan out
compared to type (b). But designs based on (b) are faster.

Zimmerman [11] has suggested using an additional level for adding end-around-
carry for realizing a mod (2"—1) adder (see Figure 2.4a) which needs extra
hardware and more over, this carry has a large fan out thus making it slower.
Kalampoukas et al. [12] have considered modulo (2"—1) adders using parallel-
prefix adders. The idea of carry recirculation at each prefix level as shown in
Figure 2.4b has been employed. Here, no extra level of adders will be required,
thus having minimum logic depth. In addition, the fan out requirement of the carry
output is also removed. These architectures are very fast while consuming large
area.

The area and delay requirements of adders can be estimated using the unit-gate
model [13]. In this model, all gates are considered as a unit, whereas only exclusive-
OR gate counts for two elementary gates. The model, however, ignores fan-in and
fan-out. Hence, validation needs to be carried out by using static simulations. The
area and delay requirements of mod (2"—1) adder described in [12] are 3nlogn + 4n
and 2logn + 3 assuming this model.

Efstathiou et al. [14] have also considered design using select-prefix blocks with
the difference that the adder is divided into several small length adder blocks by
proper interconnection of propagate and generate signals of the blocks. A select-
prefix architecture for mod (2"—1) adder is presented in Figure 2.5. Note that d,
fand g indicate the word lengths of the three sections. It can be seen that

Cin,0 = BGz + szBGl + BPQBP[BGO
Cin,1 = Cout,0 = BGO + BP()BG2 + BPOBPZBG]
Cin.2 = Cour,1 =BGy + BPBGy + BP1BP\BG,

where BG; and BP; are block generate and propagate signals outputs of each block.

Tyagi [13] has given an algorithm for selecting the lengths of the various adder
blocks suitably with the aim of minimization of adder delay. Note that designs
based on parallel-prefix adders are fastest but are more complex. On the other hand,
CLA-based adder architecture is area effective. Select prefix-architectures achieve
delay closer to parallel prefix adders and have complexity close to the best adders.

Patel et al. [15] have suggested fast parallel-prefix architectures for modulo
(2"—1) addition with a single representation of zero. In these, the sum is
computed with a carry in of “1”. Later, a conditional decrement operation is

2.2 Modulo (2"—1) Adders

T
I
I
-
I
I
I
I
I
I
I
1
1
1
1
1
1
I
I
I
I
I
I
I
I
I
R —
I
1
L e -
O
3

Cout

Sp-1
Sp-2
S1
So

b

b7 az bé a6 b5 as b4 ag b3 as b2 as bl a] bo a0

I S e IV A I O O R O

/ /] /‘

AN Y

Figure 2.4 Modulo (2"—1) adder architectures due to (a) Zimmermann and (b) modulo (28— 1)
adder due to Kalampoukas et al. ((a) adapted from [11] ©IEEE1999 and (b) adapted from [12]

©IEEE2000)

performed. However, by cyclically feeding back the carry generate and carry
propagate signals at each prefix level in the adder, the authors show that

significant improvement in latency is possible over existing designs.

C*

15

16 2 Modulo Addition and Subtraction

Figure 2.5 Modulo 2%**¢—1 adder design using three blocks (adapted from [14] ©IEEE2003)

2.3 Modulo (2" +1) Adders

Diminished-1 arithmetic is important for handling moduli of the form 2" + 1. This
is because of the reason that this modulus channel needs one bit more word
length than other channels using moduli 2" and 2"—1. A solution given by
Liebowitz [16] is to represent the numbers still by 7 bits only. The diminished-1
number corresponding to normal number A in the range 1 to 2" is represented as
d(A)=A—1. If A=0, a separate channel with one bit which is 1 is used. Another
way of representing A in diminished-1 arithmetic is (4,, A,) where A,=1, A,=0
when A=2", A,=0, A;=A—1 otherwise. Due to this representation, some rules
need to be built to perform operations in this arithmetic which are summarized
below. Following the above notation, we can derive the following properties [17]:
(a) A+ B =C corresponds to

d(A+B) = (d(A)+d(B) + 1) mod (2" + 1) 2.7)
(b) Similarly, we have

d(A —B) = (d(A) +d(B) + 1)mod(2" +1) (2.8)
(c) It follows further that

d(Z::IAk> = (d(A) +d(Ay) +d(As) + ... +d(A)+n—1) mod (2" + 1)
(2.9)

Next,
d(2'A) =d(A+A+A+...+A) = (2"d(A)+2" — 1) mod (2" +1).
or

2'd(A) = (d(2*A) —2" + 1) mod (2" + 1) (2.10)

2.3 Modulo (2"+1) Adders 17

In order to simplify the notation, we denote a diminished-1 number using an
asterisk e.g. d(A) =A*=A—1.

Several mod (2" + 1) adders have been proposed in literature. In the case of
diminished-1 numbers, mod (2" + 1) addition can be formulated as [11]

S—1=8*=(A*+B*+1) mod (2"+1)
= (A* 4+ B*)mod (2") if (A*+ B*)
>2" and (A*+B*+1) otherwise (2.11)

where A* and B* are diminished-1 numbers and S = A + B. The addition of 1 can be
carried out by inverting the carry bit C,,, and adding in a parallel-prefix adder with
Cin = Cou (see Figure 2.6):

(A* + B* 4+ 1)mod(2" + 1) = (A* + B* + C,,,)mod(2") (2.12)
In the case of normal numbers as well [11], we have
S+1=(A+B+1)mod(2" + 1) = (A + B + Cou)mod(2") (2.13)
where S=A+B with the property that (S+1) is computed. In the design of
multipliers, this technique will be useful.
Note that diminished-1 adders have a problem of correctly interpreting the zero

output since it may represent a valid zero (addition with a result of 1) or a real zero
output (addition with a result zero) [14]. Consider the two examples of modulo

Figure 2.6 Modulo b1 bn.o by bo
(2" + 1) adder architecture a a a a
for diminished-1 arithmetic j n-1 j n-2 j 1 j 0
(adapted from [18] ‘ ‘ ‘ ‘

©IEEE2002)

Go,Po

18 2 Modulo Addition and Subtraction

9 addition (a) A=6 and B=4 and (b) C=5 and B =4 using diminished-1
representation:

A* 101 C* 100
B* 011 B* 011
Coue 1000 Coue 0111
Cout 0 Cout 1
000 Correct result 000 result indicating zero

Note that real zero occurs when the inputs are complimentary. Hence,
this condition needs to be detected using logical AND of the exclusive-OR of
a; and b;. The EXOR gates will be already present in the front-end CSA stage.

Vergos, Efstathiou and Nikolos have presented two mod (2" + 1) adder architec-
tures [18] for diminished-1 numbers. The first one leads to CLA implementation
and was derived by associating the re-entering carry equation with those producing
the carries of the modulo addition similar to that for mod (2"—1) described earlier
[12]. In this architecture, both one and two level CLAs have been considered. The
second architecture uses parallel-prefix adders and also was derived by
re-circulation of the carries in each level of parallel-prefix structure. This architec-
ture avoids the problem of fan-out and the additional level needed in Zimmerman’s
technique shown in Figure 2.6.

Efstathiou, Vergos and Nikolos [14] extended the above ideas by using select-
prefix blocks which are faster than the previous ones for designing mod (2" + 1)
adders for diminished-1 operands. Here, the lengths of the blocks can be selected
appropriately as well as the number of the blocks. The derivation is similar to that
for mod (2"—1) adders with the difference that the equations contain block carry
propagate, and block generate signals instead of bit level propagate and generate
signals. In these, an additional level is used to add the carry after the prefix
computation. A structure using two stages is presented in Figure 2.7. Note that in
this case

cino = (BG, + BPBGy)’
Cin,1 = Cour,0 = BGo + BPoBG',

These designs need lesser area than designs using parallel-prefix adders while they
are slower than CLA-based designs.

Efstathiou, Vergos and Nikolos [19] have described fast parallel-prefix modulo
(2"+1) adders for two (n+ 1)-bit numbers which use two stages. The first stage
computes |[X + Y + 2" — 1|2n+1 which has (n +2) bits. If MSB of the result is zero,

then 2"+ 1 is added mod 2"*' and the n LSBs yield the result. For computing
M=X+Y+2"—1,aCSA is used followed by a (n+ 1)-bit adder. The authors
use parallel-prefix with fast carry increment (PPFCI) architecture and also a totally

2.3 Modulo (2" + 1) Adders 19

1! HoH i !
.”Ll_—l .”L'_—I o BG, .”? .”Ll_—l
BBGF’ I [T TQG:T I i —
it |
Acdor (3st1 Addr (10

Figure 2.7 Diminished-1 modulo Q@™*41) adder using two blocks (adapted from [14]
©IEEE2004)

parallel-prefix architecture. In the former, an additional stage for re-entering carry
is used, whereas in the latter case, carry recirculation is done at every prefix level.

The architecture of Hiasat [6] can be extended to the case of modulus (2" +1) in
which case we have Z=2"—1 and the formulae used are as follows:

R=I|X+Y+Zyn if X+Y+2zZ>2"" and R=I|X+Y+Zpn +1 otherwise.

Note that, in this case, the added bit z; is always 1 in all bit positions.

Vergos and Efstathiou [20] proposed an adder that caters for both weighted and
diminished-1 operands. They point out that a diminished-1 adder can be used
to realize a weighted adder by having a front-end inverted EAC CSA stage. Herein,
A+ B is computed where A and B are (n+ 1)-bit numbers using a diminished-1
adder. In this design, the computation carried out is

A+ By, = |+ Byt D+ 1 1, =Y U+, (214)

2"y
where Y and U are the sum and carry vector outputs of a CSA stage computing
A,+B,+D:

carry Y =y, oV, 3.ceee. YoVnu_1
sum U =u,_1u, »....... U,

where D = 2" — 4 + 2¢,71 + 5,. Note that A,,, B, are the words formed by the n-bit
LSBs of A and B, respectively, and s,,, ¢, ; are the sum and carry of addition of 1-bit
words a, and b,,. It may be seen that D is the n-bit vector 11111...1¢,175,.

An example will be illustrative. Consider » =4 and the addition of A =16 and
B=11. Evidently a,=1, b,=0, A,=0 and B,=11 and D=01110 yielding
(16+11);7=((0+11+14+1);7+ 1);7=10. Note that the periodic property of res-
idues mod (2" + 1) is used. The sum of the n th bits is complimented and added to
get D and a correction term is added to take into account the mod (2" + 1) operation.

20

2 Modulo Addition and Subtraction

The mod (2" + 1) adder for weighted representation needs a diminished-1 adder and
an inverted end-around-carry stage. The full adders of this CSA stage perform
(A,+B,+D) mod (2"+ 1) addition. Some of the FAs have one input “1” and can
thus be simplified. The outputs of this stage ¥ and U are fed to a diminished-1 adder
to obtain (Y + U + 1) mod 2". The architecture is presented in Figure 2.8. It can be
seen that every diminished-1 adder can be used to perform weighted binary addition
using an inverted EAC CSA stage in the front-end.

3, b 3,5 by,

n-1 “n-1

a

b,

n-3 “n-3

a b,

-4 Ond

S S N S T I

a b, a, b,

S

¢ .
bl

FA+ FA+ | | FA+ FA+ FA+ FA+ | | FA+
| | | | |
K Y v K K K Y v K&
[} [) [)
L] L]

Diminished-1 adder
(any architecture)

Lo

Sn Sn-l

!

Sn-2

Ll

S, S S

Figure 2.8 Modulo (2"+1) adder for weighted operands built using a diminished-1 adder
(adapted from [20] ©IEEE2008)

2.3 Modulo (2"+1) Adders 21

In another technique due to Vergos and Bakalis [21], first A* and B* are
computed such that A* + B¥*=A + B—1 using a translator. Then, a diminished-1
adder can sum A* and B* such that

’|A + Bl

g = |A* + B*|yn + Cour (2.15)
where c,,, is the carry of the n-bit adder computing A* + B*. However, Vergos and
Bakalis do not present the details of obtaining A* and B* using the translator. Note
that in this method, the inputs are < (2"—1).

Lin and Sheu [22] have suggested the use of two parallel adders to find A* + B*
and A* + B* + 1 so that the carry of the former adder can be used to select the correct
result using a multiplexer. Note that Lin and Sheu [22] have also suggested
partitioning the n-bit circular carry selection (CCS) modular adder to m number
of r-bit blocks similar to the select-prefix block type of design considered earlier.
These need circular carry selection addition blocks and circular carry generators.
Juang et al. [23] have given a corrected version of this type of mod (2" + 1) adder
shown in Figure 2.9a and b. Note that this design uses a dual sum carry look ahead
adder (DS-CLA). These designs are most efficient among all the mod (2"+1)
adders regarding area, time and power.

Juang et al. [24] have suggested considering (n + 1) bits for inputs A and B. The
weighted modulo (2" + 1) sum of A and B can be expressed as

‘|A + Bl

tilgn = A FB = (2" Dlyr if (A4 B) > 2"

=|A+B—(2"+1)]pn +1 otherwise (2.16)

Thus, weighted modulo (2" + 1) addition can be obtained by subtracting the sum of
A and B by (2" + 1) and using a diminished-1 adder to get the final modulo sum by
making the inverted EAC as carry-in.

Denoting Y’ and U’ as the carry and sum vectors of the summation A + B—(2" + 1),
where A and B are (n+ 1)-bit words, we have

n—2
JA+B—(2"+1)|n =D (2" (2} + 1) +2" " (20 +2by+ap 1+ by 1 +1)
i=0 i
(2.17)
where

y;:ai\/bi, u:»:a,»EBb,-.
As an illustration, consider A =16, B=15 and n =4. We have
[A+B—-(2"+ 1)\2:1 =116+ 15— 17|, = 14

and forA=6,B=7,

22 2 Modulo Addition and Subtraction

a B A"
n n
G [DS—-CLA
Adder
* * * *
V Sp-1,0---50,0 Sp-1,1---50,1
n n
SO MUX

* * * * * * * * * *
b3as bya, biay boay 1292

Modified I
part

Figure 2.9 (a) Block diagram of CCS diminished-1 modulo (2" + 1) adder and (b) Logic circuit of
CCS diminished-1 modulo (24+ 1) adder ((a) adapted from [22] ©IEEE2008, (b) adapted from
[23] ©IEEE2009)

2.3 Modulo (2"+1) Adders 23
A+B— (2" + 1) =[6+7—17|;s+ 1= 13.

The multiplier of 2"~ in (2.17) can be at most 5 since 0 <A, B <2". Since only
bits n and n—1 are available, the authors consider the (+ 1)-th bit to merge with C,,,:

‘lA —|—B|2n+]

= |JA+B— (2" 4+ 1)|]pn = Y + U'|on + cou VFIX ~ (2.18)

wherey! | =a, Vb,V a1V b,_1,u, | =a_ ®b,_y and FIX = a,b, V a,_b,
Va,b,_1. Note that y',_; and u/,_; are the values of the carry bit and sum bit
produced by the addition 2a, + 2b, + a,—1 + b,—1 + 1. The block diagram is
presented in Figure 2.10a together with the translator in b. Note that FAF
block generates y',_;, u/,_; and FA blocks generate y';, u; for i=0,1,..., n—2

a anby apabpy anobuo ap by
iy | ||
correction Translator-(2"+1)=Y'+ U’

W]

Diminished-1 adder

Sn Sn 1 Sn-2 SO
b @by an1by an2bpo cot e ag b
FAF FA+ cot FA+
T
Vipd Wpt YVno2upa o o - Yo u'o

Figure 2.10 (a) Architecture of weighted modulo (2" + 1) adder with the correction scheme and
(b) translator A +B—(2" + 1) (adapted from [24] ©IEEE2010)

24

2 Modulo Addition and Subtraction

where y! = a; VV b; and u, = a; @ b;. Note also that FIX is wired OR with the carry
Cous t0 yield the inverted EAC as the carry in. The FIX bit is needed since value
greater than 3 cannot be accommodated in y,_; and u,,_;.

The authors have used Sklansky [25] and Brent—Kung [3] parallel-prefix adders

for the diminished-1 adder.

References

1

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20

. M.A. Bayoumi, G.A. Jullien, W.C. Miller, A VLSI implementation of residue adders. IEEE

Trans. Circuits Syst. 34, 284-288 (1987)

M. Dugdale, VLSI implementation of residue adders based on binary adders. IEEE Trans.

Circuits Syst. 39, 325-329 (1992)

R.P. Brent, H.T. Kung, A regular layout for parallel adders. IEEE Trans. Comput. 31, 260264

(1982)

. G. Alia, E. Martinelli, Designing multi-operand modular adders. Electron. Lett. 32, 22-23
(1996)

. K.M. Elleithy, M.A. Bayoumi, A 6(1) algorithm for modulo addition. IEEE Trans. Circuits
Syst. 37, 628-631 (1990)

. A.A. Hiasat, High-speed and reduced area modular adder structures for RNS. IEEE Trans.
Comput. 51, 84-89 (2002)

. C. Efstathiou, D. Nikolos, J. Kalanmatianos, Area-time efficient modulo 2"—1 adder design.
IEEE Trans. Circuits Syst. 41, 463—467 (1994)

. R.E. Ladner, M.J. Fischer, Parallel-prefix computation. JACM 27, 831-838 (1980)

. P.M. Kogge, H.S. Stone, A parallel algorithm for efficient solution of a general class of

recurrence equations. IEEE Trans. Comput. 22, 783-791 (1973)

S. Knowles, A family of adders, in Proceedings of the 15th IEEE Symposium on Computer

Arithmetic, Vail, 11 June 2001-13 June 2001. pp. 277-281

R. Zimmermann, Efficient VLSI implementation of Modulo (2" + 1) addition and multiplica-

tion, Proceedings of the IEEE Symposium on Computer Arithmetic, Adelaide, 14 April
1999-16 April 1999. pp. 158-167

L. Kalampoukas, D. Nikolos, C. Efstathiou, H.T. Vergos, J. Kalamatianos, High speed parallel

prefix modulo (2"—1) adders. IEEE Trans. Comput. 49, 673-680 (2000)

A. Tyagi, A reduced area scheme for carry-select adders. IEEE Trans. Comput. 42, 1163-1170
(1993)

C. Efstathiou, H.T. Vergos, D. Nikolos, Modulo 2" + 1 adder design using select-prefix blocks.
IEEE Trans. Comput. 52, 1399-1406 (2003)

R.A. Patel, S. Boussakta, Fast parallel-prefix architectures for modulo 2"—1 addition with a
single representation of zero. IEEE Trans. Comput. 56, 1484—1492 (2007)

L.M. Liebowitz, A simplified binary arithmetic for the fermat number transform. IEEE Trans.
ASSP 24, 356-359 (1976)

Z. Wang, G.A. Jullien, W.C. Miller, An efficient tree architecture for modulo (2" + 1) multi-
plication. J. VLSI Sig. Proc. Syst. 14(3), 241-248 (1996)

H.T. Vergos, C. Efstathiou, D. Nikolos, Diminished-1 modulo 2"+ 1 adder design. IEEE
Trans. Comput. 51, 1389-1399 (2002)

S. Efstathiou, H.T. Vergos, D. Nikolos, Fast parallel prefix modulo (2" + 1) adders. IEEE
Trans. Comput. 53, 1211-1216 (2004)

. H.T. Vergos, C. Efstathiou, A unifying approach for weighted and diminished-1 modulo
(2" + 1) addition. IEEE Trans. Circuits Syst. IT Exp. Briefs 55, 1041-1045 (2008)

References 25

21. H.T. Vergos, D. Bakalis, On the use of diminished-1 adders for weighted modulo (2" + 1)
arithmetic components, Proceedings of the 11th Euro Micro Conference on Digital System
Design Architectures, Methods Tools, Parma, 3-5 Sept. 2008. pp. 752-759

22. S.H. Lin, M.H. Sheu, VLSI design of diminished-one modulo (2" + 1) adders using circular
carry selection. IEEE Trans. Circuits Syst. 55, 897-901 (2008)

23. T.B. Juang, M.Y. Tsai, C.C. Chin, Corrections to VLSI design of diminished-one modulo
(2"+ 1) adders using circular carry selection. IEEE Trans. Circuits Syst. 56, 260-261
(2009)

24. T.-B. Juang, C.-C. Chiu, M.-Y. Tsai, Improved area-efficient weighted modulo 2"+ 1 adder
design with simple correction schemes. IEEE Trans. Circuits Syst. IT Exp. Briefs 57, 198-202
(2010)

25. J. Sklansky, Conditional sum addition logic. IEEE Trans. Comput. EC-9, 226-231 (1960)

2 Springer
http://www.springer.com/978-3-319-41383-9

Residue Number Systems

Theory and Applications

Ananda Mohan, P.V.

2016, ¥, 351 p. 131 illus., 17 illus. in color., Hardcover
ISEM: 978-3-319-41383-0

A product of Birkhauser Basel

