
Chapter 2

Modulo Addition and Subtraction

In this Chapter, the basic operations of modulo addition and subtraction

are considered. Both the cases of general moduli and specific moduli of

the form 2n�1 and 2n + 1 are considered in detail. The case with moduli of the

form 2n + 1 can benefit from the use of diminished-1 arithmetic. Multi-operand

modulo addition also is discussed.

2.1 Adders for General Moduli

The modulo addition of two operands A and B can be implemented using the

architectures of Figure 2.1a and b [1, 2]. Essentially, first A+B is computed and

then m is subtracted from the result to find whether the result is larger than m or not.

(Note that TC stands for two’s complement.) Then using a 2:1 multiplexer, either

(A+B) or (A+B�m) is selected. Thus, the computation time is that of one n-bit
addition, one (n+ 1)-bit addition and delay of a multiplexer. On the other hand, in

the architecture of Figure 2.2b, both (A+B) and (A+B�m) are computed in

parallel and one of the outputs is selected using a 2:1 multiplexer depending on

the sign of (A+B�m). Note that a carry-save adder (CSA) stage is needed for

computing (A+B�m) which is followed by a carry propagate adder (CPA). Thus,

the area is more than that of Figure 2.2a, but the addition time is less. The area A and

computation time Δ for both the techniques can be found for n-bit operands

assuming that a CPA is used as
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Acascade ¼ 2nþ 1ð ÞAFA þ nA2:1MUX þ nAINV , Δcascade ¼ 2nþ 1ð ÞΔFA þ Δ2:1MUX þ ΔINV

AParallel ¼ 3nþ 2ð ÞAFA þ nA2:1MUX þ nAINV, Δparallel ¼ nþ 2ð ÞΔFA þ Δ2:1MUX þ ΔINV

ð2:1Þ

where ΔFA, Δ2:1MUX, and ΔINV are the delays and AFA, A2:1MUX and AINV are the

areas of a full-adder, 2:1 Multiplexer and an inverter, respectively. On the other
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hand, by using VLSI adders with regular layout e.g. Brent�Kung adder [3], the area

and delay requirements will be as follows:

Acascade ¼ 2n log2nþ 1ð ÞAFA þ nA2:1MUX þ nAINV , Δcascade ¼ 2 log2nþ 1ð ÞΔFA þ ΔINV,

AParallel ¼ nþ 1þ log2nþ log2 nþ 1ð Þ þ 2ð ÞAFA þ nA2:1MUX þ nAINV,

Δparallel ¼ log2nþ 1ð Þ þ 2ð ÞΔFA þ Δ2:1MUX þ ΔINV

ð2:2Þ

Subtraction is similar to the addition operation wherein (A�B) and (A�B+m)
are computed sequentially or in parallel following architectures similar to

Figure 2.1a and b.

Multi-operand modulo addition has been considered by several authors. Alia and

Martinelli [4] have suggested the mod m addition of several operands using a CSA

tree trying to keep the partial results at the output of each CSA stage within the

range (0, 2n) by adding a proper value. The three-input addition in a CSA yields n-
bit sum and carry vectors S and C. S is always in the range {0, 2n}. The computation

of (2C + S)m is carried out as (2C + S)m¼ L+H + 2TC+ TS¼ L+H + T+ km where

k> 0 is an integer. Note that L¼ 2(C�TC) and H¼ S�TS were TS¼ sn�12
n�1 and

TC¼ cn�12
n�1 + cn�22

n�2. Thus, using sn�1, cn�1, cn�2 bits, T can be obtained using

a 7:1 MUX and added to L, H. Note that L is obtained from C by one bit left shift

and H is obtained as (n�1)-bit LSB word of S.
All the operands can be added using a CSA tree and the final result

UF¼ 2CF + SF is reduced using a modular reduction unit which finds UF, UF�m,
UF�2m and UF�3m using two CLAs and based on the sign bits of the last three

words, one of the answers is selected.

Elleithi and Bayoumi [5] have presented a θ(1) algorithm for multi-operand

modulo addition which needs a constant time of five steps. In this technique, the two

operands A and B are written in redundant form as A1, A2 and B1, B2, respectively.

The first three are added in a CSA stage which will yield sum and carry vectors.

These two vectors temp1 and temp2 and B2 are added in another CSA which will

yield sum and carry vectors temp3 and temp4. In the third step, to temp3 and temp4

vectors, a correction term (2n�m) or 2(2n�m) is added in another CSA stage

depending on either one or both carry bits of temp1 and temp2 are 1 to result in

the sum and carry vectors temp5 and temp6. Depending on the carry bit, in the next

step (2n�m) is added to yield final result in carry save form as temp7 and temp8.

There will be no overflow thereafter.

Hiasat [6] has described a modulo adder architecture based on a CSA and

multiplexing the carry generate and propagate signals before being driven to the

carry computation unit. In this design, the output carry is predicted that could result

from computation of A+B+Zwhere Z¼ 2n�m. If the predicted carry is 1, an adder
proceeds in computing the sum A+B+Z. Otherwise, it computes the sum A+B.
Note that the calculation of Sum and Carry bits in case of bit zi being 1 or 0 is quite
simple as can be seen for both these cases:
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si ¼ ai � bi, ciþ1 ¼ aibi and ŝ i ¼ ai � bi, ĉ iþ1 ¼ ai þ bi

Thus, half-adder like cells which give both the outputs are used. Note that si, ci+1,
ŝ i, ĉ iþ1 serve as inputs to carry propagate and generate unit which has outputs Pi,

Gi, pi, gi corresponding to both the cases. Based on the computation of cout using a

CLA, a multiplexer is used to select one of these pairs to compute all the carries and

the final sum. The block diagram of this adder is shown in Figure 2.2 where SAC is

sum and carry unit, CPG is carry propagate generate unit, and CLA is carry look

ahead unit for computing Cout. Then using a MUX, either P, G or p, g are selected to

be added using CLA summation unit (CLAS). The CLAS unit computes all the

carries and performs the summation Pi � ci to produce the output R. This design
leads to lower area and delay than the designs in Refs. [1, 5].

Adders for moduli (2n�1) and (2n+ 1) have received considerable attention in

literature which will be considered next.

2.2 Modulo (2n�1) Adders

Efstathiou, Nikolos and Kalamatinos [7] have described a mod (2n�1) adder. In this

design, the carry that results from addition assuming carry input is zero is taken into

account in reformulating the equations to compute the sum. Consider a mod 7 adder

with inputs A and B. With the usual definition of generate and propagate signals, it

can be easily seen that for a conventional adder we have

c0 ¼ G0 þ P0c�1 ð2:3aÞ
c1 ¼ G1 þ P1c0 ð2:3bÞ

c2 ¼ G2 þ P2G1 þ P2P1g0 ð2:3cÞ

Substituting c�1 in (2.3a) with c2 due to the end-around carry operation of a mod

(2n�1) adder, we have

c0 ¼ G0 þ P0G2 þ P0P2G1 þ G0P2P1G0 ¼ G0 þ P0G2 þ P0P2G1 ð2:4Þ
c1 ¼ G1 þ P1G0 þ P1P0G2 ð2:5aÞ
c2 ¼ G2 þ P2G1 þ P2P1Go ð2:5bÞ

An implementation of mod 7 adder with double representation of zero

(i.e. output¼ 7 or zero) is shown in Figure 2.3a where si ¼ Pi � ci�1. A simple

modification can be carried out as shown in Figure 2.3b to realize a single zero.

Note that the output can be 2n�1, if both the inputs are complements of each other.

Hence, this condition can be used by computing P¼P0P1P2. . .Pn�1 and modifying

the equations as

12 2 Modulo Addition and Subtraction



X0

X1

X2

Y0

Y1

Y2

S0

S1

S2

C0

C1

C-1

P0

P1

P2

G0

G1

G2

P0

G0

G1

G2

X0

X1

X2

Y0

Y1

Y2

P1

P2

S0

S1

S2

C0

C1

C-1

a

b

Figure 2.3 (a) Mod 7 adder with double representation of zero (b) with single representation of

zero (adapted from [7] ©IEEE1994)

2.2 Modulo (2n�1) Adders 13



si ¼
�
Pi þ P

� � ci�1 for 0 � i � n� 1: ð2:6Þ

The architectures of Figure 2.3, although they are elegant, they lack regularity.

Instead of using single level CLA, when the operands are large, multiple levels can

also be used.

Another approach is to consider the carry propagation in binary addition as a

prefix problem. Various types of parallel-prefix adders e.g. (a) Ladner�Fischer [8],

(b) Kogge-Stone [9], (c) Brent�Kung [3] and (d) Knowles [10] are available in

literature. Among these, type (a) requires less area but has unlimited fan out

compared to type (b). But designs based on (b) are faster.

Zimmerman [11] has suggested using an additional level for adding end-around-

carry for realizing a mod (2n�1) adder (see Figure 2.4a) which needs extra

hardware and more over, this carry has a large fan out thus making it slower.

Kalampoukas et al. [12] have considered modulo (2n�1) adders using parallel-

prefix adders. The idea of carry recirculation at each prefix level as shown in

Figure 2.4b has been employed. Here, no extra level of adders will be required,

thus having minimum logic depth. In addition, the fan out requirement of the carry

output is also removed. These architectures are very fast while consuming large

area.

The area and delay requirements of adders can be estimated using the unit-gate

model [13]. In this model, all gates are considered as a unit, whereas only exclusive-

OR gate counts for two elementary gates. The model, however, ignores fan-in and

fan-out. Hence, validation needs to be carried out by using static simulations. The

area and delay requirements of mod (2n�1) adder described in [12] are 3nlogn + 4n
and 2logn+ 3 assuming this model.

Efstathiou et al. [14] have also considered design using select-prefix blocks with

the difference that the adder is divided into several small length adder blocks by

proper interconnection of propagate and generate signals of the blocks. A select-

prefix architecture for mod (2n�1) adder is presented in Figure 2.5. Note that d,
f and g indicate the word lengths of the three sections. It can be seen that

cin, 0 ¼ BG2 þ BP2BG1 þ BP2BP1BG0

cin, 1 ¼ cout, 0 ¼ BG0 þ BP0BG2 þ BP0BP2BG1

cin, 2 ¼ cout, 1 ¼ BG1 þ BP1BG0 þ BP1BP0BG2

where BGi and BPi are block generate and propagate signals outputs of each block.

Tyagi [13] has given an algorithm for selecting the lengths of the various adder

blocks suitably with the aim of minimization of adder delay. Note that designs

based on parallel-prefix adders are fastest but are more complex. On the other hand,

CLA-based adder architecture is area effective. Select prefix-architectures achieve

delay closer to parallel prefix adders and have complexity close to the best adders.

Patel et al. [15] have suggested fast parallel-prefix architectures for modulo

(2n�1) addition with a single representation of zero. In these, the sum is

computed with a carry in of “1”. Later, a conditional decrement operation is
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performed. However, by cyclically feeding back the carry generate and carry

propagate signals at each prefix level in the adder, the authors show that

significant improvement in latency is possible over existing designs.
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2.3 Modulo (2n+ 1) Adders

Diminished-1 arithmetic is important for handling moduli of the form 2n+ 1. This

is because of the reason that this modulus channel needs one bit more word

length than other channels using moduli 2n and 2n�1. A solution given by

Liebowitz [16] is to represent the numbers still by n bits only. The diminished-1

number corresponding to normal number A in the range 1 to 2n is represented as

d(A)¼A�1. If A¼ 0, a separate channel with one bit which is 1 is used. Another

way of representing A in diminished-1 arithmetic is (Az, Ad) where Az¼ 1, Ad¼ 0

when A¼ 2n, Az¼ 0, Ad¼A�1 otherwise. Due to this representation, some rules

need to be built to perform operations in this arithmetic which are summarized

below. Following the above notation, we can derive the following properties [17]:

(a) A+B¼C corresponds to

d Aþ Bð Þ ¼ d Að Þ þ d Bð Þ þ 1ð Þ mod 2n þ 1ð Þ ð2:7Þ

(b) Similarly, we have

d A� Bð Þ ¼ d Að Þ þ d Bð Þ þ 1
� �

mod 2n þ 1ð Þ ð2:8Þ

(c) It follows further that

d
Xn

k¼1
Ak

� �
¼ d A1ð Þ þ d A2ð Þ þ d A3ð Þ þ . . . þ d Akð Þ þ n� 1ð Þ mod 2n þ 1ð Þ

ð2:9Þ

Next,

d 2kA
� � ¼ d Aþ Aþ Aþ . . .þ Að Þ ¼ 2kd Að Þ þ 2k � 1

� �
mod 2n þ 1ð Þ:

or

2kd Að Þ ¼ d 2kA
� �� 2k þ 1

� �
mod 2n þ 1ð Þ ð2:10Þ

BG2

BLOCK 2
Adder (d+f+g-1:f+g)

BLOCK 1
Adder (f+g-1:g)

Cin,2 Cin,1 Cin,0

BG1

BP1BP2

BG0

BP0

BLOCK 0
Adder (g-1:0)

Figure 2.5 Modulo 2d+f+g�1 adder design using three blocks (adapted from [14] ©IEEE2003)
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In order to simplify the notation, we denote a diminished-1 number using an

asterisk e.g. d(A)¼A*¼A�1.

Several mod (2n+ 1) adders have been proposed in literature. In the case of

diminished-1 numbers, mod (2n+ 1) addition can be formulated as [11]

S� 1 ¼ S* ¼ A*þ B*þ 1ð Þ mod 2n þ 1ð Þ
¼ A*þ B*ð Þmod 2nð Þ if A*þ B*ð Þ
� 2n and A*þ B*þ 1ð Þ otherwise ð2:11Þ

where A* and B* are diminished-1 numbers and S¼A +B. The addition of 1 can be
carried out by inverting the carry bit Cout and adding in a parallel-prefix adder with

Cin ¼ Cout (see Figure 2.6):

A*þ B*þ 1ð Þmod 2n þ 1ð Þ ¼ A*þ B*þ Cout

� �
mod 2nð Þ ð2:12Þ

In the case of normal numbers as well [11], we have

Sþ 1 ¼ Aþ Bþ 1ð Þmod 2n þ 1ð Þ ¼ Aþ Bþ Cout

� �
mod 2nð Þ ð2:13Þ

where S¼A +B with the property that (S + 1) is computed. In the design of

multipliers, this technique will be useful.

Note that diminished-1 adders have a problem of correctly interpreting the zero

output since it may represent a valid zero (addition with a result of 1) or a real zero

output (addition with a result zero) [14]. Consider the two examples of modulo

bn-1 bn-2

an-1 an-2

b1 b0

a1 a0

Prefix Computation

Gn-1 Gn-2,Pn-2c*-1

c*n-2 c*1 c*0c*n-3

G1,P1 G0,P0

Sn-1 Sn-2 S1 S0

Figure 2.6 Modulo

2n þ 1ð Þ adder architecture
for diminished-1 arithmetic

(adapted from [18]

©IEEE2002)
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9 addition (a) A¼ 6 and B¼ 4 and (b) C¼ 5 and B¼ 4 using diminished-1

representation:

A* 101 C* 100

B* 011 B* 011
————— —————

Cout 1 000 Cout 0 111

Cout 0 Cout 1

--------------- ----------------

000 Correct result 000 result indicating zero

Note that real zero occurs when the inputs are complimentary. Hence,

this condition needs to be detected using logical AND of the exclusive-OR of

ai and bi. The EXOR gates will be already present in the front-end CSA stage.

Vergos, Efstathiou and Nikolos have presented two mod (2n+ 1) adder architec-

tures [18] for diminished-1 numbers. The first one leads to CLA implementation

and was derived by associating the re-entering carry equation with those producing

the carries of the modulo addition similar to that for mod (2n�1) described earlier

[12]. In this architecture, both one and two level CLAs have been considered. The

second architecture uses parallel-prefix adders and also was derived by

re-circulation of the carries in each level of parallel-prefix structure. This architec-

ture avoids the problem of fan-out and the additional level needed in Zimmerman’s
technique shown in Figure 2.6.

Efstathiou, Vergos and Nikolos [14] extended the above ideas by using select-

prefix blocks which are faster than the previous ones for designing mod (2n� 1)

adders for diminished-1 operands. Here, the lengths of the blocks can be selected

appropriately as well as the number of the blocks. The derivation is similar to that

for mod (2n�1) adders with the difference that the equations contain block carry

propagate, and block generate signals instead of bit level propagate and generate

signals. In these, an additional level is used to add the carry after the prefix

computation. A structure using two stages is presented in Figure 2.7. Note that in

this case

cin, 0 ¼ BG1 þ BP1BG0ð Þ0
cin, 1 ¼ cout, 0 ¼ BG0 þ BP0BG

0
1

These designs need lesser area than designs using parallel-prefix adders while they

are slower than CLA-based designs.

Efstathiou, Vergos and Nikolos [19] have described fast parallel-prefix modulo

(2n+ 1) adders for two (n+ 1)-bit numbers which use two stages. The first stage

computes X þ Y þ 2n � 1j j
2nþ1 which has (n+ 2) bits. If MSB of the result is zero,

then 2n+ 1 is added mod 2n+1 and the n LSBs yield the result. For computing

M ¼ X þ Y þ 2n � 1, a CSA is used followed by a (n+ 1)-bit adder. The authors

use parallel-prefix with fast carry increment (PPFCI) architecture and also a totally
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parallel-prefix architecture. In the former, an additional stage for re-entering carry

is used, whereas in the latter case, carry recirculation is done at every prefix level.

The architecture of Hiasat [6] can be extended to the case of modulus (2n+ 1) in

which case we have Z¼ 2n�1 and the formulae used are as follows:

R ¼ X þ Y þ Zj j2n if X þ Y þ Z � 2nþ1 and R ¼ X þ Y þ Zj j2n þ 1 otherwise:

Note that, in this case, the added bit zi is always 1 in all bit positions.

Vergos and Efstathiou [20] proposed an adder that caters for both weighted and

diminished-1 operands. They point out that a diminished-1 adder can be used

to realize a weighted adder by having a front-end inverted EAC CSA stage. Herein,

A+B is computed where A and B are (n+ 1)-bit numbers using a diminished-1

adder. In this design, the computation carried out is

Aþ Bj j2nþ1
¼ An þ Bn þ Dþ 1j j2nþ1

þ 1
���

���
2nþ1

¼ Y þ U þ 1j j2nþ1
ð2:14Þ

where Y and U are the sum and carry vector outputs of a CSA stage computing

An+Bn+D:

carry Y ¼ yn�2yn�3:::::::yoyn�1

sum U ¼ un�1un�2:::::::u1uo

whereD ¼ 2n � 4þ 2cnþ1 þ sn . Note that An, Bn are the words formed by the n-bit
LSBs of A and B, respectively, and sn, cn+1 are the sum and carry of addition of 1-bit

words an and bn. It may be seen that D is the n-bit vector 11111:::1cnþ1sn .
An example will be illustrative. Consider n¼ 4 and the addition of A¼ 16 and

B¼ 11. Evidently an¼ 1, bn¼ 0, An¼ 0 and Bn¼ 11 and D¼ 01110 yielding

(16 + 11)17¼ ((0 + 11 + 14 + 1)17 + 1)17¼ 10. Note that the periodic property of res-

idues mod (2n + 1) is used. The sum of the n th bits is complimented and added to

get D and a correction term is added to take into account the mod (2n+ 1) operation.

BG1

BP1

BG0

BP0Cin,1 Cn-0

BLOCK 1
Adder (d+f-1:f)

BLOCK 0
Adder (f-1:0)

Figure 2.7 Diminished-1 modulo (2d+f + 1) adder using two blocks (adapted from [14]

©IEEE2004)
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The mod (2n+ 1) adder for weighted representation needs a diminished-1 adder and

an inverted end-around-carry stage. The full adders of this CSA stage perform

(An+Bn+D) mod (2n+ 1) addition. Some of the FAs have one input “1” and can

thus be simplified. The outputs of this stage Y and U are fed to a diminished-1 adder

to obtain (Y+U + 1) mod 2n. The architecture is presented in Figure 2.8. It can be

seen that every diminished-1 adder can be used to perform weighted binary addition

using an inverted EAC CSA stage in the front-end.

a1 b1 a0          b0

FA+FA+ FA+ FA+FA+FA+ FA+ FA+

an-1 bn-1 an-2 bn-2 an-3 bn-3 an-4 bn-4 a3  b3 a2 b2

an bn an   bn

Sn Sn-1 Sn-2 S2 S1 S0

Diminished-1 adder
(any architecture)

Figure 2.8 Modulo (2n + 1) adder for weighted operands built using a diminished-1 adder

(adapted from [20] ©IEEE2008)

20 2 Modulo Addition and Subtraction



In another technique due to Vergos and Bakalis [21], first A* and B* are

computed such that A*+B*¼A+B�1 using a translator. Then, a diminished-1

adder can sum A* and B* such that

Aþ Bj j2nþ1

���
���
2n

¼ A*þ B*j j2n þ cout ð2:15Þ

where cout is the carry of the n-bit adder computing A* +B*. However, Vergos and
Bakalis do not present the details of obtaining A* and B* using the translator. Note

that in this method, the inputs are� (2n�1).

Lin and Sheu [22] have suggested the use of two parallel adders to find A* +B*
and A* +B* + 1 so that the carry of the former adder can be used to select the correct

result using a multiplexer. Note that Lin and Sheu [22] have also suggested

partitioning the n-bit circular carry selection (CCS) modular adder to m number

of r-bit blocks similar to the select-prefix block type of design considered earlier.

These need circular carry selection addition blocks and circular carry generators.

Juang et al. [23] have given a corrected version of this type of mod (2n+ 1) adder

shown in Figure 2.9a and b. Note that this design uses a dual sum carry look ahead

adder (DS-CLA). These designs are most efficient among all the mod (2n+ 1)

adders regarding area, time and power.

Juang et al. [24] have suggested considering (n + 1) bits for inputs A and B. The
weighted modulo (2n+ 1) sum of A and B can be expressed as

Aþ Bj j2nþ1

���
���
2n

¼ Aþ B� 2n þ 1ð Þj j2n if (A+B)> 2n

¼ Aþ B� 2n þ 1ð Þj j2n þ 1 otherwise ð2:16Þ

Thus, weighted modulo (2n + 1) addition can be obtained by subtracting the sum of

A and B by (2n + 1) and using a diminished-1 adder to get the final modulo sum by

making the inverted EAC as carry-in.

Denoting Y0 andU0 as the carry and sum vectors of the summation A +B�(2n+ 1),

where A and B are (n+ 1)-bit words, we have

AþB� 2nþ1ð Þj j2n ¼
Xn�2

i¼0

2i 2y0iþu0i
� �þ2n�1

�
2anþ2bnþan�1þbn�1þ1

� �
�����

�����
2n

ð2:17Þ

where

y0i ¼ ai _ bi, u0i ¼ ai � bi :

As an illustration, consider A¼ 16, B¼ 15 and n¼ 4. We have

Aþ B� 2n þ 1ð Þj j2n ¼ 16þ 15� 17j j16 ¼ 14

and for A¼ 6, B¼ 7,
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Figure 2.9 (a) Block diagram of CCS diminished-1 modulo (2n+ 1) adder and (b) Logic circuit of
CCS diminished-1 modulo (24 + 1) adder ((a) adapted from [22] ©IEEE2008, (b) adapted from

[23] ©IEEE2009)
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Aþ B� 2n þ 1ð Þj j2n ¼ 6þ 7� 17j j16 þ 1 ¼ 13:

The multiplier of 2n�1 in (2.17) can be at most 5 since 0�A, B� 2n. Since only

bits n and n�1 are available, the authors consider the (n+1)-th bit to merge withCout:

Aþ Bj j2nþ1

���
���
2n

¼ Aþ B� 2n þ 1ð Þj j2n ¼ Y0 þ U0j j2n þ cout _ FIX ð2:18Þ

where y0n�1 ¼ an _ bn _ an�1 _ bn�1, u
0
n�1 ¼ an�1 � bn�1 and FIX ¼ anbn _ an�1bn

_anbn�1. Note that y0n�1 and u0n�1 are the values of the carry bit and sum bit

produced by the addition 2an þ 2bn þ an�1 þ bn�1 þ 1. The block diagram is

presented in Figure 2.10a together with the translator in b. Note that FAF

block generates y0n�1, u
0
n�1 and FA blocks generate y0i, u0i for i¼ 0,1,. . ., n�2

correction Translator-(2n+1)=Y ʹ+Uʹ

Diminished-1 adder

a

b

FIX

anbn

anbn

yʹn-1 yʹn-2 yʹ0 uʹ0uʹn-2uʹn-1

an-1bn-1

an-1bn-1 an-2bn-2

an-2bn-2 a0 b0

a0 b0

Sn Sn-1 Sn-2 S0

FAF FA+ FA+

Figure 2.10 (a) Architecture of weighted modulo (2n+ 1) adder with the correction scheme and

(b) translator A+B–(2n+ 1) (adapted from [24] ©IEEE2010)
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where y0i ¼ ai _ bi and u0i ¼ ai � bi . Note also that FIX is wired OR with the carry

cout to yield the inverted EAC as the carry in. The FIX bit is needed since value

greater than 3 cannot be accommodated in yn�1 and un�1.

The authors have used Sklansky [25] and Brent�Kung [3] parallel-prefix adders

for the diminished-1 adder.
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