
Preface

Industrial software development is one of the major success stories of the twentieth
century. Otherwise, software would not have been able to pervade other areas of life
and business, established business models of entire industries would not have been
swept away by digitalization, and the global success of Apple, Amazon, Google,
Facebook, and eBay would not have been possible.

Software engineering, i.e., the design of larger and larger software systems based
on engineering principles, enabled the development of software systems that
seemed impossible just a couple of years ago. Therefore, any kind of fundamental
denial of this success story is downright absurd (Osterweil et al. 2008). This fact
cannot be changed, not even by numerous studies on the alleged state of the
software industry, which were in some cases prepared under the flimsiest of con-
ditions, as exposed, e.g., by Eveleens and Verhoef (2010), Glass (2006), or
Jørgensen and Moløkken-Østfold (2006).

Yet, time and again, evidence is provided of projects that encounter difficulties—
sometimes because the established software development practices have not been
followed, sometimes because the individuals involved are too optimistic in their
announcements and promises, and in some instances because the numerous indi-
viduals involved in a software development project do not have a uniform picture
of the actual aim of the project.

It is astonishing that this happens relatively often and is not regarded as a rare
exception. Obviously, problems can arise in other projects, not just in software
development—airports are finished after serious delays or not at all, public con-
struction projects become more expensive than planned, and trains cannot stop at all
platforms. However, genuine project disasters, in the form of a multiplication of the
project duration or cost, or in the form of canceled or rolled-back projects, seem to
arise more frequently in software development than in other sectors.

Perhaps this is because the immaterial nature of software makes it more difficult
to estimate the project state and makes the loss associated with a cancelled project
less tangible. Perhaps it is also because software development projects (in which the
relevant investment is “only” human resource cost) are often too ambitious and not
overly concerned with lean solutions.

Perhaps it is also because the question on the nature of the software process can
still not be answered definitively. Is it primarily a production process? Then, it can

v



be structured from a Taylorist perspective, where detailed specifications are
provided, such as in the car production process on an assembly line. Or is it a purely
creative process, which is solely driven by the engineer’s design talent? In this case,
procedural specifications make little sense, in the same manner that the idea of a
precise process to create a painting makes no sense. Software engineering seems to
lie between these two poles. There are sections that must be clearly regulated and
standardized, such as certain testing activities or configuration management. Others
cannot be described using algorithms and cannot be supported by a heuristic pro-
cess method, such as the approach to identify features to be developed at an early
stage.

And then there is the phenomenon of uncertainty. Lehman (1989) provided a
convincing argument that software projects are exposed to uncertainties; i.e., that
during the course of development, situations could arise that were previously
unforeseen (or at least uncertain to occur) and for which appropriate support was
unknown. Lehman also noticed that, in most cases, these situations could not be
identified in advance. Other authors also made this observation early on:

• “Uncertainty is inherent and inevitable in software development processes and
products.”—Ziv et al.’s uncertainty principle in software engineering (1996)

• “For a new software system, the requirements will not be completely known
until after you have a working product.”—Humphrey’s requirements uncertainty
principle (1995)

• It is impossible to fully specify or test an interactive system.—Wegner’s lemma
(1997)

In light of this finding, which is confirmed in practically every software project,
terms such as “software factory” (Cusumano 1989) and titles of scientific articles
such as “Software Processes are Software too” (Osterweil 1987) seem misleading or
at least ambiguous. Software processes (at least for developing socio-technical
systems) are insight-driven processes, they are comprised of more creative than
algorithmic parts, and it is certainly the case that they are not precisely foreseeable
(Gruhn and Urbainczyk 1998).

This in no way denies the existence of types of software that can be fully
described. For example, embedded systems without human interfaces can be
completely specified and created in line with the production paradigm.

However, this does not apply for socio-technical systems, for the simple reason
that these kinds of systems do not end at the screen, but rather extend into the mind
of the user. This does not just mean that software must be prepared for unforeseen
user behavior. Rather, in socio-technical systems, the software is only a small part of
a system comprised of human and mechanical participants that work together to
perform complex processes. This interaction, into which software must seamlessly
integrate, cannot be fully described and is also subject to constant change. In par-
ticular, when dealing with innovation, with the establishment of new business
processes and services, and with the implementation of new automations, the design,
implementation, and adaptation of software is a creative process, whose purpose
requires continuous calibration. The development of these kinds of software

vi Preface



solutions is not a production process, but rather a cognitive process, which is most
likely to succeed when all stakeholders keep an eye on the common goal and pay
attention to lean solutions.

Even if these solutions are of a technical nature, the goal they must support is
anchored in the application domain and not in information technology (IT). Close
communication between enterprise IT1 and operating departments is unavoidable
and essential for success in companies that develop software. However, it is often
also characterized by different terminology and, especially, by different types of
abstraction (and abstraction capacity).

However, the constant realignment of the project idea, the continuous consul-
tation between enterprise IT and the application domain, and the rejection of the
idea of a “software factory” (which suggests a completely predictable software
production) also result in a few unpleasant conclusions. For example, the fact that
the provision of a complete advance specification is not possible (and that the quest
for this is doomed to failure), that there will be late requirements (which only arise
during development or even after), that budget allocations and cost estimates are
provisional, and that at the start of a project, it is impossible to know precisely what
can be obtained and at what cost.

But is this really still necessary? Almost 50 years after the term “software
engineering” was coined? After almost 50 years in which the “engineering”
in “software engineering” defines a claim, namely the claim of reproducibility,
reliability, and calculability? It appears to be so, as software development is still
risky, projects still encounter difficulties and, when searching for the causes, the
same reasons are constantly identified: a lack of understanding of the application
domain, incorrect prioritization, and a lack of communication between the stake-
holders (Curtis et al. 1988). Software processes are and will always be cognitive
processes, but they must satisfy the expectations of production processes.

Structure and Audience of This Book

This is the challenge that this book deals with—the cognitive nature of software
development, the necessity for a unified purpose, the concentration on lean soft-
ware, the focus on added value, and the omission of the irrelevant. It describes
specific instruments and methods enabling all stakeholders to develop a uniform
understanding of the software to be created, to determine their genuinely essential
requirements, and to deal with changes to this understanding and the requirements.

1By “enterprise IT,” we refer to a company’s enterprise IT department or to external contractors
that perform this function.

Preface vii



The Interaction Room described in Part II brings all stakeholders together for
this purpose—not to a table, but in a room where digitalization and mobilization
strategies are jointly developed, where technology potentials are evaluated
and where software projects are planned and managed. Why does this require a
dedicated room? Because stakeholders can then communicate face to face rather
than through e-mails. Because the room can be used to outline complex relation-
ships in a comprehensible manner instead of having to laboriously write them up in
great detail. Because there is only room for the most important issues. And because
insights are not lost in short-term memory or huge documents, but concisely noted
and constantly present. In short, because the Interaction Room makes projects
visible and tangible.

The adVANTAGE contract model described in Part III ensures that the
insight-driven and imprecise process of software development does not just func-
tion, but that it is allowed to flourish in a commercial environment, i.e., in a client
and contractor relationship. In this model, changes to the project flow are not a
reason for stress, but considered normal project events. The contract model ensures
that stakeholders focus on generating maximum benefits, creating lean software,
and distributing risk fairly despite (or with the aid of) all the changes.

How this can work during the day-to-day running of a project is shown in the
practical example of the development of an inventory management system for a
private health insurance company in Part IV. This is a complex system with, at first
glance, an almost unmanageable number of business requirements, statutory con-
ditions, stakeholders, and processes for general and special cases, embedded in the
organically developed IT landscape of an insurance company from North
Rhine-Westphalia. The example of the project kickoff and the first sprint shows
how employees of the company and the IT contractor developed an overview of the
project using the Interaction Room, how the design and development was managed,
and how efforts were billed.

Ultimately, the success of every single software project, independently of the
application domain and the technology used, depends on the skills of the stake-
holders. Only if the stakeholders are prepared to talk to each other, interact with
each other, respect different perceptions of value and effort drivers, reach com-
promises, pursue innovative solutions, and refrain from political maneuvers, can
instruments such as the Interaction Room and adVANTAGE fully unfold their
potential. Part V therefore finally describes the requirements profile that software
engineers as well as domain experts must satisfy today.

Even though contracting and collaboration may be grounded in two different
academic disciplines, they are inseparable in practice where all theory boils down to
enabling people to work effectively with each other toward a successful product in a
sustainable business relationship.

This book is therefore geared toward CIOs, project managers, and software
engineers in industrial software development practice who want to learn how to
deal effectively with the inevitable uncertainty of complex projects, who want to

viii Preface



achieve higher levels of understanding and cooperation in their relationships with
customers and suppliers, and who want to run their software projects at lower risk
despite their inherent uncertainty.

Acknowledgments

The authors would like to thank Simon Grapenthin for sharing his extensive
hands-on experience in facilitating Interaction Room workshops and training
Interaction Room coaches in a wide range of business domains. We would also like
to thank Sandra Delvos for countless hours of designing and revising the book’s
illustrations, and Alexander Lohberg and Anja Wintermeyer for their background
research.

Reykjavík, Iceland Matthias Book
Essen, Germany Volker Gruhn
Berlin, Germany Rüdiger Striemer

References

Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for large systems.
Comm ACM 31(11):1268–1287. doi:10.1145/50087.50089

Cusumano MA (1989) The software factory: A historical interpretation. IEEE Software 6(2):
23–30. doi:10.1109/MS.1989.1430446

Eveleens JL, Verhoef C (2010) The rise and fall of the Chaos report figures. IEEE Software
27(1):30–36. doi:10.1109/MS.2009.154

Glass RL (2006) The Standish report: Does it really describe a software crisis? Comm ACM
49(8):15–16. doi:10.1145/1145287.1145301

Gruhn V, Urbainczyk J (1998) Software process modeling and enactment: An experience report
related to problem tracking in an industrial project. In: Katayama T, Notkin D (eds) ICSE’98:
Proc 20th Intl Conf Software Engineering, pp 13–21. doi:10.1109/ICSE.1998.671098

Humphrey WS (1995) A discipline for software engineering. Addison-Wesley, p 349
Jørgensen M, Moløkken-Østvold K (2006) How large are software cost overruns? A review of the

1994 Chaos report. Information and Software Technology 48(4):297–301. doi:10.1016/j.infsof.
2005.07.002

Lehman MM (1989) Uncertainty in computer application and its control through the engineering
of software. J Software Maintenance 1(1):3–27. doi:10.1002/smr.4360010103

Osterweil LJ (1987) Software processes are software too. In: Riddle WE (ed) ICSE’87: Proc 9th

Intl Conf Software Engineering, pp 2–13
Osterweil LJ, Ghezzi C, Kramer J, Wolf AL (2008) Determining the impact of software

engineering research on practice. IEEE Computer 41(3):39–49. doi:10.1109/MC.2008.85
Wegner P (1997) Why interaction is more powerful than algorithms. Comm ACM 40(5):80–91.

doi:10.1145/253769.253801
Ziv H, Richardson DJ, Klösch R (1996) The uncertainty principle in software engineering.

Technical Report UCI-TR-96-33, University of California, Irvine. http://www.ics.uci.edu/
*ziv/papers/icse97.ps. Accessed 23 Feb 2016

Preface ix

http://dx.doi.org/10.1145/50087.50089
http://dx.doi.org/10.1109/MS.1989.1430446
http://dx.doi.org/10.1109/MS.2009.154
http://dx.doi.org/10.1145/1145287.1145301
http://dx.doi.org/10.1109/ICSE.1998.671098
http://dx.doi.org/10.1016/j.infsof.2005.07.002
http://dx.doi.org/10.1016/j.infsof.2005.07.002
http://dx.doi.org/10.1002/smr.4360010103
http://dx.doi.org/10.1109/MC.2008.85
http://dx.doi.org/10.1145/253769.253801
http://www.ics.uci.edu/~ziv/papers/icse97.ps
http://www.ics.uci.edu/~ziv/papers/icse97.ps


http://www.springer.com/978-3-319-41476-8


