
1The Need for Tamed Agility

Pragmatic, value-focused support for the design and implementation of complex IT
projects appears more necessary than ever before, especially in times of ubiquitous
digitalization, as “software is eating the world” (Andreessen 2011): In increasingly
digital companies, the number of projects that is not heavily dependent on IT is
constantly falling. The implementation of organization projects, projects for
implementing regulatory requirements and merger and acquisition projects is also
practically impossible without the involvement of IT—“every budget is becoming
an IT budget” (Gartner 2012).

1.1 A New School of IT

IT has always involved automation, and IT has also always had a disruptive
influence. Business models have always changed as a result of IT. Some disap-
peared, some only became possible in the first place. So is everything the same as it
always was? Not entirely, because a number of factors are currently combining: The
world is becoming more digital, data and applications are becoming mobile, and IT
projects have to deliver quick results. Even during development, it must be possible
to adapt their focus. Long project durations are undesirable, because the world has
often changed so dramatically after a long project that it is difficult to know whether
the originally promised benefits are actually generated. This leads to a change that is
more radical than the slow progress of automation. Concepts that appeared
promising yesterday are now a hindrance. It seems that enterprise IT has a new role
and that it requires new or at least additional skills and capabilities.

Faced with technological disorder in the context of mobile technologies, broad
digital transformation and elastic, cloud-based infrastructures, IT is no longer just a
central means of production. Rather, enterprise IT is becoming an essential
co-designer and co-creator of future solutions. In order to fulfill this role, it must

© Springer International Publishing Switzerland 2016
M. Book et al., Tamed Agility, DOI 10.1007/978-3-319-41478-2_1

3



assess the opportunities and risks of new technologies, talk to users and business
departments, and know the challenges faced by the respective industry.

As a result, enterprise IT is changing from a pure service provider to an enabler
and co-designer of business changes. Instead of just implementing an operating
department’s ideas, and instead of just providing defined services to an agreed
quality, enterprise IT is taking on a consulting role. Based on its knowledge of
technology costs and benefits, and of business challenges and opportunities,
enterprise IT now works together with the operating departments to design solu-
tions that can be implemented efficiently, that have innovation potentials, and that
provide competitive advantages.

In other words: Enterprise IT is on the move. From the basement to the
boardroom. It now has a say and takes responsibility. And it can only do this if it
understands both technology and business.

Companies are currently facing huge strategic changes triggered by three key IT
trends: mobility of clients and employees, agility in software development, and
elasticity of IT infrastructure. These are the foundations that are increasingly
defining the requirements of enterprise IT. And because an enterprise IT that satisfies
these requirements has a different structure and different competencies than tradi-
tional enterprise IT, we call it the New School of IT. This is admittedly bold, but
clearly states that the upcoming changes will go far beyond a normal level of change.

1.1.1 Mobility

Mobility is increasing across all industry sectors: Central business processes have
mobile components, or at least components that can be mobilized. Clients and
suppliers can be integrated using web-based applications or native apps and take
over important parts of the business process. Mobile solutions need to be developed
and delivered quickly. The aim is to rapidly launch new products or services on the
market, often using a range of different sales channels.

Whether the mobility of data and applications demanded by users is always
required, and whether it is socially and economically beneficial that the availability
of humans is increasing, and that parts of the business process can be outsourced, is
irrelevant for the question of whether enterprise IT must be able to develop and
operate mobile applications. The trend toward mobility is a social trend, and the
experiences gained in the private context are creating expectations in companies.

Consequently, enterprise IT must come to terms with the topic of mobility. This
is exacerbated by the fact that mobility is often also an important driver for inno-
vative applications, simply because the mobilization of data and applications can
lead to structurally different applications and entirely new use cases, which makes
the topic of mobility even more essential for enterprise IT. After all, the mastering
of technologies that have the potential to trigger the next batch of changes in
application landscapes cannot be outsourced and remains part of the enterprise IT’s
core business.

4 1 The Need for Tamed Agility



1.1.2 Agility

Innovative IT solutions can rarely be completely planned in advance and then “just”
be implemented. Rather, they are based on the idea of permanent adaptation to new or
clearer boundary conditions outlined by Ries (2011). And because the basic concepts
of agile software development—fast and frequent delivery of software, concentration
on source code as the central artifact of development, continuous communication
with clients and users, and respect for application knowledge—benefit more than just
mobile and other innovative applications, software is increasingly being developed
with agile software process elements. Virtually, no software development of a rel-
evant scale is either purely agile or entirely without agile elements (Boehm and
Turner 2003). Common sense suggests that projects can vary significantly on the
spectrum between strictly agile and strictly waterfall-oriented. Mary Poppendieck
summarized this in her keynote speech at the 35th International Conference on
Software Engineering (ICSE 2013) with the statement “agility without discipline
cannot scale, and discipline without agility cannot compete.”

Given that discipline can have different connotations, and given that a large
number of people with a range of independent perceptions are involved in software
projects of a relevant scale, certain standards are required to respond to different
perceptions of the necessary discipline and restrict these perceptions to compatible
ideas of discipline. A lack of compatible perceptions of discipline and their specific
manifestation often results in misunderstandings. These can be countered by
explicit rules and agreements, which then however represent the explicit discipline
addressed by Poppendieck, i.e., an alternative to agile, personal discipline that is
only based on a small number of principles. Overall, we are still faced with the
problem that agile development approaches have to be supplemented by elements
of requirements transparency in order to apply them to major projects in large
organizations.

Probably the most popular approach to placing a square peg in a round hole and
reconciling agility with the need for planning certainty is based on the Scaled Agile
Framework (SAFe) approach introduced by Leffingwell (2011). However, signifi-
cant doubts remain as to whether any of the original allure of agility remains in light
of the extensive expansion, and also whether the implementation of SAFe in
companies does not lead to completely erratic results, simply because SAFe is
vague and non-specific.

1.1.3 Elasticity

Elasticity is the extension of agility from application development into application
management, from the world of application software to the world of system soft-
ware, infrastructure and hardware.

Infrastructures need to be elastic so that mobile applications, applications that are
frequently extended with new functionality, and applications for end users can scale
seamlessly—i.e., that they can deal with widely fluctuating (and also sharply

1.1 A New School of IT 5



increasing) user numbers without changing their behavior so drastically that the
user is disturbed. Elasticity means that infrastructures can be scaled up as well as
down.

Elastic infrastructures are also necessary to ensure that the benefits of agile
software development do not dissipate: If agile development delivers new software
every few weeks (or even days!), it must be released into productive use (or at least
tested for its suitability to be released) just as often. If this does not happen and a
new release is deployed only every few months, the development team’s willing-
ness to deliver features at short notice will run out quite fast. Continuous integration
of software (Cusumano 1992) and the continuous release of new features—even in
heterogeneous infrastructures (Humble and Farley 2010; Duvall et al. 2007)—are
therefore required to ensure that agility will not remain restricted to the develop-
ment side only.

There are many ways to ensure elasticity. Cloud solutions of many types and
suppliers promise scalability. Security concerns about remotely hosted, externally
managed data are numerous and often quite justified. Private clouds try to reconcile
both—unlimited sovereignty over the data, and scalability as in a public cloud.

However, as is usual when trying to reconcile contrary positions, compromises
cannot be avoided: A private cloud is not as scalable as a public cloud—but possibly
sufficient for the application in question. And the complete sovereignty over all data
comes at the price of a very high vertical IT integration—but maybe not all data’s
security is equally critical. The design of suitable private clouds (or comparable
structures) therefore requires a sense of proportion, the critical consideration of killer
arguments, the rational evaluation of risks and requirements and—in the solution
domain—the automation of IT infrastructure provisioning mechanisms. Automation
is particularly important here because it is the only way to avoid the susceptibility to
errors and dependency on individual people that traditionally plagues provisioning
processes.

1.1.4 Resulting Challenges

Mobility, agility, and elasticity influence each other; they entail, overlap, and
reinforce each other: Mobile applications are subject to shorter release cycles and
therefore require more agile process elements. Agile development depends on an
elastic and easily provided infrastructure to ensure that the benefits of frequent
releases reach users immediately. This interplay fundamentally changes the way IT
works, and how it is understood.

However, this change is not just technical in nature. The New School of IT also
means that the significance of IT in companies is changing. Seeing correlations,
establishing new business models, reaching new target groups—the foundations for
this are laid ever more often in IT departments. Enterprises are increasingly “dig-
itizing” themselves, and in the process, enterprise IT increasingly emancipates itself
from its role as the operating departments’ assistant. Enterprise IT is driving the
new developments instead of being driven by them.

6 1 The Need for Tamed Agility



The New School of IT also means that enterprise IT cannot focus exclusively on
classical software systems anymore. Moore (2011) calls these systems the “systems
of records.” Systems of records are characterized by high transaction volume, clear
persistence design, and a high degree of consistence. Besides these, we increasingly
find “systems of engagement” that spill from the consumer world into the enterprise
world. These are systems that consist more of mash-up architectures than traditional
enterprise application landscapes, that are configured by users, that are easily
adapted and frequently released, that focus on the user experience, and that are
subject to a high degree of uncertainty regarding the next features that will be
requested by users.

Development and operation of systems of engagement require other skills and
approaches than systems of records. Therefore, start-ups follow other (more agile)
software processes than large digital enterprises with stable business models.
Things get difficult though when systems of records merge with systems of
engagement, when flexibility and stability need to be reconciled, when stable,
consistent, and scalable systems must be equipped with mobile interfaces. Neither
an agile nor a classical development paradigm is quite suitable for this—rather, a
mix is required: an enterprise IT from the New School of IT. This is an enterprise IT
that has mastered both paces, that is founded on stable base processes, that can
work with established technologies just as with new ones, and that can implement
safe, robust operations processes just as well as short release cycles and continuous
integration—and that has the expertise to decide which development paradigm is
best suited to which problem.

The New School of IT requires companies to rethink not just their enterprise IT,
but also their operating departments, business development, and management. The
most extensive changes, as described in the previous chapter, are of a strategic
nature. Dealing with them and taking advantage of the resulting opportunities is the
top management’s responsibility.

The New School of IT also exposes every IT project manager to uncomfortable
challenges: How are IT projects affected when the operating department is not just
sending down specifications from three levels up, but discussing with the engineers
at eye level? What does it mean if system boundaries become blurred, if clients and
suppliers become partners, if software development and business development go
hand in hand? Where are these requirements reflected in the software development
methodology?

1.2 Agile or Plan-Driven?

Traditional plan-driven approaches seem too rigid for these challenges. The attempt
to provide excessively detailed, precise, and long-term preliminary planning seems
less promising where the boundaries between strategy development and software
development become blurred, where software development has to respond quickly
to changing competitive situations and user expectations, where new technologies

1.1 A New School of IT 7



turn established service and operating models on their head. Rather, continuous
alignment with user and management expectations, a lean product without super-
fluous features, and the acceptance of continuous change is desired. This is typically
the incentive to pursue an agile development approach.

Agile approaches describe a world in which higher priority is placed on pro-
ducing working software than any other artifacts, in which communication between
stakeholders is regarded as more important than the use of tools and modeling
languages, in which the spoken word is assigned a higher value than written text,
and in which an joint understanding of discipline and common sense ensure that all
stakeholders cooperate effectively with each other (Beck et al. 2001). This departure
from the illusion of strict planning certainty may appear threatening to
number-driven managers (maybe also to seasoned IT managers), as it seems to
involve an almost complete loss of control, perhaps even careless blind confidence
in the team’s overall ability to work things out. Is this desirable?

The agile literature promises huge increases in productivity, but only for those
who unquestioningly subscribe to the agile “faith,” it seems. Virtually no
evidence-based studies are available. If an agile project works out, it is due to the
agile method, but if it does not work out, it is due to insufficient faith, the
narrow-mindedness of management, the rigidity of stakeholders, and other factors
that cannot be measured (Meyer 2014). There is a lack of clear, scientifically
founded studies on the usefulness of agile methods, especially studies that provide
evidence of the wonderful descriptions of perceived increases in productivity such
as the 90 % improvement touted by Schwaber and Sutherland (2012), to name just
one example. By contrast, experience from major projects tends to show that while
agile practices are useful, they also require a certain amount of planning certainty
and functional restriction of the features to be developed (Ambler 2001; Cohn
2010).

Agile approaches do not guarantee success. The IT landscape in which the
projects of the New School of IT operate is too complex. Excessive freedom is just
as pointless for these kinds of projects as the attempt to define every detail in
advance.

In particular, the rejection of advance detail planning, requirements elicitation
and design work that is propagated by agile methods quickly reaches its limits in
major projects in established IT landscapes: The integration requirements that are
posed by a heterogeneous system landscape, and the attention to detail that is
required for the correct implementation of established business processes, cannot be
captured in a stream of high-level user stories. In particular, it is virtually impos-
sible to arrive at correct solutions in an efficient manner, using only incremental
cycles of client feedback. Rather, developers and domain experts require a joint
overall understanding of the business processes and IT components in order to
make appropriate architecture, design and technology decisions.

From a management perspective, agile practices, such as self-organizing teams
and a lack of commitment to time and budget requirements, are problematic,
especially in IT projects that are developed in a client–contractor relationship and

8 1 The Need for Tamed Agility



not in-house: Employees in a start-up generally have sufficient intrinsic motivation
to focus on a specific goal; and in internal projects, which are not overly critical to
business, a detour here or there is forgivable (and may even promote innovation or
at least instruction) as long as it does not exceed the budget framework. However,
in complex projects, and especially in contractor relationships, a concrete idea of
the target, direction, and expected effort of the project is essential in order to limit
the economic risk for all stakeholders and ensure the smooth functioning of
ongoing business operations.

A purely agile doctrine therefore does not quite seem to fit into the world of large
companies: Giving up on detailed specifications altogether because it seems
impossible to determine precisely which features can be delivered at which price is
not acceptable for most clients. Careful advance consideration is always helpful,
even if the results are known to be preliminary. The agile belief that talking is
fundamentally better than writing may also be met with resistance in large com-
panies, especially when dealing with complex software systems that are created by
many stakeholders and supposed to be used for a long period of time. In such
circumstances, the durability of the written word has its advantages. After all,
despite a basic acceptance of the benefits of agile approaches, most clients still want
to know roughly how expensive their software will be, which features can be
delivered at what cost, and how long the development will take. As charming and
unique as agile approaches may be in theory, in commercial practice they are
quickly faced with reasonable expectations of planning certainty, coordination, and
reliability.

Many of the aforementioned problems are due to an excessively dogmatic
application of the agile principles, which does not take the reality of complex IT
projects into account. However, this dogmatic approach can be relaxed without
having to reject the key advantages of agility—responsiveness to changes and
leanness of processes and products. Ultimately, in practice, strict adherence to the
waterfall model is just as rare as the blind application of agile practices. Many
approaches from the agile world can be logically applied in almost all projects, even
in large and dispersed teams, and also in a manner that respects well-defined
processes and synchronization points (Leffingwell 2011).

Upon closer inspection, many of the seemingly “radical” ideas in the agile
literature are dampened by disclaimers not to overdo it, to communicate extensively
and to apply common sense, but without specifying what a healthy balance of
agility and planning might look like. There is certainly no panacea in this respect, as
agile approaches differ depending on the project, stakeholders, and boundary
conditions. Appealing for common sense is an obvious measure, but is unsatis-
factory from a methodological perspective. It is certainly required, but is not an
adequate condition for successful projects.

Boehm and Turner (2003) discuss dimensions of software development projects
that may provide guidance for the decision of agile versus plan-driven methods for
specific projects. These include purely local factors, such as project scale and
criticality, as well as factors that relate to the corporate environment. Specifically:

1.2 Agile or Plan-Driven? 9



• Scale: In agile projects, the focus is on the spoken word. Documents and models
beyond the source code are regarded as deviations from the strict agile doctrine.
But the spoken word has limited reach—only among small teams will the
spoken word be sufficient to create joint understanding. Large projects with
many stakeholders generally require written specifications in order to ensure that
all stakeholders know what is required when. This is more plan-driven than
agile. As a result, a general guideline is that small projects are more likely to
consistently apply agile practices.

• Criticality: Does the system deal with money, human life, or even many human
lives? If this is the case, a higher level of planning certainty, verification of
software features, and proven comprehensive testing is advisable. Proponents of
strict agility might argue that nothing can better lead to higher software quality
than agile techniques. Let us assume that this is correct for a moment. Let us
even assume that this applies not just to small, but also to large teams. Even
then, the highest probability of correct software is not sufficient when dealing
with safety-critical software. Sometimes, the correctness of the software has to
be demonstrated. To do so, it must be specified. Yet, there is no place for this in
pure agility doctrine. As a result, the following general guideline applies: The
more critical a project, the more plan-driven elements and the more “big
up-front” activities (Meyer 2014, Chap. 3) are required.

• Dynamism: The more dynamic the project context and the application environ-
ment of the software to be created, the greater the benefits provided by agile
techniques. The strengths of agile techniques are particularly pronounced when a
high level of dynamism is required. Dynamism may have completely different
triggers: It may be caused exogenously, because a company’smarket, in which the
software is to be used, is moving and it must be assumed that this movement will
have an impact on the software (during its development or subsequent use). It may
be organizational, because the company is currently being reorganized. Reasons
for dynamismmay also lie in the project, because certain requirements are fiercely
contested, conflicts are foreseeable, or simply because an inadequate amount of
domain knowledge exists. The latter form of dynamism does not necessarily have
to affect the entire software equally. Perhaps some parts are well understood and
easy to coordinate and others are not. As a result, a general guideline is that the
more dynamic the context, the more a project tends toward agile techniques.

• Personnel qualification: While it would be desirable, not every team is fit for
agile development. Agile development requires the involvement of clients,
users, and the application domain. If the team does not have the relevant skills or
know-how, the transfer of knowledge between users and developers generally
has to be managed in a non-agile manner (i.e., via extensive specification
documents), and often fails. A lack of domain knowledge by developers puts the
project in jeopardy from the very beginning. If one still wants (or has) to take
that risk, neither a purely agile or purely plan-driven approach is likely to work,
and a situational mix of both approaches is required. The following general
guideline applies: The greater the language difficulties between the development

10 1 The Need for Tamed Agility



team and users, the greater the dependence on an appropriate mix of agile and
plan-driven instruments in order to compensate for this deficit.

• Culture: Companies with the same business purpose, same size, similar prod-
ucts, and the same market may differ culturally despite their commonalities.
Cultural differences are often manifested in how errors and requirements for
change are handled. On the one hand, some companies require the minutes of
meetings to be signed by all stakeholders and, in some cases, the length of the
change histories exceed the useful part of documents. On the other hand, some
companies focus on recording just the key results. They accept the fact that
some decisions cannot be transparent for all stakeholders, that back-and-forth
discussion is required, and that decisions can simply be interpreted differently.
Depending on an individual’s perspective, these contradictions can either be
referred to as “control-focused versus pragmatic” or as “careful versus casual.”
Both are just as partisan as the contradiction between “plan-driven versus agile.”
In fact, a company’s culture often either propagates the use of agile techniques
(“agility is genuinely necessary”) or their limitation (“that level of agility is
really not acceptable here”). A general guideline is that control-focused/careful
company cultures generally tend toward plan-driven approaches and could
benefit from agile injections, while the opposite is true for pragmatic/casual
corporate cultures.

1.3 A Pragmatic Middle Ground

As we can see, the challenges of the New School of IT call for an approach that
occupies a pragmatic middle ground between traditional and agile software
development processes, i.e., an approach that does not attempt to guarantee plan-
ning certainty, trust, and value orientation based on comprehensive specifications,
but that also does not expect these qualities to emerge automatically through the
free interaction of forces.

Rather, large, digital companies require an approach of tamed agility in order to
combine the necessary flexibility with essential rough planning (budget planning,
portfolio planning, and IT controlling): Tamed agility is a middle ground for IT
projects that can benefit from the flexibility of agile approaches, but must satisfy
expectations with regard to business complexity, environment conditions, con-
tractual requirements, etc., which make stricter preliminary planning essential.

Tamed agility combines techniques from agile approaches with planning and
management methods. However, its primary aim is to ensure that all stakeholders
develop a common understanding of what the essential requirements are at the start
of a project, namely the requirements whose appropriate implementation determines
the acceptance of the software (McMenamin and Palmer 1984). But how can these
essential requirements be determined? How can they be separated from the many
other, possibly also relevant, but non-essential requirements? And how can a vision

1.2 Agile or Plan-Driven? 11



of the future system be formed based on the knowledge of the essential require-
ments? This is impossible without abstraction, without temporary omission of
irrelevant details, and a focus on the essentials—and it is especially impossible
without a readiness for compromise and respect for application knowledge.

Before we look at how this can be achieved in software development, let us first
take a step back and consider a situation that has nothing to do with software:
Imagine a CEO who would like to understand what his new company building will
look like and how it will function. He does not want to know exactly how the
heating system will work, how thick the thermal insulation is, or how much air is
exchanged by the ventilation system every hour. But he would like to know what
the building looks like, where his office is, and what the view from his office is like.
Probably, he is not aware of any of this and simply asks the project manager about
the status of the building planning. She dutifully sends him 15 PDF files that
provide information about everything: the view, the office layout, the building
services, the access concept, and much more. The manager now realizes that he did
not want this level of detail. After some back-and-forth discussion, it may turn out
that a wood model stands in the project office and that the most important building
plans have been attached to the office walls. Much better than 15 PDF files—not for
every purpose, but certainly for the purpose of giving an idea and an anchoring
point from which a range of further questions can be asked and answered.

This example shows that different communication situations require different
models. A manager requires an overview model. This does not need to be formally
precise, nor does it need to be overly detailed. Rather, it must support intuitive
understanding. The authority processing the building application requires a model
of the building to be constructed with precise dimensions and specifications. An
approximate model is not sufficient in order to evaluate things like the maximum
eaves height and compliance with clearance requirements. The building authority is
less interested in other details though, such as the technical design of the instal-
lations, but those are relevant for the heating engineer. And even other models are
obviously required for the interior design.

Software development requires models that are at least as diverse. This may be
because the final artifact, the delivered software, is itself only a model of a section
of the world. Models from which software is to be generated require a different
level of detail and precision than models that only need to clarify the purpose, the
core aim of the project, and the look and feel of the software to be created. Such
models are especially required in the early phases of software construction. And this
takes us back to the CEO who wants to understand his building: Just as 15 PDF files
cannot help him, a manager who just wants to get an idea of a software project’s
core aim and state will not learn much from a 500-page specification.

As a result, we can conclude that vague, incomplete, perhaps even inconsistent
models can be useful in the early phases of software development. In some cases,
they may even be just the right communication tool. Completeness is not the aim in
these early project phases. Instead, the aim is to find out what does and what does
not belong into the software to be created. The boundary between the actual system
and its context must be defined. And, in particular, the most important requirements

12 1 The Need for Tamed Agility



must be identified, independently of their solutions. This is not just because these
essential requirements must not be overlooked, but primarily because they clarify
the key requirements for stakeholders with no knowledge of the application
domain. Abstract models, which can be understood by all stakeholders, are par-
ticularly helpful for the initial requirements scoping of a software project.

Such an approach is most successful if the models are jointly prepared. If a
model is really prepared jointly (rather than just one person preparing everything
independently, and the others just approving the result), verbal communication and
the joint struggle to find the best solution are unbeatable in terms of efficiency.
Rough resource estimates are made based on the jointly prepared (and thus jointly
understood) models (keeping in mind that this kind of estimate can only be rough
and provisional).

Development then takes place using the necessary amount of agility, as late
requirements are inevitable and priorities may change during development. Late
requirements are exchanged for early requirements to ensure that the software being
created does not become increasingly bloated. This not only means that new
requirements are added, but that a continuous cleanup also takes place. Perhaps a bit
less software may be enough after all, and the resource estimate is adjusted with
every step toward a more solid structure and design of the software. In the design
itself, the commercial risks are fairly distributed between the client and the con-
tractor so that all sides are motivated to create the leanest possible software. This
kind of tamed agility then no longer seems threatening, not even to the IT manager.

1.4 Tamed Agility in Practice

Tamed agility is not just a buzzword for another agile philosophy. It is manifested
in specific instruments and procedures for the scoping, designing, development, and
billing of complex agile projects, which are described in the following chapters:

The Interaction Room (Part II) helps teams obtain an overall picture of the
business and technology, effort and risks, and the environment and dependencies
without getting lost in extensive specification documents. The Interaction Room is
not just a name, it is also a real, physical room. It is the central information and
communication point in the project, where the focus is on the interaction between all
stakeholders. Stakeholders outline models of the business processes to be supported
and the data to be managed as well as the relevant application landscape on the walls
of the Interaction Room. This occurs using free syntax, without specific notations, in
a way all stakeholders understand. Particularly critical elements, i.e., special value,
effort, or risk drivers, are highlighted with annotation symbols. These annotations
allow the stakeholders to point out what is important to them and why. This occurs
through personal interaction with one another, not through long-winded specifica-
tions or asynchronous communication. The live interaction results in a more direct
development of a joint understanding of the scope of the project and the expected
complexity of individual features, without the need for extensive documentation.

1.3 A Pragmatic Middle Ground 13



During the course of the project, the adVANTAGE contract model (Part III)
then ensures that the agility that all stakeholders desire does not get trapped in rigid
contracts, acceptance, and billing modalities, but that it is actually applied in
practice as part of a fair cooperation between the contractor and the client. Sprints
are planned in the Interaction Room, new and old requirements are weighed against
each other, effort estimates are refined with a view toward the “big picture,” and
actual progress is compared to plans. The adVANTAGE model controls the
sprint-based project billing and, in contrast to fixed-price or time and materials
projects, ensures that the price risks are fairly distributed between the client and the
contractor. All stakeholders are united in the goal of developing lean software,
because additional effort is split between both sides.

References

Ambler SW (2001) Agile modeling and the Rational unified process (RUP). http://www.
agilemodeling.com/essays/agileModelingRUP.htm. Accessed 23 Feb 2016

Andreessen M (2011) Why software is eating the world. Wall Street Journal, 20 Aug 2011. http://
www.wsj.com/articles/SB10001424053111903480904576512250915629460. Accessed 23
Feb 2016

BeckK et al (2001)Manifesto for agile software development. http://www.agilemanifesto.org. Accessed
23 Feb 2016

Boehm B, Turner R (2003) Balancing agility and discipline: A guide for the perplexed. Addison-
Wesley

Cohn M (2010) Succeeding with agile. Addison-Wesley, pp 166-171
Cusumano MA (1992) Shifting economies: From craft production to flexible systems and software

factories. Research Policy 21(5):453–480. doi:10.1016/0048-7333(92)90005-O
Duvall PM, Matyas S, Glover A (2007) Continuous integration: Improving software quality and

reducing risk. Addison-Wesley
Gartner, Inc. (2012) Gartner says every budget is becoming an IT budget. http://www.gartner.com/

newsroom/id/2208015. Accessed 23 Feb 2016
Humble J, Farley D (2010) Continuous delivery: Reliable software releases through build, test, and

deployment automation. Addison-Wesley
Leffingwell D (2011) Agile software requirements: Lean requirements practices for teams,

programs, and the enterprise. Addison-Wesley
McMenamin SM, Palmer JF (1984) Essential systems analysis. Yourdon
Meyer B (2014) Agile! The good, the hype and the ugly. Springer
Moore G (2011) Systems of engagement and the future of enterprise IT: A sea change in enterprise

IT. http://www.aiim.org/futurehistory. Accessed 23 Feb 2016
Ries E (2011) The lean startup: How today’s entrepreneurs use continuous innovation to create

radically successful businesses. Crown Business
Schwaber K, Sutherland J (2012) Software in 30 days: How agile managers beat the odds, delight

their customers, and leave competitors in the dust. Wiley, p 6

14 1 The Need for Tamed Agility

http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.agilemanifesto.org
http://dx.doi.org/10.1016/0048-7333(92)90005-O
http://www.gartner.com/newsroom/id/2208015
http://www.gartner.com/newsroom/id/2208015
http://www.aiim.org/futurehistory


http://www.springer.com/978-3-319-41476-8


	1 The Need for Tamed Agility
	1.1 A New School of IT
	1.1.1 Mobility
	1.1.2 Agility
	1.1.3 Elasticity
	1.1.4 Resulting Challenges

	1.2 Agile or Plan-Driven?
	1.3 A Pragmatic Middle Ground
	1.4 Tamed Agility in Practice
	References


