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Abstract. High average-utility itemsets mining (HAUIM) is a key data
mining task, which aims at discovering high average-utility itemsets
(HAUIs) by taking itemset length into account in transactional databases.
Most of these algorithms only consider a single minimum utility thresh-
old for identifying the HAUIs. In this paper, we address this issue by
introducing the task of mining HAUIs with multiple minimum average-
utility thresholds (HAUIM-MMAU), where the user may assign a distinct
minimum average-utility threshold to each item or itemset. Two efficient
IEUCP and PBCS strategies are designed to further reduce the search
space of the enumeration tree, and thus speed up the discovery of HAUIs
when considering multiple minimum average utility thresholds. Extensive
experiments carried on both real-life and synthetic databases show that
the proposed approaches can efficiently discover the complete set of HAUIs
when considering multiple minimum average-utility thresholds.

Keywords: High average-utility itemsets · Multiple thresholds · Data
mining · Downwarc closure · Utility

1 Introduction

The main purpose of knowledge discovery in database (KDD) is to discover
implicit and useful information in a collection of data. Association-rule mining
(ARM) or frequent itemset mining (FIM) plays an important topic in KDD,
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which has been extensively studied [1,3]. A major limitation of traditional ARM
and FIM is that they focus on mining association rules or frequent itemsets
in binary databases, and treat all items as having the same importance with-
out considering factors. To address this limitation, the problem of high utility
itemset mining (HUIM) [4,10,18,19] was introduced. An important limitation
of traditional HUIM is that the utility of an itemset is generally smaller than
the utility of its supersets. Hence, traditional HUIM tends to be biased toward
finding itemsets of greater length (containing many items), as these latter are
more likely to be high utility itemsets. The utility measure used in traditional
HUIM thus does not provide a fair measurement of the utility of itemsets.

To alleviate the influence of an itemset’s length on its utility, and find more
useful high utility itemset for recommendation, Hong et al. [7] proposed the
average utility measure, and the problem of high average utility itemset mining
(HAUIM). The average utility of an itemset is defined as the total utility of its
items in transactions where the itemset appears, divided by the number of items
in the itemset. Numerous algorithms have been designed to more efficiently mine
high average-utility itemsets (HAUIs) [11,13,14,16] but most of them rely on a
single minimum average-utility threshold to mine HAUIs. In real-life situations,
each item or itemset may be more or less important to the user. It is thus unfair
to measure the utility of all items in a database using the same minimum utility
threshold.

To address this issue, this paper proposes a novel framework for high
average-utility itemset mining with multiple minimum average-utility thresholds
(HAUIM-MMAU). Based on the proposed framework, a two-phase algorithm
named HAUI-MMAU is proposed to discover HAUIs. To improve the perfor-
mance of the proposed algorithm, two efficient pruning strategies called IEUCP
and PBCS are designed to prune unpromising itemsets early, thus reducing the
search space and speeding up the discovery of HAUIs. Extensive experiments
were conducted on both real-life and synthetic datasets to show that the pro-
posed algorithm can efficiently mine the complete and correct set of HAUIs
in databases, while considering multiple minimum average-utility thresholds to
assess the utility of itemsets.

2 Related Work

In recent years, HUIM [4,10,18,19] has become a key research topic in the field of
data mining. Chan et al. [4] presented a framework to mine the top-k closed util-
ity patterns based on business objectives. Yao et al. [18,19] defined the problem
of utility mining while considering both purchase quantities of items in trans-
actions (internal utility) and their unit profits (external utility). Liu et al. [10]
introduced the transaction-weighted utility (TWU) model and the transaction-
weighted downward closure (TWDC) property. Lin et al. [11] adopted the TWU
model to design the high-utility pattern (HUP)-tree for mining HUIs using a con-
densed tree structure called HUP-tree. Liu and Qu [15] proposed the HUI-Miner
algorithm to discover HUIs without generating candidates using a designed
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utility-list structure. Fournier-Viger et al. [5] then presented the FHM algorithm
and the Estimated Utility Co-occurrence Structure (EUCS) to mine HUIs.

In HUIM, the utility of an itemset is defined as the sum of the utilities of
its items, in transactions where the itemset appears. An important drawback
of this definition is that it does not consider the length of the itemset. Hong
et al. [7] first proposed the average utility measure, and the stated the problem
of HAUIM. The average-utility of an itemset is the sum of the utilities of its
items, in transaction where it appears, divided by its length (number of items).
The average-utility model provides an alternative measure to assess the utility of
itemsets. Because the average utility measure considers the length of itemsets, it
is more suitable and applicable in real-life situations, than the traditional mea-
sure. Lin et al. [11] then developed a high average-utility pattern (HAUP)-tree
structure to mine HAUIs more efficiently. Lan et al. [13] developed a projection-
based average-utility (PBAU) mining algorithm to mine HAUIs. Lan et al. [14]
then also extended the PBAU algorithm and designed a PAI approach using
an improved strategy for mining the HAUIs. Lu et al. [16] then developed a
HAUI-tree structure to mine HAUIs without candidate generation.

The above algorithms were designed to mine HAUIs using a single mini-
mum average-utility threshold (count). But in real-life situations, items are often
regarded as having different importance to the user. Hence, it is unfair to assess
the utility of all items using a same minimum average utility threshold (count),
to determine if itemsets are HAUIs. In the past, the MSApriori [9] was first
proposed to mine FIs under multiple minimum support thresholds. The CFP-
growth algorithm [8] was then designed to build the MIS-tree and perform a
recursive depth-first search to output the FIs. The MHU-Growth algorithm [17]
extends CFP-Growth, to mine high utility frequent itemsets with multiple min-
imum support thresholds. Lin et al. [12] then developed the HUIM-MMU model
for discovering HUIs with multiple minimum utility thresholds. Besides, two
improved TID-index and EUCP strategies were proposed to prune unpromising
itemsets early, thus speeding up the discovery of HUIs.

3 Preliminaries and Problem Statement

Let I = {i1, i2, . . . , ir} be a finite set of r distinct items occurring in a database
D, and D = {T1, T2, . . . , Tn} be a set of transactions, where for each transac-
tion Tq ∈ D, Tq is a subset of I and has a unique identifier q, called its TID
(transaction identifier). For each item ij and transaction Tq, a positive number
q(ij , Tq) represents the purchase quantity of ij in transaction Tq. Moreover, a
profit table ptable = {p(i1), p(i2), . . . , p(ir)} is defined, where p(im) is a positive
integer representing the unit profit of item im (1 ≤ m ≤ r). A set of k distinct
items X = {i1, i2, . . . , ik} such that X ⊆ I is said to be a k -itemset, where k
is the length or level of the itemset. An itemset X is said to be contained in a
transaction Tq if X ⊆ Tq. An example quantitative database is shown in Table 1.
It consists of five transactions and six items, represented using letters from (a)
to (f ). The profit of each item in Table 2.
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Table 1. A quantitative database.

TID Items

1 b:7, c:2, d :3, e:1

2 b:4, c:3, d :3

3 a:2, d :1

4 a:1, c:6, f :4

5 b:2, c:3, d :1, f :2

Table 2. A profit table.

Item Profit

a 5

b 2

c 1

d 2

e 4

f 1

Definition 1. The minimum average-utility threshold to be used for an item
ij in a database D is a positive integer denoted as mau(ij). A MMAU-table is
used to store the minimum average-utility thresholds of all items in D, and is
defined as:

MMAU − table = {mau(i1),mau(i2), . . . , mau(ir)}, (1)

In the following, it will be assumed that the minimum average-utility thresh-
olds of all items for the running example are defined as: {mau(a):8, mau(b):8,
mau(c):13, mau(d):14, mau(e):20, mau(f):9}
Definition 2. For a k -itemset X, the minimum average-utility threshold of X
is denoted as mau(X), and is defined as:

mau(X) =

∑

ij∈X

mau(ij)

|X| =

∑

ij∈X

mau(ij)

k
. (2)

Definition 3. The average-utility of an item ij in a transaction Tq is denoted
as au(ij , Tq), and is defined as:

au(ij , Tq) =
q(ij , Tq) × p(ij)

1
, (3)

where q(ij , Tq) is the purchase quantity of item ij in Tq, and p(ij) is the unit
profit of item ij .

Definition 4. The average-utility of a k -itemset X in a transaction Tq is
denoted as au(X,Tq), and defined as:

au(X,Tq) =

∑

ij∈X∧X⊆Tq

q(ij , Tq) × p(ij)

|X| =

∑

ij∈X∧X⊆Tq

q(ij , Tq) × p(ij)

k
, (4)

where k is the number of items in X.
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Definition 5. The average-utility of an itemset X in a database D is denoted
as au(X), and is defined as:

au(X) =
∑

X⊆Tq∧Tq∈D

au(X,Tq). (5)

Problem Statement: The purpose of HAUIM-MMAU is to efficiently discover
the set of all high average-utility itemsets, where an itemset X is said to be a
HAUI if its average utility is no less than its minimum average-utility threshold
mau(X) as:

HAUI ← {X|au(X) ≥ mau(X)}. (6)

4 Proposed HAUIM-MMAU Framework

Based on the proposed HAUIM-MMAU framework, a baseline algorithm for
mining high-utility itemsets with multiple minimum average-utility thresholds
(HAUI-MMAU) is proposed in this section. Thereafter, two improved algorithms
based on two novel pruning strategies named IEUCP and PBCS are introduced
to further increase mining efficiency.

4.1 Proposed Downward Closure Property

In HAUIM, the downward closure (DC) property does not hold for the average-
utility measure. But a DC property can be restored using the average-utility
upper bound (auub) model [7]. This allows to prune the search space early for
discovering the HAUIs.

Definition 6. The average-utility upper bound of an itemset X is defined as
the sum of the maximum utilities of transactions where X appears:

auub(X) =
∑

X⊆Tq∧Tq∈D

mu(Tq), (7)

where mu(Tq) is the maximum utility of transaction Tq, defined as mu(Tq) =
max(q(ij , Tq) × p(ij))∀ij ∈ I.

Definition 7. An itemset X is a high average-utility upper-bound itemset
(HAUUBI) if its auub is no less than its minimum average-utility threshold.
The set of all HAUUBIs is thus defined as:

HAUUBI ← {X|auub(X) ≥ mau(X)}. (8)

Property 1. Let Xk and Xk−1 be two itemsets respectively containing k and
k − 1 items, such that Xk−1 ⊂ Xk. The auub property of HAUIM states that
auub(Xk) ≤ auub(Xk−1). Thus, if an itemset Xk−1 is not a HAUUBI, then any
superset Xk of Xk−1 is also not a HAUUBI, nor a HAUI.
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In HAUIM, the auub property was shown to be very effective at reducing the
number itemsets to be considered in the search space. However, for the problem
of high average-utility itemset mining with multiple minimum average-utility
thresholds (HAUIM-MMAU), the auub property does not hold. The reason is
that itemsets in different levels (itemsets of different lengths) may be evaluated
using different minimum average-utility thresholds. Thus, the auub property of
the HAUIM framework cannot be directly adopted into the designed HAUIM-
MMAU framework. To address this limitation, this paper proposes the concept
of least minimum average utility (LMAU ), which is defined as follows.

Strategy 1. The items in the MMAU-table are sorted in ascending order of
their mau values.

For example, items in the MMAU-table of the running example are sorted as
{mau(a):8, mau(b):8, mau(f):9, mau(c):13, mau(d):14, mau(e):20}, that is by
descending order of their mau values.

Based on the designed Strategy 1, the following transaction-maximum-utility
downward closure (TMUDC) property holds for the HAUIM-MMAU framework.

Theorem 1 (Transaction- Maximum-Utility Downward Closure Prop-
erty, TMUDC Property). Without loss of generality, assume that items in
itemsets are sorted in ascending order of mau values. Let Xk be a k-itemset
(k ≥ 2) , and Xk−1 be a subset of Xk of length k − 1. If Xk is a HAUUBI, then
Xk−1 is also a HAUUBI.

Although the TMUDC property can guarantee the anti-monotonicity for
HAUUBIs, some HAUIs may still be missed. This can happen when a HAU-
UBI X of length 1 is evaluated using its mau(X) value. For example, assume
that the auub value of an itemset (ij) is less than mau(ij). This itemset will thus
be considered as not being an HAUUBI. Moreover, according to the TMUDC
property, any extension Y of the itemset (ij) is also not a HAUUBI. Consider
that Y = {ij , iz} such that the item iz has a lower mau value than ij . Then
Y would still be a HAUI if au(Y ) ≥ mau(ij)+mau(iz)

2 . Thus, if the TMUDC is
directly applied to obtain the HAUUBIs of length 1, Y would not be considered
as a HAUUBI since auub(ij) < mau(ij). As a result, Y would not be included
into the final set of HAUIs. Hence, it is incorrect to apply the TMUDC property
to determine the HAUUBIs of length 1. To solve this problem, the concept of
LMAU value is introduced, which guarantee the discovery of the complete set
of HAUIs in the designed HAUIM-MMAU framework.

Definition 8 (Least Minimum Average-Utility, LMAU). The least min-
imum average-utility (LMAU) in the MMAU-table is defined as:

LMAU = min{mau(i1),mau(i2), . . . , mau(ir)}. (9)

where r is the total number of items.

The LMAU in the running example is calculated as LMAU = min{mau(a),
mau(b), mau(f), mau(c), mau(d), mau(e)} = min{8, 8, 9, 13, 14, 20}(= 8).
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Theorem 2 (HAUIs ⊆ HAUUBIs). Let be an itemset Xk−1 of length k − 1
and Xk be one of its supersets. If Xk−1 has an auub value lower than the LMAU,
Xk−1 is not a HAUUBI nor a HAUI, as well as all its supersets. Hence, Xk−1

and its supersets can be discarded.

The above theorem indicates that any superset of a non-HAUUBI cannot be a
HAUUBI. That is, only the combination of two HAUUBIs may generate a poten-
tial HAUI. By using this approach for candidate generation, many unpromising
candidates can be eliminated, and it becomes unnecessary to calculate their
actual average-utility value in the later mining process.

4.2 The Proposed HAUI-MMAU Algorithm

The designed baseline HAUI-MMAU algorithm consists of two phases. In the first
phase, the designed HAUI-MMAU algorithm performs a breadth-first search to
mine the HAUUBIs. In the second phase, an additional database scan is per-
formed to identify the actual high average-utility itemsets from the set of HAU-
UBIs discovered in the first phase. The pseudocode of the proposed algorithm is
given in Algorithm 1.

Algorithm 1. HAUI-MMAU
Input: D, a quantitative transactional databases; ptable, a profit table;

MMAU-table, the user predefined multiple minimum average utility
threshold table.

Output: The set of complete high average-utility itemsets (HAUIs).
1 find the LMAU in the MMAU-table;
2 scan D to find auub(ij);
3 for each item ij do
4 if auub(ij) ≥ LMAU then
5 HAUUBI1 ← HAUUBI1 ∪ ij ;

6 sort items in HAUUBI1 in ascending order of their mau values;
7 set k ← 2;

8 while HAUUBIk−1 �= null do

9 Ck = generate candidate(HAUUBIk−1);
10 for each k-itemset X ∈ Ck do
11 scan D to calculate auub(X);
12 if auub(X) ≥ mau(X) then

13 HAUUBIk ← HAUUBIk ∪ X;

14 set k ← k + 1;

15 HAUUBIs ← ⋃HAUUBIk;
16 for each itemset X in HAUUBIs do
17 scan D to calculate au(X);
18 if au(X) ≥ mau(X) then
19 HAUIs ← HAUIs

⋃
X;

20 return HAUIs;
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The proposed HAUI-MMAU algorithm takes as input: (1) a quantitative
transactional database D (2) a profit table ptable indicating the unit profit of
each item, and (3) a multiple minimum average-utility threshold table, MMAU-
table. First, the least minimum average-utility value (LMAU ) is found in the
MMAU-table (Line 1). Then, the database is scanned to find the auub values
of all 1-items (Line 2). For each 1-item, the algorithm check if its auub value is
no less than the LMAU, to determine if it is an HAUUBI of length 1 (Lines 3
to 5). After obtaining the set of all HAUUBIs of length 1 (HAUUBI1), the
items in HAUUBI1 are sorted in ascending order of their mau values (Line 6).
This process is necessary to ensure that all HAUIs will be retrieved, as explained
in the previous section. The parameter k is then set to 2 (Line 7), and a loop is
performed to mine all HAUUBIs in a level-wise way, starting from itemsets of
length k = 2 (Lines 8 to 14). During the (k -1)-th iteration of the loop, the set
HAUUBIk, containing the HAUUBIs of length k, is obtained by the following
process. First, pairs of (k -1)-itemsets in HAUUBIk−1 are combined to generate
their supersets of length k by applying the generate candidate procedure (Line 9).
The result is a set named Ck, containing potential HAUUBIs of length k. The
database is then scanned again to calculate the auub value of each itemset X
in Ck. If the itemset X has an auub value that is no less than its maximum
average-utility (mau), it is added to the set HAUUBIk (Lines 11 to 13). This
loop terminates when no more candidates can be generated.

In the second phase, the database is scanned again to find the high average-
utility itemsets (HAUIs) in the set of HAUUBIs, found in first phase (Lines 16
to 19). Based on the proposed theorems, the designed algorithm is correct and
complete, and thus returns the full set of HAUIs (Line 20).

4.3 Improved IEUCP Strategy

The TMUDC property proposed in the designed HAUI-MMAU algorithm can
considerably reduce the search space and speed up the discovery of HAUIs. How-
ever, the designed HAUI-MMAU algorithm still suffers from the combinational
explosion of the number of itemsets in the search space, since it generates candi-
dates in a level-wise way, and many candidates may be generated at each level.
To address this limitation, the Improved estimated utility co-occurrence prun-
ing strategy (IEUCP) is designed to reduce the number of join operations (the
operations of combining pairs of itemsets to generate larger itemsets) by pruning
unpromising itemsets early. The IEUCP strategy is applied for the generation of
k -itemsets (k ≥ 2). It relies on the following theorem to ensure the correctness
and the completeness of the HAUI-MMAU algorithm with the IEUCP strategy,
for discovering HAUIs.

Theorem 3 (Improved Estimated Utility Co-occurrence Pruning
Strategy, IEUCP). Let there be an itemset Xk−1 and an itemset Xk that
is an extension of Xk−1 (that was obtained by appending an item to Xk−1).
Without loss of generality, assume that items in itemsets are sorted by ascend-
ing order of mau values. A sorted prefix of Xk−m is a subset of Xk−1 containing
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the m first items of Xk−1 according to ascending order of mau values, where
1 ≤ m < k − 1. For example, consider the itemset (bcde), which is a 4-itemset
(k = 4). Its sorted prefixes are (b), (bc), and (bcd). If there exists a sorted prefix
Xk−m of Xk that is not a HAUUBI, then Xk is also not a HAUUBI.

It is important to note that an itemset X can only be safely pruned by
Theorem 3 if X has a sorted prefix that is not a HAUUBI, and that this pruning
condition should not be applied by considering subsets of X that are not sorted
prefixes of X. Based on Theorem 3 and the proposed TMUDC property, the
completeness and correctness of the HAUI-MMAU algorithm is preserved, when
applying the IEUCP strategy.

4.4 Pruning Before Calculation Strategy, PBCS

Although the developed IEUCP strategy is effective at reducing the number of
unpromising candidates in the first phase, calculating the set of actual HAUIs
in the second phase remains a very time-consuming process. To address this
issue, this article further proposes an efficient pruning before calculation strategy
(PBCS) to prune itemsets without performing a database scan.

Theorem 4. Let X, Xa, and Xb be itemsets such that Xa ⊂ X, Xb ⊂ X, and
Xa ∪ Xb = X, Xa ∩ Xb = ∅. If both Xa and Xb are not HAUIs, the itemset X
is also not a HAUI.

Thus, if it is found that two subsets Xa and Xb of an itemset X are not
HAUIs and respect the condition of Theorem 4, it can be concluded that X is
not a HAUI. It is thus unnecessary to scan the database to calculate the actual
utility of X. Based on this PBCS, the cost of calculating the actual utility of
HAUUBIs in the second phase can be greatly reduced.

5 Experimental Evaluation

Substantial experiments were conducted to evaluate the effectiveness and effi-
ciency of the proposed algorithms. The performance of the baseline HAUI-
MMAU algorithm was compared with two versions named HAUI-MMAUIEUCP

and HAUI-MMAUPBCS, which respectively integrates the proposed IEUCP
strategy, and both the designed IEUCP and PBCS strategies. Note that no
previous studies have been done for mining HAUIs with multiple average-utility
thresholds, and it is thus unnecessary to compare the designed algorithms with
the previous algorithms for HAUIM with a single minimum average-utility
threshold. Experiments were carried on both real-life and synthetic dataset,
having various characteristics. The foodmart, retail, and chess datasets were
obtained from the SPMF website [6]. The IBM Quest Synthetic Dataset Gener-
ator [2] was used to generate a synthetic dataset named T40I10D100K. Parame-
ters and characteristics of the datasets used in the experiments are respectively
shown in Tables 3 and 4.
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Table 3. Parameters of the datasets.

#|D| Transaction count

#|I| Number of distinct items

AvgLen Average transaction length

MaxLen Maximal transaction length

Type Dataset type

Table 4. Characteristics of the datasets.

Dataset #|D| #|I| AvgLen MaxLen Type

Foodmart 21,556 1,559 4.4 10 Sparse

Retail 88,162 16,470 10.3 76 Sparse

Chess 3,196 75 36 36 Dense

T40I10D100K 100,000 942 39.6 77 Dense

Furthermore, the method proposed in [9] for assigning the multiple thresholds
to items was adapted to automatically set the mau value of each item in the
proposed HAUIM-MMAU framework. The following equation is thus used to set
the mau value of each item ij :

mau(ij) = max{β × p(ij), GLMAU}, (10)

where β is a constant used to set the mau values of an item as a function
of its unit profit. To ensure randomness and diversity in the experiments, β was
respectively set in different interval for varied datasets. The constant GLMAU is
user-specified and represents the global least average-utility value. Lastly, p(ij)
represents the external utility (unit profit) of the item ij . If β is set to zero, a
single minimum average-utility threshold GLMAU is used for all items. In that
case, the task of HAUI-MMAU would become the same as traditional HAUIM.

5.1 Runtime

In this section, the runtimes of three proposed approaches are respectively com-
pared. Figure 1 shows the runtime of the proposed algorithms when β is varied
with a fixed GLMAU value within the predefined interval for each dataset.

It can be observed in Fig. 1 that the improved HAUI-MMAUIEUCP and
HUAI-MMAUPBCS algorithms outperform the baseline HAUI-MMAU algo-
rithm. For example, when GLMAU is set to 168,000 and β is set in the [200, 400]
interval for the chess dataset, the runtime of HAUI-MMAU, HAUI-MMAUIEUCP

and HAUI-MMAUPBCS are respectively 116, 133 and 58 seconds. It can also
be observed that HAUI-MMAUPBCS always has the best performance among
the three algorithms. The reason is that HAUI-MMAUPBCS applies both the
IEUCP and PBCS strategies to improve the performance of the mining process,
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Fig. 1. Runtime for a fixed GLMAU and varied β.

while HAUI-MMAUIEUCP only applies the IEUCP strategy. But both strategies
are complementary to each other. The IEUCP strategy can prune a large amount
of unpromising itemsets to avoid several database scans when calculating the
auub values of itemsets in the first phase, while the PBCS strategy can prune
unpromising HAUIs from the remaining HAUUBIs to avoid calculating their
actual average-utility values, in the second phase. Hence, HAUI-MMAUPBCS

has the best performance among the three algorithms. In Fig. 1, it can also be
observed that the performance gap between HUAI-MMAUPBCS and the other
algorithms is larger for the chess and T40I10D100K datasets, especially when β
is set lower. The reason is that both chess and T40I10D100K are dense datasets
with relatively few distinct items. As a result, the discovered HAUUBIs are
highly related to each other and the designed PBCS strategy can thus be used
to prune the unpromising HAUIs early from the remaining HAUUBIs.

5.2 Candidate Analysis

We further compared the number of candidates generated by each of the three
algorithms. Here, an itemset is said to be a candidate if its actual average-utility
value is calculated in the first phase, and its exact average-utility is calculated
in the second phase. Figure 2 shows the number of candidates for the three
algorithms when β is varied with a fixed GLMAU value.
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Fig. 2. Number of candidates for a fixed GLMAU and varied β

In Fig. 2, it can be observed that the HAUI-MMAU algorithm always con-
siders more candidates than the other two algorithms. The reason is that
HAUI-MMAUIEUCP can efficiently prune some unpromising HAUUBIs using
its designed pruning strategy, while HAUI-MMAUPBCS can prune unpromising
HAUIs from the remaining HAUUBIs for revealing the actual HAUIs. It can also
be found in Fig. 2(a) that when β is set in the [1, 10] interval, more candidates are
generated than for the other intervals of β such as [10, 20], [20, 30], [30, 40] and
[40, 50]. The reason is that foodmart is a very sparse dataset having a large num-
ber of distinct items. In the [1, 10] interval, the generated candidates have similar
average-utility values. Since the minimum average-utility threshold is set lower,
the amounts of candidates are thus revealed in this interval. When the mini-
mum average-utility threshold is increased, itemsets with similar average-utility
values may be lower than the certain threshold; a large amount of candidates
can thus be pruned. It can be observed in Fig. 2(b) and (d), that the number of
candidates considered by HAUI-MMAUIEUCP and HAUI-MMAUPBCS is almost
the same. This explains why they have similar runtimes, as shown in Fig. 1(b)
and (d). But in Fig. 2(c), it is obvious that the number candidates considered
by HAUI-MMAUPBCS is much less than the two other algorithms, which shows
that the proposed PBCS strategy can greatly reduce the search space in the
second phase for the chess dataset.
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5.3 Memory Usage

This section compares the memory usage of the three designed algorithms when
β is varied and GLMAU is fixed. Results are shown in Fig. 3.
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Fig. 3. Memory usage for a fixed GLMAU and various values of β.

It can be seen in Fig. 3 that HAUI-MMAU sometimes consumes less memory
than HAUI-MMAUIEUCP when β is varied and GLMAU is fixed. In most cases,
the HAUI-MMAUPBCS algorithm consumes more memory than the other two
algorithms since both the IEUCP and PBCS strategies are adopted to prune
unpromising candidates, as it can be observed in Fig. 3(b) and (c). Although the
IEUCP strategy requires additional memory to store its structure, pruning item-
sets reduces the number of itemsets to then be considered as potential HAUIs,
and thus the runtime and memory usage. Thus, the HAUI-MMAUPBCS algo-
rithm consumes less memory than the HAUI-MMAU and HAUI-MMAUIEUCP

algorithms, in most cases.

6 Conclusion

In this paper, the high average-utility itemset mining with multiple minimum
average-utility thresholds (HAUIM-MMAU) framework was designed to mine
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high average-utility itemsets (HAUIs) with multiple minimum average-utility
thresholds. The baseline HAUI-MMAU algorithm is a two phases algorithm,
which relies on several designed theorems to find the HAUIs. The first IEUCP
strategy is designed to prune the search space, and thus increasing the efficiency
of HAUI mining. The second PBCS pruning strategy is used to reduce the num-
ber of HAUUBIs at the beginning of the second phase, for revealing the actual
HAUIs. An extensive experimental study was conducted on both synthetic and
real datasets to evaluate the performance of the algorithms in terms of runtime,
number of candidates, and memory usage. Results show that the designed algo-
rithms can efficiently discover the HAUIs and that the two pruning strategies
can effectively reduce the number of candidates in the first and second phase.
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