Nonparametric Test on Process Capability

Stefano Bonnini

Abstract The study of process capability is very important in designing a new
product or service and in the definition of purchase agreements. In general we can
define capability as the ability of the process to produce conforming products or
deliver conforming services. In the classical approach to the analysis of process
capability, the assumption of normality is essential for the use of the indices and
the interpretation of their values make sense but also to make inference on them.
The present paper focuses on the two-sample testing problem where the capabilities
of two processes are compared. The proposed solution is based on a nonparametric
test. Hence the solution may be applied even if normality or other distributional
assumptions are not true or not plausible and in the presence of ordered categorical
variables. The good power behaviour and the main properties of the power function
of the test are studied through Monte Carlo simulations.
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1 Introduction

To ensure a high quality of product or service, the production process or service
delivery process should be stable and a continuous quality improvement should be
pursued. Control charts are the basic instruments for a statistical process control
(SPC). One of the main goals of these and other statistical techniques consists in
studying and controlling the capability of the process. A crucial aspect which should
be studied and controlled is the process variability.

Every process, even if well-designed, presents a natural variability due to unavoid-
able random factors. In the presence of specific factors that cause systematic vari-
ability, the process is out of control and its performances are unacceptable. In these
situations the process variability is greater than the natural variability and high per-
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centage of outputs (products, services, etc) could be nonconforming, that is the
process would produce high percentages of waste. In other words, when the process
is in control, most of the values of the response variable under monitoring falls
between the specification limits. When the process is out of control, the probability
that the response variable takes values outside the specification limits is high. Hence
the main purpose of a SPC is to minimize the process variability.

The study of process capability is very important in designing a new product
or service and in the definition of purchase agreements. In general we can define
capability as the ability of the process to produce conforming products/services.
In other words the greater the probability of observing values of the response in the
interval [LSL, USLY], the greater the process capability, where LSL and USL are lower
specification limit and upper specification limit respectively.

In the statistical literature several works have been dedicated to process capability
indices. For a deep discussion see, among the others, [5, 6, 9-11, 14, 15].

By assuming normality for the response, a simple way of measuring the process
capability is based on the index

C, = (USL — LSL)/(65), (1)

where o is the standard deviation of the response. For a non centred process, that
is when the central tendency of the distribution of the response is not centred in the
specification interval, a more appropriate measure of process capability is provided by

Cpk = min[(USL — ), (u — LSL)]/(30), @)

where p is the process mean. C, can be considered as potential capacity of the
process, while C; can be considered as actual capacity. When the process is centred
C,=Cp. If LSL < < LSL then C,; > 0 and when p = LSL or . = USL we
have Cp; = 0.

The assumption of normality is essential for the use of the indices and the inter-
pretation of their values make sense. Some approaches, proposed in the presence of
non normal data, are based on a suitable transformation of data. Alternative solutions
consist in defining general families of distributions like those of Pearson and Johnson
(see [14]).

When the capabilities of two or more processes are compared, we should consider
that a given value of C; could correspond to one process with centred mean and
high variability or to another process with less variability and non centred mean.
As a consequence, high values of C,; may correspond to a non centred process
with low variability. To take into account the centering of the process we should
jointly consider C,, and C ;. An alternative is represented by the following index of
capability

Cpm = (USL — LSL)/(6v/0* + (1 — T)?), 3)
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where T is the target value for the response. It is worth noting that C,, = C,/
14602 where § = (u—T)/o.

Under the assumption of normality, it is possible to compute confidence intervals
for the capability indices by means of point estimates of x and . Common and
very useful testing problems consider the null hypothesis Hy : C = Cj against the
alternative H, : C > Cy, where C is a given index of capability and Cy is a specific
reference value for C (see for example [9]). We wish to focus on the two-sample
testing problem where the capabilities of two processes, C; and C, are compared. The
goal consists in testing the null hypothesis Hy : C; = C; against the alternative H, :
C, > C,.Typical situations are related to the comparison between sample data drawn
from a given process under study and sample data from an in-control process or to the
comparison between the capabilities of the processes associated to different industrial
plants, operators, factories, offices, corporate headquarters, etc. Some interesting
contributions about capability testing are provided by [7, 8, 12, 13].

The proposal of the present paper is based on a nonparametric solution. Hence
the test may be applied even if normality or other distributional assumptions are not
true or not plausible. The method is based on a permutation test and neither requires
distributional assumptions nor needs asymptotic properties for the null distribution
of the test statistic. Hence, it is a very robust procedure and can also be applied for
small sample sizes and for ordered categorical data.

The basic idea is to transform the continuous response variable into a categorical
variable through a suitable transformation of the support of the original response into
a set of disjoint regions and to perform a test for comparing the heterogeneities of two
categorical distributions. In Sect. 2 the procedure is described. Section 3 presents the
results of a simulation study for proving the good power behaviour of the proposed
test. Final conclusions are given in Sect. 4.

2 Permutation Test on Capability

Let X be a continuous random variable representing the response under study in the
SPC. The probability that X takes values in the region R € R is

g = P[X e R] = / f(x)dx, “)
R

where f(x) is the (unknown) density function of X. Letusdefine Ry = [LSL, USL]
the target region for X, Ry = (—oo, LSL) and Ry = (USL, +00). A reasonable
assumption, unless the process is severely out of control, is that most of the probability
mass is concentrated in Ry, i.e., the probability that X falls in the target region is
greater than the probability than X takes values in the lower tail or in the upper tail.
Formally

TR, = Max(Tr,, TRy, TRy ) )
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withmg, + g, + mg, = 1. Theideal situation, when the process is in control, is that
the probability of producing waste is null, that is 7g, = 7g, = 0 and g, = 1. The
worst situation, when g, takes its absolute minimum under the constrain defined in
Eq.5, consists in the uniform distribution, where 7, = mg, = mg, = 1/3. Hence a
suitable index of capability could be the one’s complement of a normalized measure
of heterogeneity for categorical variables. A solution could be based on the use of
the index of Gini

CO=1- @/ — (n}, +7h +73)]. ()

The famous entropy of Shannon may be also considered for computing a nor-
malized index of capability

C® =1+ (g, Inmg, + g, In7g, + 78, In7TR,)/In3. @)
Other alternatives can be provided by the family of indices proposed by Rényi
C=1-(1-w) "' In(ry +7p +mf)/In3. (8)

Each normalized index of heterogeneity takes value 1 in case of maximum het-
erogeneity (uniform distribution), value O in case of minimum heterogeneity (degen-
erate distribution) and greater values when moving from the degenerate towards the
uniform distribution (see [4]). Hence the greater the value of the index of hetero-
geneity the lower the capability of the process because the capability is non decreas-
ing function of the probability concentration. For this reason, if the probabilities
were known, the comparison of two process capabilities could be done by compar-
ing the cumulative ordered probabilities IT;s) = D> ,_; T1¢) and ITo) = D /_; T
withmwjp, =71y > Tj2) = 7j@3), j = 1,2,5 =1, 2, 3. Thus the hypotheses of the
problem are

Hy : [C = Cy]l = U5y = M) Vs], )
and
H] . [C1 > C2] = [H](X) > HZ(S)VS and ds s.t. H](X) > Hz(x)]. (10)

Under the null hypothesis, when the cumulative ordered probabilities are equal,
exchangeability holds. But 7, j = 1,2, t =1, 2, 3 are unknown parameters of
the distribution and need to be estimated by using the observed ordered frequencies
iy = Njw/nj, where n ) is the rth ordered absolute frequency for the j-th sample
and n; is the size of thej-th sample. Hence the real ordering of the probabilities is
estimated and the exchangeability under Hj is approximated and not exact.

[1, 3] suggest that a test statistic for the similar problem of two-sample test on
heterogeneity may be based on the difference of the sampling estimates of the indices
of heterogeneity. By adapting this approach to our specific problem, we suggest to
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use, as test statistic, the difference of the sampling estimates of the process capabilities
under comparison: T = C, — C,, where C ; is computed like C; but by replacing
7@ with Ty, with j = 1,2 and r = 1, 2, 3. Hence we have T = CA‘fG) — CA‘QG),
Ty = G — & and Ty, = € — €,

An alternative solution could be based on the combination of more than one
statistic, by considering the information provided by different indices. For example,
according to the additive combining rule, we have

Te =T + Ts + Ty + Try,» (11)

where Tg, and Tg_ are the test statistics based on the indices of Rényi of order 3
and oo respectively. Whatever the statistics used for the problem, the null hypotheses
must be rejected for large values of this statistic.

The first step of the testing procedure consists of the computation of the observed
ordered table, thatis {n;¢); j = 1,2;¢t =1, 2, 3} and the observed value of the test
statistic 7©. By performing B independent permutations of the dataset, then obtain-
ing B permuted ordered tables {n’j’f(t); j=1,2;t=1,2,3} and B corresponding
permutation values of the test statistic 7*(, ..., T*®) the p-value, according to
the permutation distribution, can be computed as

B

p=> 1T >T1%)/B, (12)
b=1

where I(E) = 1 iff the event E is true, and I (E) = 0 otherwise. An alternative
resampling strategy may be based on a bootstrap approach but [2] proves that this
solution is usually not as powerful as the permutation one.

3 Monte Carlo Simulation Study

To analyze the power behaviour of the proposed tests, a Monte Carlo simulation study
was performed. Data for the j-th sample were randomly generated by the following
variable:

X; =14+int[3U07], (13)

where U is a uniform random variable, and y; € (0, 1] is the heterogeneity para-
meter: the greater y; the higher the heterogeneity of X; (thus the lower C;), hence
C, > C, iff y; < y,. For each specific setting, defined in terms of y, y», n; and n,
values, CMC = 1000 datasets where generated and, for each dataset, B = 1000 per-
mutations were performed to estimate the p-values and compute the rejection rates
of the tests. The estimated power (rejection rates) of the tests on capability based
on the indices of Gini, Shannon, Rényi (order 3 and order co) and on the direct
(additive) combination of the four mentioned tests were computed.
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Table 1 Simulation results under Hy : C; = Ca, n; = ny =50, « = 0.05, B = 1000, CMC =
1000

Rejection rates
Y1 V2 n—v. |Ic Ts Tk, TRy Tc
0.2 0.2 0.0 0.055 0.054 0.055 0.055 0.055
0.4 0.4 0.0 0.053 0.052 0.053 0.054 0.054
0.6 0.6 0.0 0.040 0.048 0.040 0.025 0.040

Table 2 Simulation results under H; : C; > Ca, ny = ny =50, = 0.05, B = 1000, CMC =
1000

Rejection rates
Y1 V2 n—r2 |Tg Ts Ty TRy Tc
0.8 1.0 0.2 0.044 0.042 0.047 0.060 0.052
0.6 1.0 0.4 0.375 0.399 0.372 0.314 0.360
0.4 1.0 0.6 0.945 0.955 0.933 0.863 0.935

In Table 1, the rejection rates under the null hypothesis of equality in capability
are reported with samples sizes equal to 50. Three different capability levels are
considered. The powers of all the tests seem to increase with the capability: as a
matter of fact capability is negatively related to heterogeneity, hence lower capability
implies greater heterogeneity and greater heterogeneity means greater uncertainty.
Table 1 shows that all the tests are well approximated, because the rejection rates are
very similar to the nominal « level, even if, in the presence of high capabilities, the
tests tend to be slightly anticonservative. The test based on the Rényi index of order
oo is less stable than the others because of its very low power in the presence of low
capabilities.

Table 2 shows the estimated power of the tests under H;, when the capability of
the second process is at the minimum level and for three different capability levels
of the first process. As expected, the greater the difference in capability, the greater
the power of the tests. When the difference in capability is low, the most powerful
tests are those based on the direct combination and on the Rényi index of order co.
Instead, when the difference in capability is high, the latter test is the less powerful,
the power performance of the others is similar and the test based on the Shannon
index is slightly preferable.

In Table 3 the behaviour of the rejection rates as function of the sample sizes,
when the parameter difference is equal to 0.4, can be appreciated. The consistency
of the tests is evident because larger sample sizes correspond to higher power. Again
the power behaviours of the tests are very similar and, for small sample sizes, the
test based on the Rényi index of order oo is the most powerful but for large sample
sizes this test is the less powerful.

Table4 focuses on the power comparison of the tests for different sample sizes
when the difference between the capabilities is small. Even in this case, the test
based on Rényi index of order oo is the best in the presence of small sample sizes
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Table 3 Simulation results under H; : C; > C», y1 = 0.6, y» = 1.0, « = 0.05, B = 1000,
CMC = 1000

Rejection rates
ni ny ny—ny |Tg Ty TR, TR, Tc
20 20 0 0.109 0.109 0.108 0.114 0.108
60 60 0 0.440 0.455 0.424 0.365 0.426
100 100 0 0.759 0.769 0.742 0.640 0.740

Table 4 Simulation results under H; : C; > C>, y1 =0.8, y» =1.0, « =0.05, B = 1000,
CMC = 1000

Rejection rates

ni ny ny —ny T Ts Tk, TR, Tc

20 20 0 0.019 0.019 0.020 0.028 0.019
40 40 0 0.046 0.050 0.045 0.048 0.054
60 60 0 0.052 0.052 0.048 0.058 0.058
100 100 0 0.109 0.113 0.104 0.109 0.109

and this is not true in the presence of large sample sizes. In the intermediate case of
sample sizes equal to 40, the most powerful test seems to be the one based on direct
combination.

4 Conclusions

The two-sample nonparametric test on process capability is a robust solution and
allows inferential comparative analysis of process capabilities even when distribu-
tional assumptions (e.g., normality) do not hold or cannot be tested. Under the null
hypothesis of equality in heterogeneity, data exchangeability is not exact but the
good approximation of the permutation test is proved by the Monte Carlo simulation
study.

According to this proposal, the test statistic is based on the comparison of the
two-sample heterogeneities, computed by using suitable indices of heterogeneity,
like the Gini index, the Shannon entropy, the Rényi family of indices, or a suitable
combination of test statistics based on different indices, for example on the sum of
these different test statistics.

The Monte Carlo simulation study proves that the power of all the tests seems
to increase with the capability: as a matter of fact capability is negatively related to
heterogeneity, hence lower capability implies greater heterogeneity and consequently
greater uncertainty.
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All the considered tests are well approximated, because under the null hypothesis
of equality in capability, the rejection rates are very similar to the nominal « level.

Under the alternative hypothesis, when the difference in capability is low, the most
powerful tests are those based on the direct combination and on the Rényi index of
order co. Instead, when the difference in capability is high, the latter test is the less
powerful and the test based on the Shannon index is slightly preferable.

The tests are consistent because if sample sizes increase then power increases.
For small sample sizes the test based on the Rényi index of order co is the most
powerful but for large sample sizes it is the less powerful. In the presence of small
difference in the capabilities of the two compared processes, again the test based on
the Rényi index of order oo is the best in the presence of small sample sizes but not
in the presence of large sample sizes. In the case of intermediate sample sizes, the
test based on the direct combination seems to be the most powerful. Hence, if we
consider the instability of the Rényi index of order oo, the test based on the direct
combination is the best solution under the alternative hypothesis, when it is difficult
to detect the difference in the capabilities of the two processes, i.e., near the null
hypothesis.
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