
Detecting Events in Online Social Networks:
Definitions, Trends and Challenges

Nikolaos Panagiotou, Ioannis Katakis(B), and Dimitrios Gunopulos

Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens,
Panepistimioupolis, Ilisia, 15784 Athens, Greece

{n.panagiotou,katak,dg}@di.uoa.gr

Abstract. Event detection is a research area that attracted attention
during the last years due to the widespread availability of social media
data. The problem of event detection has been examined in multiple
social media sources like Twitter, Flickr, YouTube and Facebook. The
task comprises many challenges including the processing of large volumes
of data and high levels of noise. In this article, we present a wide range
of event detection algorithms, architectures and evaluation methodolo-
gies. In addition, we extensively discuss on available datasets, potential
applications and open research issues. The main objective is to provide
a compact representation of the recent developments in the field and aid
the reader in understanding the main challenges tackled so far as well as
identifying interesting future research directions.

Keywords: Event detection · Social media · Stream processing

1 Introduction

The Web 2.0 era brought a lot of revolutionary changes in the way World Wide
Web content is generated and utilized. Social media and online Social Networks
are nowadays the most widely used services along with search engines. Data
generated from Web 2.0 activity are of great value since they reflect aspects
of real-world societies. Moreover, data are easily accessible since they can be
collected through web-crawlers or public APIs. These two qualities constitute
the main motivation for researchers studying online social networks.

The range of novel data analysis applications is impressive. A prominent tech-
nique, known as ‘sentiment analysis’, analyzes user opinions in order to extract
the expressed emotion about products [14,35,75], services, or even political fig-
ures [80]. Marketing in particular found a perfect fit since now businesses are
able to analyse a large volume of public data and identify trends [55], influ-
ential profiles [18], experts [33] or to provide personalized advertisements and
documents [20]. From another perspective, social scientists study knowledge cas-
cades [32], information propagation [32] or community dynamics [49]. In health
care, researchers have been able to track and predict diseases like influenza [76]
c© Springer International Publishing Switzerland 2016
S. Michaelis et al. (Eds.): Morik Festschrift, LNAI 9580, pp. 42–84, 2016.
DOI: 10.1007/978-3-319-41706-6 2

Detecting Events in Online Social Networks 43

and identify disorders such as depression [28]. The list is incomplete and expands
rapidly.

From all the above applications, the task of event detection stands out due
to its complexity and social impact. Broadly speaking event detection is the
problem of automatically identifying significant incidents by analysing social
media data. Such events can be a concert, an earthquake or a strike.

Most approaches tackle event detection similarly to a clustering problem.
Clustering can be performed on the textual features of users’ messages (Topic
Clustering) or on their spatio-temporal attributes (Spatio-Temporal clustering).
Some of the identified clusters correspond to real events while others are just
groups of similar messages. The identification of the event clusters is often tack-
led with scoring functions or machine learning classifiers [12]. Some approaches
utilize novelty tests [66] while others focus on sentiment peaks [83] and keyword
bursts [1]. A common element in many methods is a change detection component
necessary to identify that ‘something happened out of the ordinary’. Change is
detected through statistical analysis of the messages’ content or the network’s
structure (e.g. an increasing number of new connections in the social graph).
There are many more lines of research in event detection. The most prominent
ones are organized and discussed in the following sections.

The purpose of the article is to provide a categorization of existing approaches
in order to let the reader easily grasp the motivation, basic steps and issues
of each group of algorithms. In brief, the contribution of this article can be
summarized into the following points:

– It provides definitions of numerous concepts related to event detection from
Web 2.0 data. These definitions aim at formalizing the problem by disam-
biguating fuzzy concepts. Additionally, they allow a common terminology that
will aid in presenting the state of the art under the same framework.

– The state of the art is identified, organized and discussed.
– Open issues and potential future research directions are presented.

The remainder of this article is organized as follows. In Sect. 2 recently intro-
duced definitions of event detection are presented. In Sect. 3, an overview and
a taxonomy of event detection approaches is given. Section 4 presents the algo-
rithms in more detail emphasizing on intuition, main advantages and disadvan-
tages. Section 4 outlines architectures utilized in relevant systems for efficient
event detection. After that, in Sect. 5, we review a large number of Event Detec-
tion applications. Next, in Sect. 6 we summarize the evaluation procedures (pro-
tocols, datasets, metrics) that are utilized in evaluating the algorithms and we
comment on the obtained results. Finally, the paper concludes with a discussion
on related problems and open issues.

2 Research Challenges and Requirements

There are numerous research challenges inherent in event detection. In this
section we discuss the ones that differentiate this task from other well known

44 N. Panagiotou et al.

problems. Hence, we justify why off-the shelf data and text mining approaches
are not suitable for tackling event detection.

Volume and Velocity. Data from social media come in great volume and veloc-
ity. Therefore, algorithms should be online and scalable in memory and compu-
tational resources. High data volume makes batch processing computationally
infeasible. Data structures like Count-Sketch [19], randomized data structures
such as Bloom [38] and Bloomier [50] filters, sampling methods [54] and stream-
ing algorithms are often used in real-time streaming applications. The authors
in [2] use the Count-Min Sketch [24] data structure to improve the efficiency of
the Content Summary clustering algorithm they propose. Osborne et al. in [66]
use a hashing function to calculate neighbours in constant time and [43] uses
simple inverse document frequency (IDF) scores in order to avoid document-
to-document comparisons and to reduce the number of computations. Most of
the related work aim in building online systems capable of processing high rate
streams such as the Twitter Sample stream (1 %) or even the Firehose stream
(100 %) [56].

Real-Time Event Detection. Events should be identified as soon as possible,
especially when the approach is intended to be used in critical applications like
emergency response. In this case, methods for event detection should be evalu-
ated not only in terms of Precision and Recall but also in terms of how fast they
can identify a specific type of event. In [56], the authors offer a detailed descrip-
tion of the real-time elements of their approach and comment on advantages and
disadvantages of making the process parallel.

Noise and Veracity. It is only natural that user generated information is char-
acterized by noise. Social media are filled with spam messages, advertisements,
bot accounts that publish large volumes of messages, hoaxes, as well as internet
memes [45]. Another obstacle is that textual information in social media is very
limited. Users usually publish very short messages a fact that makes off-the-shelf
Text Mining and NLP methods unsuitable.

Feature Engineering. Selecting the most suitable features to utilize in super-
vised or unsupervised learning components is not a trivial task. Textual represen-
tations such as Term-Document matrices are not sufficient. As many researchers
have observed, there are specific characteristics that appear in event related mes-
sages. These features could be content-based attributes such as TF-IDF scores,
number of tags and emoticons or structural features like the number of fol-
lowers (Twitter) or friends (Facebook). Supervised approaches mostly focus on
content features in order to train classifiers such as Naive Bayes or Support
Vector Machines. Many researchers have concluded that the utilization of the
correct feature-set is very crucial for the event detection process. As an exam-
ple, Becker et al. [11] presents a comparison between structural features and
Term-Document matrices. They conclude that the combination of textual and
non-textual features lead to a statistically significant gain in Precision.

Detecting Events in Online Social Networks 45

Evaluation. Algorithm evaluation sets difficult to overcome obstacles. Unfortu-
nately, availability of event detection datasets is very limited [57]. The TDT51

dataset is used by many researchers such as [43,66] in order to evaluate Pre-
cision. However, the nature of this data is quite different (topic detection and
tracking) and hence it serves only as last resort. Results obtained from TDT5
could significantly vary from those obtained from Twitter or Facebook. TDT5
comes from news-wire articles and contains well formed high quality text. On
the other hand, social media text has unique textual characteristics including
abbreviations, use of slang language and misspellings. A public dataset gathered
from social media sources is very important since it could be used to train super-
vised classifiers and also evaluate the algorithms in terms of Precision or Recall.
Since such dataset is not available most research teams create their own corpora
that are manually annotated [12,57,66] with a small number of events. This
fact makes the results subjective to sample bias and also hinders comparative
experiments.

3 Definitions and Context

The lack of a formal definition for the problem of event detection initiates a
lot of issues since the problem is multi-dimensional and many aspects are not
obvious. Up until now there were some individual efforts towards defining specific
sub-problems. We begin this section by presenting such definitions of tasks that
relate to event detection or similar problems. Next, we propose definitions that
extend and unify the ones that appear in the literature.

According to the Topic Detection and Tracking (TDT)2 project [3], an event
is “something that happens at specific time and place with consequences”. The
consequences may motivate people to act in social media and hence the events
will be reflected in network activity (e.g. large number of tweets on Twitter, new
groups on Facebook and new videos on YouTube). Aggarwal et al. [2] provides a
definition of News Event as “something that happens at specific time and place
but is also of interest to the news media”. That is, apart from making an impact
to the Web 2.0 world, an event should also affect conventional news media. In
[12] the authors state that “an event is a real-world occurrence e with a time
period Te and a stream of Twitter messages discussing the event during the
period Te”. Their definition has a Twitter scope and is related to an increased
amount of messages in a time window. However, it could be applied to other
platforms that operate as a stream of documents.

McMin et al. [57] defines event as “something significant that happens at
specific time and place”. The authors state that something is significant when
it is discussed by the news media. This is quite similar to the definition of [2].
Weng et al. in [89] state that an event is “a set of posts sharing the same topic
and words within a short time”. Abedelhaq et al. [1] state that events stimulate
people to post messages but in a substantial geographic space. This is connected
1 http://www.itl.nist.gov/iad/mig/tests/tdt/resources.html.
2 http://www.itl.nist.gov/iad/mig/tests/tdt/tasks/fsd.html.

http://www.itl.nist.gov/iad/mig/tests/tdt/resources.html
http://www.itl.nist.gov/iad/mig/tests/tdt/tasks/fsd.html

46 N. Panagiotou et al.

to localized event detection (local events versus global events). In [1] the authors
define localized events as “events with a small spatial extent”. Boettcher et al. in
[15] state that an event is “an occurrence or happening restricted on time”. This
definition differentiates Real World events from Virtual events. Virtual events
are restricted within the limits of the online world. Examples of such cases are
memes, trends or popular discussions. Discussions are considered events since
people are active in social media because of them. Nevertheless, they do not
correspond to a real world incident. Wang et al. [87] define Social Events as
events among people when the one is an acquaintance of the other.

A slightly different definition that also includes the concept of social event
is given in [26]. The authors identify four event categories: local non-social, local
social, global social and global. A social event is an event that involves partici-
pants that have been together again in another situation. An example of such a
social event is a conference where the participants have attended the same con-
ference in the past. Finally, Popescu et al. [69] describe the “event snapshots”
idea as a tuple s = (e,Δt, tweets). The tuple consists of a set of tweets that
are correlated with an entity e for a time period Δt. This definition could be
mostly considered for celebrity-related events like popular actors or singers. An
alternative definition that considers sentiment information, is given in [83]. The
authors define the task of event detection as: “The identification of those mes-
sages that alter significantly and abruptly the emotional state of a large group
of people.”

It is clear that the aforementioned definitions are not always consistent with
each other. Some of them require the events to happen in a specific geograph-
ical region while others do not take into account the space dimension. Other
articles state that the time the events take place should be finite and short in
duration. Such a definition is not applicable for Global Events that may concern
communities for weeks.

Event Types. In the literature we come across the following types of events:

– Planned: Events with a predefined time and location (e.g. a concert).
– Unplanned: Events that are not planned and could happen suddenly (e.g. a

strike, an earthquake).
– Breaking News: Events connected to breaking news that are discussed in con-

ventional news media (e.g. the result of the elections in Greece discussed by
the global press).

– Local: Events limited to a specific geographical location. The event impacts
only this area (e.g. a minor car accident).

– Entity Related: Events about an entity (i.e. a new video clip of a popular
singer).

Table 1 summarizes the range of the different event types in terms of space
and time. It also reports in which media these events are more probable to be
observed in.

The rest of this section presents definitions that unify and extend the ones
proposed in the literature. They are based on the observation that events can be
identified by analysing actions of accounts in the online social network (OSN).

Detecting Events in Online Social Networks 47

Table 1. Different type of events and their properties

Event type Time duration
restrictions

Geographical
distribution

Observable in

Planned High Medium Social media, news media, event
portals

Unplanned Low High News media

Breaking news High Low News media

Global Low Low News media, online sources

Local High High Local media, online sources

Entity High Low News media, blogs

Definition 1. Account (p): An agent that can participate (i.e. perform actions)
in a social network after following a registration procedure.

Accounts can be operated by individuals, groups of people or computational
agents (bots). Accounts usually maintain a profile in the OSN.

Definition 2. Content object (c): A textual or binary object that is published
or shared via the social network (e.g. text, image, video).

Definition 3. Action (a): Depending on the social network, an action, a, can
be either: (i) a post of new content (e.g. a new tweet), (ii) an interaction with
another profile (e.g. a new follower, a friend request, etc.), (iii) an interaction
with another user’s content (e.g. a retweet, or a “like”).

It is obvious that some of these actions can be observable or un-observable by
agents that are not connected with the action-generating accounts. In the task
of event detection, we are interested in a set of N actions Ae = {ai, . . . , aN}
that are correlated with (or caused by) the event e. Such a set of actions has
also a temporal definition TAe = [t(Ae,start), t(Ae,end)]. The actions that an event
produces are most of the times in a different time window compared with the
actual event, i.e. t(e,start) < t(Ae,start) and t(e,end) �= t(Ae,end).

Ae is the ideal, ground truth set that contains all actions that event e has
caused. This set of actions comprises the effect of the event and it is the only
source of information that a computational agent can analyse in order to “sense”
the event. By analysing Ae, location and actors can be inferred.

Definition 4. Event (e): In the context of online social networks, (significant)
event e is something that causes (a large number of) actions in the OSN.

Intuitively, the importance of an event can be measured by the mass of the
actions that it generates. It is implied that, in event detection, we are inter-
ested in significant events. Naturally, significant events can have global or local
character.

48 N. Panagiotou et al.

The textual representation or summary R(e) of an event could be a title
heading or a set of keywords. An event is linked with a specific time frame
TE = [t(e,start), t(e,end)] (duration of the event). An event is sometimes correlated
with a set of involved actors Ie and a location Loce.

Definition 5. Event detection in an online Social Network: Given a stream of
actions An of the OSN n, identify a set of real-world events and provide some
of the following information:

(a) the (textual) representation of the event R(e),
(b) a set of actions that relate to this event Ae ⊂ An,
(c) a temporal definition of the set of actions

T e
A = [t(Ae,start), t(Ae,end)]

(d) a location loce that is correlated with the event,
(e) the involved actors Ie.

Currently, approaches presented in the literature only provide some of the
above information. This is totally acceptable in some applications.

In other words, the problem of event detection could be defined as: “Given
a stream of actions An in an online social network n identify all tuples E =
{e1, . . . , eM}”, where M is the number of events and

ei = ≺R(ei), Aei , T ei

A , locei
, Iei�

4 Organization of Methods

We present an organization of Detection approaches under two perspectives. We
firstly organize methods according to the technique they utilize (clustering, first
story, etc.) (Sect. 5). Then we organize approaches according to whether they are
looking for New or Past events or whether they are operating off-line or online
(Sect. 6). Details of each algorithm are presented in the following section. An
earlier overview of Twitter specific event detection approaches can be found in
[9]. Although most work on event detection is using Twitter data, we describe
techniques on other sources as well (Youtube, Flickr, etc.). Furthermore, we pro-
vide a hierarchical organization of the methods and emphasize on architectural
issues, evaluation procedures, dataset availability and dataset labeling.

4.1 Taxonomy

In this section we present a taxonomy of the related work based on the fun-
damental data mining techniques that they utilize (clustering, outlier detection,
classification, etc.). An illustration of the taxonomy can be seen in Fig. 1. Details,
as well as more references will be presented in the next section.

Most event detection algorithms tackle the problem, at least in a first stage,
as a Stream clustering task. The identified clusters are organized into “event-
clusters” or “non-event-clusters”. This assignment can be either supervised or

Detecting Events in Online Social Networks 49

unsupervised. In the unsupervised case, a scoring function is used that is usually
based on features extracted from the clusters. In the supervised case, a classifier is
trained either using textual features, structural features, or both. The advantage
of the supervised approach is that the classifiers automatically “learn” the task
based on historical cases. On the other hand, a training set should be available
and the classifiers must be retrained periodically.

A different approach targets at the detection of anomalies in the content
of the network. The idea is to first model the content in normal circumstances
and then detect outlying messages. The first step is to build language models
capturing term usage from historical data. When, for example, a group of terms
demonstrates increased usage, then this is considered an indication of an event.
Typically, sentiment information is utilized along with the assumption that sig-
nificant deviations in sentiment indicate events.

An alternative strategy is to use novelty scores on incoming messages. Nov-
elty scores are mostly used in the First Story Detection (FSD) problem. FSD
is usually applied on news streams and aims at detecting the first story about
an event by examining a set of ‘neighbour’ (i.e. similar) documents. That is,
if a message is significantly different from its nearest neighbours, it is consid-
ered novel and indicative of a new event. Auxiliary sources of information like
Wikipedia are exploited in order to identify evidence for the detected events.

Some methods, focus on events concerning specific topics such as a music
band. After the messages that talk about these topics are identified, the algo-
rithms detect anomalies. For example, in [94], authors find events about the NFL
2010–2011 games. [7] detects increases in flu-related messages while the TEDAS
system [52] focuses on crime-related and disastrous events. An issue with these
approaches is that the topic should be known a priori and other event types will
not be identified. We refer to this category as topic specific event detection.

According to Topic Detection and Tracking task (TDT3) the two main
approaches of event detection are Document Pivot and Feature Pivot. In doc-
ument pivot techniques, clustering is used to organize documents according to
their textual similarity and neighbours are identified through direct comparison.
These approaches were mainly used in TDT challenges. However, they are not
directly applicable to social media like Twitter or Facebook. The first issue is
that not all documents are related to events (e.g. memes) as it is assumed in the
TDT challenge. A second problem is that Document Pivot techniques require
batch processing and are not scalable to large amounts of data.

Feature Pivot techniques focus on event topics that were previously unseen
or growing rapidly. Many Feature Pivot techniques focus on burst detection.
Bursts could be defined as term or sentiment deviations. Kleinberg et al. [44]
define a finite state automaton to detect bursts in documents streams, while [31]
model words as a binomial distribution in order to detect bursts. Similarly in
the Twitter Monitor system [55] a streaming algorithm called Queue Burst is
used in order to detect bursts on the Twitter stream. In general, Feature Pivot
techniques focus on change and burst detection of text features. Most algorithms

3 http://www.itl.nist.gov/iad/mig//tests/tdt/1998/.

http://www.itl.nist.gov/iad/mig//tests/tdt/1998/

50 N. Panagiotou et al.

from TDT that are applied in social media are mainly Feature Pivot algorithms.
We will discuss Pivot algorithms in more detail in the following sections.

4.2 NED vs. RED and Online vs. Offline

Even from the TDT era (see previous section), two important categories of event
detection were identified. These were the retrospective event detection (RED)
and the new event detection (NED). RED focuses mostly on identifying previ-
ously unknown events from historical collections [92]. NED targets at events from
live streams in real time [5]. RED mines historical data in order to detect events
that were not previously known. There is no time constraint since the events
already happened in the past and their identification could not support decision
making. On the other hand, NED has online nature involving real time event
detection with the goal to support crucial decision making (e.g. in emergency
situations).

Most articles related to event detection in social media focus on online event
detection. Online event detection aims at deciding if a message is about an
event as soon as it arrives without the need of time consuming batch process-
ing. The offline event detection algorithms require complex procedures that can
not be used in real-time processing. They are useful mostly for retrospective
event analysis where execution time is not a major requirement. Some hybrid
approaches have an online part that is used for real-time analysis of messages and
an offline part that post-processes data. Such an offline part may be the training
of a classifier. Typical examples of online approaches are those that cluster mes-
sages and then use scoring functions to decide which clusters are event clusters.
Approaches like [12] require offline components since the classifier used for the
cluster categorization requires training.

5 Event Detection Methods

Following the taxonomy presented in the previous section, we present here rep-
resentative methods from each category in more detail. Initially the clustering
based approaches are presented including supervised and unsupervised scoring
techniques. Then, approaches based on anomalies, such as keyword bursts, are
discussed. After that, First Story Detection approaches inspired by TDT are
presented. The Section concludes with methods that focus on detecting specific
events.

5.1 Clustering Based Event Detection

Event detection approaches from social media streams is often faced using clus-
tering of messages. After that, the clusters are classified as “Event-Related” or
“Non-Event-Related” (see Fig. 1). This assignment could be resolved with super-
vised or unsupervised learning. In the supervised case, clusters are classified using
a learning algorithm such as Naive Bayes or Support Vector Machine based on a

Detecting Events in Online Social Networks 51

E
v
en

t
D

et
ec

ti
o
n

T
o
p
ic

-S
p
ec

ifi
c

D
o
cu

m
en

t
C

la
ss

ifi
ca

ti
o
n

F
ir

st
S
to

ry

ID
F

S
co

re
N

ea
re

st
N

ei
g
h
b
o
u
r

In
d
ex

ed
N

ei
g
h
b
o
u
r

L
S
H

A
n
o
m

a
ly

S
en

ti
m

en
t

S
eg

m
en

ts
T
er

m
s

C
lu

st
er

in
g

E
v
en

t
C

lu
st

er
Id

en
ti

fi
ca

ti
o
n

U
n
su

p
er

v
is

ed
S
em

i-
S
u
p
er

v
is

ed
S
u
p
er

v
is

ed

F
ig
.
1
.
A

n
a
b
st

ra
ct

ta
x
o
n
o
m

y
o
f
ev

en
t

d
et

ec
ti

o
n

a
p
p
ro

a
ch

es
.

52 N. Panagiotou et al.

certain group of extracted features. On the other hand, in the unsupervised case,
clusters are classified according to a scoring function. The main difference is that
in the supervised case a set of labelled clusters is required in order to train the
classifier. As we will discuss in Sect. 8, labelled data sets require large amounts
of annotation effort on a periodic basis due to model retraining requirements.
The rest of this Section presents the supervised approaches and continues with
the unsupervised. Figure 2 presents an abstract workflow of the clustering based
event detection.

Unsupervised Cluster Identification. In this section methods that identify
clusters as “event” or “non-event” based on a scoring function will be presented.
This is the unsupervised case since no training set is required.

The first system we will present is the EvenTweet system [1]. EvenTweet
is based on an initial clustering of keywords according to their spatial signa-
ture. Keywords that appear on the same location will be included into the same
cluster. These keywords receive a score according to their level of burstiness,
their spatial distribution and other time-related features. Burstiness is calcu-
lated according to frequency deviations from the mean. The spatial signature is
calculated using geo-referenced tweets containing the keywords and it is fixed
on a set of pre-defined cells on a grid. Keywords with low burstiness and high
spatial entropy are filtered out as noise. Each cluster receives a score equal to the
sum of its keywords’ score. The top-k clusters according to their score are the
candidate event Clusters. EvenTweet applies online clustering by dividing the
stream into sliding windows. Windows are sub-divided into time frames. Key-
words’ scores are calculated per time frame. Cluster scoring is updated when a
new time-frame is complete.

Similarly, in [60] the authors followed an unsupervised approach for detect-
ing events from Twitter. Their idea is to utilize the semantic relationships of
terms during the clustering procedure. They propose to cluster expanded TF-ID
vectors. An expanded vector has values even for terms that are missing from
the document if they are semantically related with those that are present. The
cosine similarity is used as a distance metric. This approach leads to clusters of
tweets that discuss the same topic. The paper presents two semantic expansion
methods. The first one detects a set of co-occurring words from a static corpus
and then the document vector is expanded by these co-occurrences. The second
one treats each word as a vector of co-occurrences.

Using this representation, the authors calculate the cosine similarity among
all vectors. Vectors having similarity more than 0.8 are assumed to be semanti-
cally related. A document vector is expanded by the semantically related terms
being present at the neighbour documents. As a result, correlated words even if
they do not appear in the message should have a weight in the expanded vectors.
Finally, the method associates events with the largest obtained clusters.

A similar method, focused again on term vector expansion, is followed in [61].
In this case only tweets containing hashtags are utilized. Hashtag correlations
are exploited in order to expand the vectors that are now solely contain hashtag

Detecting Events in Online Social Networks 53

information. The results are improved in comparison to [60] especially in how
fast the events are identified. Such a result is not expected since document (word)
information is discarded. Nevertheless, on specific event types it turns out that
hashtag features alone are sufficient.

On [47] the authors describe an event detection method that is based on
topic clustering of the tweets. The clustering involves both textual and social
features such as the unique users that posted messages about the event. They
give a definition of user diversity within a cluster as the entropy of its users. The
more users a cluster has the higher the diversity. Then they formally define the
event detection method as an optimization problem where the goal is to both
maximize the documents similarity as well as the user diversity and prove that
it is NP-hard. As a result, they use an approximate time efficient and one-pass
online clustering algorithm in order to cluster tweets topically. Then the clusters
are periodically checked for their user diversity and those with a diversity more
than a threshold are identified as event clusters.

The TwEvent system [51] implements the idea of using tweet segments
(N-grams) instead of unigrams. Segment extraction is based on Wikipedia cor-
pus and the Microsoft N-gram service4. Segments are selected according to their
appearances on historical data using a “cohesiveness” metric formally defined
on the article. Thus, only coherent segments are considered while the rest are
filtered out. The segment extraction algorithm has linear complexity. In the next
step, they approximate the frequencies of the segments and detect the bursty
ones. Candidate event segments are identified based on burstiness and number
of unique authors. Then, candidate segments are clustered using a modification
of the Jarvis Patric algorithm [41]. According to this algorithm, two segments
result in the same cluster if one is the nearest neighbour of the other. The simi-
larity between two segments sa and sb is based on a time-indexed sliding window
W consisting of m parts. The similarity simt(sa, sb) is defined in the following
Equation (Eq. 1)

simt(sa, sb) =
M∑

m=1

wt(sa,m)wt(sb,m)Sim(Tt(sa,m), Tt(sb,m)) (1)

Sim(Tt(sa,m), Tt(sb,m)) is the similarity of the tweets concatenation con-
taining segments sa and sb during the sub-window m. Tt(sa,m) is the
concatenation of tweets containing the segments sa during the sub-window
m. Sim(Tt(sa,m), Tt(sb,m)) is the similarity of the concatenated documents
Tt(sa,m) and Tt(sb,m) is extracted from the associated segments sa and sb
respectively. This similarity is based on the cosine similarity of the TF-IDF vec-
tors. Weight wt(sa,m) equals to the ratio of tweets containing sa to tweets that
do not. A problem with this approach is that the computation complexity of
the Jarvis Patric algorithm is O(n2). However, the authors state that the algo-
rithm should perform well for a small number of tweets. A score to each cluster
is assigned according to the number of segment appearances in Wikipedia. The
top clusters are classified as event related clusters.
4 http://research.microsoft.com/en-us/collaboration/focus/cs/web-ngram.aspx.

http://research.microsoft.com/en-us/collaboration/focus/cs/web-ngram.aspx

54 N. Panagiotou et al.

[30], similarly to [52], considers Twitter as a social sensor where the users
provide valuable information for the authorities. The authors use their system to
detect flood events analyzing tweets from Germany for a period of eight months.
They follow a visual analytics approach in order to present flood-related Tweet
messages on the map. Two interesting approaches are presented. The first one is
based on increased local tweet activity. The second assumes that similar messages
appearing in nearby locations can possibly refer to disastrous events taking place
in that area.

For their first approach (increased spatial twitter activity), the authors
divided Germany into a number of cells using Voronoi Polygons. All these cells
are associated with a normal activity’ characterized by a mean and a standard
deviation. When increased activity is detected an event alarm is triggered.

The second approach, at first, filters out irrelevant messages (not related to
floods) using a dictionary approach. The OPTICS [6] density based clustering
algorithm is utilized in order to identify similar messages. Validation of clusters is
achieved through the use of external sources. If the tweets contained in a cluster
correspond to a news story then the cluster is identified as an event cluster. The
authors conclude that the second approach is more effective than the first one.

The authors of [2] utilize content and social features of the Twitter network
in order to detect events. Following a similar path to many of the aforementioned
approaches, clustering comprises the first step of the method. Clustering is topic
based since textual features are analyzed. However, an important difference with
other approaches is that the clustering takes into account user profiles. The
algorithm is named Cluster Summary (CS). Cluster centroids consist of two
parts: (i) the content summary which is a term-frequency matrix and (ii) the
user summary which is a user-frequency matrix. The distance metric of the
clustering algorithm is a linear combination of the two summaries:

Sim(Si, Ci) = λ ∗ SimS(Si, Ci) + (1 − λ) ∗ SimC(Si, Ci) (2)

Content similarity SimC is based on TF-IDF [21] and utilizes the cosine
distance. The structure similarity SimS depends on how many users the tweet
and the cluster have in common. The authors associate each tweet with all the
followers of the author of the tweet.

In the same article, the authors state that the user summary of a cluster can
be represented using a randomized counting data structure called Count-Min
Sketch [23]. The Count-Min Sketch could be used to approximate the user fre-
quency using constant amounts of memory. Count-Min Sketch is a data struc-
ture that overestimates the counters of an element . A possible drawback of
the Count-Min Sketch for such applications is that its error rate increases with
time [23].

Once a cluster is formed then its size is periodically checked according to
its recent history. If the cluster growth over two consecutive sliding windows is
more than a predefined threshold the cluster is identified as an event.

Detecting Events in Online Social Networks 55

Supervised Cluster Identification. In this group of approaches, decision
about event clusters is made through supervised machine learning classifiers.
The classifiers take advantage of textual features as well as other attributes that
are usually domain dependent.

In [86] the authors initially clustered the tweets according to their spatio-
temporal information using a set of predefined rules. The clustering algo-
rithm presented is simple, online and fast. The clusters formed are considered
event-candidate clusters. In the next step, textual and non-textual features are
extracted from the clusters in order to train a classifier. The top extracted fea-
tures according to individual feature evaluation are the following:

– Unique authors
– Word overlap
– Number of mentions
– Unique coordinates
– Number of fourthsquare5 posts

For example, the more unique coordinates or fourthsquare posts within a
cluster, the more likely this is an event cluster. Three classifiers are trained
using a manually annotated dataset: a Decision Tree, a Naive Bayes classifier
and a Multilayer Perceptron. The classifiers are compared using only textual
features against using both textual and non-textual features. The result showed
a statistically significant improvement when all features are used. This is an
indication that in some cases the text itself is not enough.

Another algorithm based on message clustering followed by supervised clas-
sification is described in [12]. The authors, as in similar approaches, set the
requirement of not knowing apriori the number of clusters and they use an online
threshold-based clustering method. The documents are presented as vectors that
are TF-IDF weighted using a bag-of-words approach. The clustering algorithm
is simple as in [86]. When a new point has a distance less than a threshold
from the nearest centroid it is added to that cluster, otherwise a new cluster
is created. Then, features are extracted from the clusters in order to train the
classifier. The features are topical, temporal, social and Twitter specific. Tem-
poral features may describe deviations on the volume of common terms as well
as changes on their usage frequency. Social features capture interactions among
users. Topic based features capture the thematic coherence of the cluster. Twit-
ter specific features are often present in non-event clusters, for example Twitter
tagged conversations that do not correspond to a real-world event (e.g. the hash-
tag #ff “Follow Friday”). When the feature extraction is complete, a Support
Vector Machine is trained and compared against a Naive Bayes classifier using
only textual features. The conclusion is that the manually extracted features
provide a very important advantage over the baseline method using only text
features. The clustering step is fast and online. However, training the Support
Vector Machine is computationally demanding involving parameter tuning and
is prone to over-fitting especially when the training set is relatively small.
5 https://foursquare.com/.

https://foursquare.com/

56 N. Panagiotou et al.

The event detection method presented above, originally described in [12], is
revisited in [70] in order to boost the clustering procedure. The authors state
that the original online clustering algorithm takes into account just textual infor-
mation in the form of TF-IDF vectors. They then propose the usage of two new
features from the similarity function used in the clustering. The first feature orig-
inates from the parsing of URLs within the document, favoring documents with
the same or similar URL. The intuition behind that is the fact that documents
that contain the same URL should result into the same cluster since the shared
URL indicate that the documents correspond to the same event. The second
feature is called “Bursty Vocabulary”. This is a set of keywords per cluster that
exhibit bursty behaviour identified trough a computationally inexpensive outlier
test on consecutive sliding windows. The frequency of the identified bursty key-
words during the next sliding window is estimated and used for the assignment
of new documents to the cluster. The two features presented so far are textual.
However, the authors suggested that temporal features should be used also dur-
ing the document allocation to clusters. They propose the usage of a Gaussian
attenuator, highly similar to the one presented in [73], that takes into account
the time of the latest cluster document and the time of the document to be
assigned. This temporal feature is embedded to the clustering similarity func-
tion and penalizes inactive clusters. The above improvements not only supply
more textual information to the clustering algorithm but also exploit temporal
information resulting into a textual-temporal method.

Another interesting system is described in [73]. TwitterStand targets at
detecting tweets that relate to Breaking News. In contrast with other approaches,
it does not utilize information extracted only from the Twitter API. Their data
originate from tweets of the top-2000 users with the most tweets, the 10 % of
the public tweets, the Twitter Search API6 and an API named BirdDog that
receives tweets from a large number of Twitter users.

A Naive Bayes classifier is built in order to classify tweets as “news-tweets” or
“junk-tweets”. Their approach of classifying tweets obtained from keyword based
searches is similar to [52]. The classifier is trained on a static corpus consisting
of tweets labelled as “junk” or “news”. A smaller dynamic corpus is exploited
to periodically update the classifier. This corpus consists of tweets related to
news reported by conventional media. “News” tweets are clustered into topics.
The clustering algorithm used is called leader-follower [29] and allows content
and temporal clustering. Regarding content similarity required by the clustering
algorithm, the TF-IDF weighted vectors of the tweets are utilized. The similarity
metric is a variant of the cosine similarity containing a temporal factor. Content
similarity between document d and cluster c is defined as:

δ(d, c) =
TFVt · TFVc

||TFVt|| · ||TFVc|| (3)

where TFVt and TFVc are the term vector of the tweet (TF-IDF weighted) and
the cluster centroid respectively. In order to capture time the similarity metric
6 https://dev.twitter.com/docs/api/1.1/get/search/tweets.

https://dev.twitter.com/docs/api/1.1/get/search/tweets

Detecting Events in Online Social Networks 57

is expanded with a Gaussian attenuator (Eq. 4). Tt and TC are the tweet time
and the time of the latest tweet respectively.When the clustering is complete the
system presents the clusters on a map by estimating the location of tweets using
a text-based geo-tagging technique.

δ̂(d, c) = δ(d, c) ∗ e
−(Tt−Tc)

2σ2 (4)

EventRadar [15] follows a similar idea in order to detect localized events. A
term vector is created for each tweet at pre-processing. Then, unigrams, bigrams
and trigrams are extracted and the algorithm examines if in a recent history H
there are tweets that contain these n-grams. If these tweets are close in space and
time, they are considered as event candidates. DBSCAN is utilized for clustering
the tweets. A Logistic regression classifier is trained in order to reveal which of
the clusters are real events. The features used for the classification task include
two Boolean variables related to the tweets locations and keywords. In addition,
they include the number of tweets containing relevant keywords for a period of
seven days as a feature for the classification. The final result is a list of events
described by a set of keywords as well from a set of representative tweets.

The work in [69] aims at recognizing controversial events. These are events
where users express opposing opinions. The authors use the idea of an entity
snapshot as the sum of the tweets related to an entity e published during a period
Δt. It is defined as a triple s = (e,Δt, tweets). Some of these snapshots are about
real-events related to an entity e and are called event snapshots. Snapshots are
created from entities gathered from Wikipedia, tweets referring directly (using
the @ symbol) or indirectly to these entities published during Δt. The next step
of the method is to train a Gradient Boosted Decision Tree to classify snapshots
as event or non-event snapshots. Features from Twitter as well as from external
sources, including sentiment information, are utilized. For each of the detected
events a regression model outputs a controversy score. These models mainly use
textual features extracted from annotated samples as well as from a sentiment
lexicon and a controversy lexicon derived from Opinion Finder7 and Wikipedia
pages.

Semi-supervised Cluster Identification. In [39] a semi-supervised approach
is utilized since the labelling of Tweet clusters, involving thousands of tweets, is
a quite time consuming task. The system tracks events in news media, extract
keywords, and labels tweets that contain similar keywords as ‘events tweets’.
These tweets are able to propagate their label to related tweets using the social
structure of Twitter. Social ties such as message re-tweets, mentions and hashtags
are used to propagate labels. Using a reputable seed the authors are able to
obtain a training set and propagate the observed labels. The next step is to
construct the wavelet signal for every term that appears in the tweets. For these
signals auto-correlation is calculated and common words or words appearing
every day are filtered out (e.g. high auto-correlation). For example the hashtag

7 http://mpqa.cs.pitt.edu/opinionfinder/.

http://mpqa.cs.pitt.edu/opinionfinder/

58 N. Panagiotou et al.

“#ff” (follow Friday) appearing every Friday would be filtered out. For the
resulting set of words a cross-correlation matrix is calculated. This matrix is
presented as a graph in order to apply graph partitioning [89]. This way word
groups are created and tweets are clustered to these word groups according
to their content. For the classification of the clusters as event or non-event,
a Support Vector Machine is trained using TF-IDF weighted document term
features. Named entities are removed from the terms in order to avoid over-
fitting issues. The event-clusters identified are then spatially grouped according
to the tweets’ geo-locations. For tweets that do not contain geo-location, the
location is propagated from related tweets using social ties. In the end, the
system provides a visualization of the event clusters on a map. We should note
that such an approach could be highly valuable in cases where a reputable seed
is available allowing label propagation without the need of manual annotation.

Clustering Approaches Summary. Table 2 presents an overview of the
clustering-based approaches used for event detection. The second column notes
the clustering algorithm that is utilized in the approach. The third and forth
column present the features and the similarity metric that are exploited. Lastly,
“scoring” indicates how the event cluster identification is achieved (supervised or
unsupervised). Table 3 presents an overview of the supervised approaches, along
with features and classifiers used.

Table 2. A summary of the clustering approaches used for event detection.

References Clustering type Features Similarity metric Scoring

[1] Keyword clustering Spatial Cosine similarity Unsupervised

[52] Topic Segments Content similarity Unsupervised

[60,61] Tweet clustering Expanded TF-IDF
vectors

Cosine similarity Unsupervised

[86] Spatio-temporal Spatio-temporal Rule based
distance

Unsupervised

[12] Topic TF-IDF vectors Cosine similarity Supervised

[30] Spatio-temporal
density

Spatio-temporal Distance threshold Unsupervised

[73] Content-temporal TF-IDF vectors,
Temporal

Modified cosine
similarity

Unsupervised

[39] Topic clustering Term vectors Overlapping tweet
terms

Supervised

[39] Term clusters,
spatial clusters

TF-IDF vectors Cross-correlation Semi-Supervised

5.2 Anomaly Based Event Detection

The methods of this section follow the path of identifying abnormal observations.
Examples include: unexpected word usage in the last time window, irregular

Detecting Events in Online Social Networks 59

Table 3. A summary of the supervised approaches used for event detection.

References Features Algorithms

[12] Temporal, topical, social Naive Bayes, SVM

[86] Textual, spatial, temporal Decision Tree, Neural Net

[73] Textual Naive Bayes

[15] Textual Logistic Regression

[69] Social (internal and external), textual Gradient Boosted Decision Tree

Social Stream
T1 T2

... Tn
Online

Clustering

Cluster1

...
Clustern

Cluster
Classification

Event Cluster

Event
Summaries

Non - Event

Fig. 2. An example of the general event detection approach using stream clustering.
The online clustering component groups tweets that are close in space. The Cluster
Classification module uses a supervised or an unsupervised method in order to classify
the clusters as event cluster. For each of the event clusters a summary is extracted
using different summarization methods.

spatial activity, or a distribution of emotion that is different from the average.
The approaches discussed in this section track the social stream and raise an
alert for an event candidate when an anomaly is observed.

The methods presented in [82,83] focus on identifying events from social
media using a sentiment analysis. The main idea is that users will respond to
an event in order to express their opinion causing this way fluctuations in the
sentiment levels. According to the authors, when an event happens it affects the
emotional state of a group of people that are close to the event. In the proposed
system, users are initially clustered according to their geographic locations and
their messages are aggregated over sliding windows. For each sliding window,
sentiment sensors are responsible for specific regions (e.g. a sensor per city or
district). The emotions of each region are analysed over four sentiment classes.
When a significant deviation in sentiment levels is detected, an event alarm is
triggered. The system is compared against the EdCow [89] system that uses key-
word count deviations instead of sentiment information. Authors of [83] report
that TwitInsight outperforms EdCow on its capability to detect events. In addi-
tion, TwitInsight is much faster since it does not depend on computationally
expensive procedures and is able to run in real-time.

60 N. Panagiotou et al.

A strong point of the above work is the sentiment level outlier detection
method. The authors of [83] assume that the sentiment level distribution is
unknown amd changes overtime. The idea is to dynamically estimate the Prob-
ability Density Function (PDF) in a streaming fashion and use it for detecting
outlying sentiment levels. The tool used for this methodology originates from [78]
where a streaming estimation technique for unknown Probability Density Func-
tions (PDF) is utilized based on kernels and dynamic sampling. The resulting
PDF is used in order to perform non-parametric density outlier detection.

Authors in [22] use the Discrete Wavelet Transformation in order to detect
peaks on hashtag usage in Twitter that will point on real-world events. This
approach is similar to [89] with the difference that only hashtags are used while
the rest of the text is discarded. The approach utilizes Map-Reduce jobs to
extract hashtags and create their time series. Time series consist of aggregated
counts of tweets containing the hashtag over five minute time intervals. Discrete
Wavelet Transformation is used in order to detect bursts of hashtags since that
could indicate events. The events are summarized using a fast online version of
Latent Dirichlet Allocation (LDA) based on Gibb’s Sampling. Topic modelling
is used in order to represent events as a mixture of latent topics. This approach
did not focus on real-time event detection but rather on batch data analysis.

Outlier tests that consider hashtags similarly to [22] are presented in [25,46].
Hashtags are commonly used to indicate topics but some times correspond to real
breaking news events. Moreover, in some cases, they represent “memes” or “vir-
tual events”. The authors in [25] extracted content features from hashtag includ-
ing “frequency instability”, “meme characteristics” and “authors entropy”. They
classified hashtags as “Advertisements”, “Miscalculation”, “Breaking News” and
“Memes”. Their method is able to discriminate breaking news from meme-
hashtags regardless of language. Similarly in [46], hashtags are considered to
be associated with event or with memes. The authors extracted hashtag features
like the number of words used with a hashtags, the number of replies a tweet
with a hashtag is getting, number of URLs, and more. Using these features and a
training-set they utilize a set of supervised classifiers including Random Forests
and Support Vector Machines. According to their report, discrimination between
event-hashtags and meme-hashtags is successful with 89.2% accuracy.

Watanabe et al. [88] built the Jasmine system in order to detect local events in
real time. They used the streaming Twitter API to collect tweets from Japan. A
location database is created from messages posted on Forthsquare8. This data-
base is utilized in order to geo-tag tweets not including location information.
The approach is simple and fast. Based on geo-tagged tweets, popular places
are identified using a hashing algorithm called “geo-hash”. According to this
algorithm, close locations result into the same hashing bucket. From the most
popular places, keywords that describe the localized event are extracted. Jas-
mine could lead to an interesting mobile application that detects local parties
or concerts instead of larger scale events like earthquakes.

8 https://foursquare.com/.

https://foursquare.com/

Detecting Events in Online Social Networks 61

Focusing on a different social network, in [85] the authors describe their app-
roach for the MediaEval Benchmark 20129. This dataset contained 167 thou-
sands images from Flickr and the challenge is to find (a) technology events
that took place in Germany, (b) soccer events that took place in Hamburg and
(c) demonstrations and protests that took place in Madrid. The research team
used some preprocessing techniques involving removal of common words and
text cleaning. They also used the Google Translate API10 in order to translate
non-English words. Based on the image description text, they classified pictures
based on their TF-IDF vectors. As for the pictures with no textual information,
user profile information is utilized. Since the challenge required topic-specific
event detection, Latent Dirichlet Allocation is utilized in order to extract topics.
For the event detection task they used peak detection on the number of photos
assigned to each topic. If a topic received more photos than expected, an event is
identified for this topic. Since this approach requires computationally expensive
procedures such as LDA, it is not easily applicable for high rate streams.

5.3 First Story Detection

The authors of [66] tackle the problem of detecting the first story about a news
event. This problem is known as first story detection (FSD) and is equivalent to
the problem of new event detection (NED) (see Sect. 4). A common approach to
solving the FSD problem is to calculate for every document in the corpus the
distance to their nearest neighbours [5]. If this distance is larger than a threshold,
this document is considered novel and a “First Story”. This unsupervised app-
roach is extended in [48] to a supervised method using as features the distance,
the entity overlap as well as the term overlap utilizing a SVM classifier.

Osborne et al. in [66] suggests that the conventional approach described by
[5,48] will not scale for streaming data and therefore proposes a more efficient
approach. Nearest neighbour calculation is computationally intensive. Even fast
nearest neighbour algorithms such as KD-Trees and Indexing-Trees [93] will not
scale in the case of large and fast social streams. The authors propose the usage
of a hashing technique in order to detect the nearest neighbour. It is called
Locality Sensitive Hashing (LSH) [77] and is a hashing scheme that provides
an approximate nearest neighbour in constant time. LSH hashes documents to
buckets. If the documents are similar, they are hashed into the same bucket.
However, the approach is randomized and errors may occur. In order to reduce
the variance of the neighbour errors, [66] uses multiple LSH data structures.
That is, a document is hashed to multiple buckets, one per LSH data structure,
using different hashing families. The neighbour computation similarly involves
the exploration of all these buckets.

In order to bound the memory requirements as well as the number of com-
putations per incoming document they restrict the maximum size of a LSH
bucket and the computations performed within it by discarding old invaluable
documents. Similar approaches are used in [53] in order to bound the memory

9 http://www.multimediaeval.org/mediaeval2012/.
10 https://cloud.google.com/translate/docs.

http://www.multimediaeval.org/mediaeval2012/
https://cloud.google.com/translate/docs

62 N. Panagiotou et al.

consumption using careful delete operations. This system detects the First Story
about an event and then new documents that are similar are linked together in
order to create event threads. Threads are document sets that represent the
event. This is similar to the clustering approaches we discussed in the previous
sections. The Threads are created and then presented in a sorted list according
to their size, number of users and thread entropy (expressed as the distribution
of terms). They compare their results to [5] and they suggest that event detec-
tion performance is similar. However, the efficiency of [66] is improved from [5]
achieving constant memory and computation time per document resulting in a
streaming FSD solution.

Petrovic et al. in [59] observed that the FSD system of [66] had low Precision
due to many false positives. This is something expected since most tweets are not
about real-world events. The authors use two streams in order to detect events.
They constructed a stream of Wikipedia page views using Wikipedia logs11.
The method in [66] is ranking the event threads according to their entropy in
order to identify the top-k events. In [59] the ranking is modified in order to
take into account Wikipedia page views that are related to the event. For every
detected thread, the Wikipedia stream is checked for outlying behaviour (i.e. an
unexpectedly large numbers of views) in pages that had a similar title. A very
important drawback of this method is that Wikipedia Stream lags on average two
hours behind the Twitter Stream causing problems for real time event detection.
This is explained by the fact that users initially discuss the event topic on the
social platform and then some of them may visit the relevant Wikipedia page.
An overview of the system is presented in Fig. 3.

Osborne et al. [67] extends [66] in order to cope with “tweet paraphrases”.
That is, the feature vector is extended with synonyms of existing terms. This
approach may remind to the reader the method described in [60] where the term
vectors are semantically expanded. In [67] the authors used online sources in
order to create a list of paraphrases while in [60] the authors computed term co-
occurrences from a static Twitter corpus. The idea of [67] is to use a term-to-term
matrix Q in order to exploit term synonyms. Using this matrix the similarity of

Twitter Stream

T1 T2
... ... Tn

Wikipedia Stream

C1 C2
... ... Cn

FSD

Ranker
First

Stories

Fig. 3. Overview of the approach presented in [59]. A Wikipedia page-view stream is
utilized in order to validate events detected by the FSD algorithms

11 http://meta.wikimedia.org/wiki/Data dumps#Content.

http://meta.wikimedia.org/wiki/Data_dumps#Content

Detecting Events in Online Social Networks 63

two tweet vectors x and y, is computed as:

Sim(x, y) = yTQx (5)

Since such a similarity computation requires intensive matrix-vector multiplica-
tions they use a heuristic to calculate the inner product faster by using the square
root matrix of Q. Since the square root matrix computation is also expensive
O(n3) they approximate Q

1
2 as if Q is a sparse matrix. Using the heuristics their

system is only 3.5 times slower from the original FSD system [66]. The improve-
ment in the Precision of the system is significant achieving higher Precision than
the state of the art UMASS system [4].

A similar approach that uses Locality Sensitive Hashing for event detection
is followed in [42]. The approach is quite similar to [66]. The authors utilize
Twitter posts and Facebook messages. They use LSH in order to group messages
into buckets. Their algorithm works in two phases. In the first one, new events
(first stories) from both sources (Twitter, Facebook) are independently identified
and stored. In the second phase, first stories are hashed into buckets and the
corresponding messages are stored as ‘event messages’.

The authors in [65] applied an FSD system on Twitter and on a news feed
that is referred as Newswire. The performance of FSD is evaluated on both
Twitter and the newswire. In an additional experiment, the 27 events originally
detected in [66] are used in this work in order to clarify which of the events
will be present in both media. They found that almost all events appeared on
Twitter and newsWire. However, the events appeared in different time points in
the two streams. Events related to sports usually appear faster on Twitter since
users post about them while they happen. On the other hand, on events related
to breaking news, the newswire stream had a minor advantage.

An efficient first story detection method is presented in [43]. The authors
focus on new event detection using a novelty score that is based on term-
usage. The main goal of this approach is to detect novel documents avoiding the
computation of distances among similar documents. Such an approach is very
useful since neighbor computations in the TF-IDF weighted vector space could
be computationally intensive for a large corpus. The proposed algorithm uses
the Inverse Document Frequency (IDF) per keyword as a novelty score compo-
nent. Each document receives a novelty score that is the sum of its terms’ IDF
weights. That is, a document is considered novel if its terms are novel. If the
novelty score is above a threshold the document is detected as event related.
In the same work, the authors suggest also the probabilistic IDF (pIDF) as a
scoring function. Given a term q taken from a corpus C, pIDF is defined as:

pIDF (q, C) = log
N − dfq

dfq
(6)

dfq is the frequency of the term q among the documents in the corpus C and N
is the size of the corpus C. The probabilistic IDF violates a set of rules about a
scoring function since it can take negative values. The authors state that this is
beneficial since it penalizes documents if they contain common terms. Notably,

64 N. Panagiotou et al.

score calculation using IDF weights [43], is invariant of the corpus size and
the complexity of processing a document d is O(|d|). Where |d| is the number of
terms used in the document. However, it should be noted that since social media
such as Twitter consist of extremely dynamic content, the IDF scores should be
periodically updated in order to reflect accurately the content of the stream.

5.4 Topic Specific Event Detection

The methods presented so far aim at identifying events that could be of any
type. This section, presents algorithms that target at identifying and tracking
events of a specific predefined type.

One of these efforts is the TEDAS system that is described by Li et al. in
[52]. TEDAS is built for recognizing criminal and disastrous events such as tor-
nadoes, floods or law-breaking evidence. The system collects tweets using the
Twitter API and returns tweets related to crime and disaster using topic related
keywords. Tweets are captured using an initial keyword seed that is predefined
by the authors. This seed is expanded according to co-occurrences with keywords
from the received tweets. In other words, the system looks for paraphrases or
for semantically linked terms. Since not all tweets containing these keywords are
about crimes and disasters, a classifier is trained using Twitter features such
as use of hashtags, mentions and some predefined pattern-features in the con-
tent. Such a pattern feature is the presence of time and location in a tweet.
The system clusters all crime and disaster (CDE) tweets according to their spa-
tial information and presents them to a map. The high-level description of the
TEDAS system can be seen in Fig. 4.

Keywords
Seed

Update
Seed

1
Twitter API

Tweets Containing Keyword

T1 T2
... ... Tn Classifier

Map
Visualizer

Events
Summaries

Fig. 4. The TEDAS system. An initial seed with crime/disaster keywords in applied
to the Twitter API in order to collect relevant tweets. Based on the result set, the
keyword list is expanded. Each tweet is classified as event or non-event, and in the
second case it is presented to the map.

Another approach that targets events of specific type is that of Sakaki
et al. [72]. This work focuses on earthquakes. Initially, tweets containing at least

Detecting Events in Online Social Networks 65

one earthquake-related query-term are collected. Assuming that these tweets
actually talk about earthquakes the authors train a Support Vector Machine
on these data. For the classification task, they used tweet statistics (#words
in a tweet), textual features (terms of a tweet) and context features (keywords
before or after the query term). The goal is to detect the location and the tra-
jectory of the event. The geo-tagging of tweets is exploited to detect the location
of the event. Finally, Kalman Filters and Particle Filters aid in identifying the
trajectory of the event.

Packer et al. [62] expand a seed of keywords related to a topic using external
structured information. In order to collect tweets about a topic (e.g. a music
band), they use RDF structured information to identify related entities. For
example, many music bands have an entry in DBPedia12, a large RDF database
based on Wikipedia. Therefore, entities related to the band (e.g. band members)
could easily be extracted. These additional entities are used to extract tweets
that refer to the topic. Events related to a topic are identified according to
the number of the times the corresponding entities are mentioned in tweets.
According to the experimental evaluation the usage of the external sources gave
a boost in the event detection performance. Furthermore, the authors observed
an important correlation between the actual time period of the event and the
time the related entities are mentioned in Twitter. This observation suggests
that users usually tweet during an event.

The work presented in [94] focuses on detecting sports-related events. The
case study is the National Football League games of the 2010–2011 season. Using
a lexicon-based heuristic the authors collect relevant tweets. For identifying
events, they propose a sliding adaptive window-based method. If the ratio of
relevant tweets in the second half of the window is larger than a predefined
threshold then that is an indicator that something is happening. The window
size is adapted when the tweet-ratio(of relevant tweets) highly deviates from that
of the previous window. The algorithm is able to detect game related events such
as touchdowns and interceptions. The idea of using an adaptive sliding window
is quite interesting since it will enable capturing events of different magnitudes.

The approach proposed in [7] targets at detecting influenza incidents using
Twitter. Similarly with above, flu-related keywords are utilized in order to collect
a number of potentially relevant tweets. A classifier is then trained in order to
filter tweets that are not relevant. The classifier is built on bag-of-words text
features. By considering the output of the classifier (relevant tweets), a time
series is created based on flu-related tweets count. In order to evaluate their
results, the authors compared their methods to Infection Disease Surveillance
reports from clinics and to Google trends13. They conclude that this type of
events can be tracked via Twitter and detected before Google trends and even
before a potential break out. A similar approach is suggested in [34] where search
engine queries are utilized instead of social media messages.

12 http://dbpedia.org/About.
13 http://www.google.com/trends/.

http://dbpedia.org/About
http://www.google.com/trends/

66 N. Panagiotou et al.

Medvet et al. [58] focus on keywords that suddenly received increased popu-
larity. Their algorithm monitors words related to a predefined topic. Whenever
these words demonstrate an increased frequency - compared with their history,
are identified as candidate event keywords. The most recent tweets containing
these terms are classified according to sentiment (positive, negative or neutral).
Tweets from these three classes are then used to generate a summary for the
event. This application could be very useful for brand related events and also
for market research software in order to track product feedback.

6 Architecture

From a computational point of view, an apparent obstacle in social media analy-
sis is Big Data management. Real time detection in Web 2.0 data requires algo-
rithms that efficiently scale in space and time. Extreme data volumes impel
researchers and engineers to consider distributed environments. Inevitably many
of the papers discussed in Sect. 5 focus on architectural aspects and suggest
frameworks suitable for real-time social media analysis. Methods that are focused
on smaller data volumes without intensive computations however are able to per-
form in real-time even with the usage of a single machine.

The frameworks proposed in the literature recently can be organized in the
following categories:

– Multi-Component: Single Machine or Distributed. The system consists of many
components, each of which is responsible for a different task. Many times, the
components that considered to be a bottleneck, are replicated on multiple
machines in order to increase throughput if possible.

– Data Stream Topologies: Multiple nodes are responsible for different tasks.
These approaches utilize a stream topology that is suitable for scaling with
high-rate data input. A common configuration for this case is Storm14 along
with a NoSQL database like MongoDB.

6.1 Architectures of Multiple Components

In this section we provide an overview of systems built for event detection
that utilize a multiple components structure running on a single or multiple
computers.

In [86] the authors focus on identifying events in real-time. They utilize a
sample of the Twitter stream that produces 3 million tweets per day. The core
of the system is a MongoDB15 database. MongoDB is suitable for storing data
such as tweets in JSON format. The choice of this type of database is supported
by the fact that MongoDB supports geo-spatial and temporal indices. Another
important feature is that it can easily scale in number of instances. In case data
rate increases (e.g. due to Twitter increased popularity) MongoDB would deploy

14 http://storm.incubator.apache.org/.
15 https://www.mongodb.org/.

http://storm.incubator.apache.org/
https://www.mongodb.org/

Detecting Events in Online Social Networks 67

additional machines. The system consists of multiple components. These are a
Twitter Fetcher, a Cluster Creator, a Cluster Updater and a Cluster Scorer.
Initially a single machine is used, however modules such as the Cluster Scorer
could be easily replicated on more than one machine to handle increased load.
This architecture is presented in Fig. 5.

Twitter
Fetcher

JSON

Cluster
Creator-Updater

Document
Store

Cluster
Scorer

Fig. 5. The architecture of [86]. The four components are the Twitter Fetcher, the
Cluster Creator-Updater and the Cluster Scorer. The cluster scorer is represented as a
set of servers since it could be replicated.

In [22] the author established a MongoDB database to store Twitter data.
The choice of MongoDB is justified by the requirement of having the pre-
processing done by Map-Reduce jobs. MongoDB supports Map-Reduce jobs as
javascript functions. Map-Reduce as a pre-processing engine is an intuitive choice
given that tasks like noise filtering and natural language processing are com-
putationally demanding. The dataset consisted of 1.7 million tweets per day.
However, the method did not target at run-time processing since it only consid-
ered Retrospective event detection. The dataset is processed in batch steps that
involved computationally expensive procedures like Discrete Wavelet Transfor-
mation (DWT) and Latent Dirichlet Allocation (LDA). The main contribution
of this work is that it provides an insight on the capabilities of map-reduce for
efficiently preprocessing textual information. MongoDB as well as other NoSQL
databases such as CouchDB attracted the interest of the research community
due to their document storage and scaling capabilities.

Abdelhaq et al. [1] focused on identifying local events in a streaming fashion.
The system is implemented as a plug-in for the JOSM16 framework. Similarly to
[86] it consists of a number of modules. The Tweets Repository module is respon-
sible for gathering tweets using the Twitter API. The Buffer module keeps in

16 https://josm.openstreetmap.de/.

https://josm.openstreetmap.de/

68 N. Panagiotou et al.

main memory the last window of tweets. The window is indexed according to
time frames in order to ensure quick access to the data. In addition, this module
maintains a table with word-count statistics calculated from the streams’ his-
tory. This component results in large amounts of memory requirements. Sketch
randomized data structures could be a solution in such cases and be applied for
keeping the word-count table in main memory. The Content Processor module
is responsible for the data processing task. This component could be distributed
on more machines since its operations are easily parallelized. The last module is
the Localized Event Detector and this is the component that actually performs
the event detection and it is triggered at predefined times.

The Jasmine system that is presented in [88] uses a large sample of Twitter
(15 % of the original stream) that leads to a stream of 15 million tweets per
day. The basic components are: (a) the Tweet Fetcher, that is responsible for
downloading tweets, (b) the Geotag allocator that is responsible for assigning
locations to tweets - this module takes advantage of a locations database where
places are stored using the Solr17 search engine for efficient text search, (c) the
Popular Place Extractor that keeps a list of the most popular places, and finally,
(d) the Key Term extractor that identifies the most popular words in tweets
in order to summarize the events. The system is able to run in real-time but
also maintains a history of the stream in order to support retrospective event
detection or any other type of post processing.

An overview of the system is presented in Fig. 6.

Twitter
Fetcher

Tweets Database

Geotag
Allocator

Polular-Place
Extractor

Place Database

Key-Term
Extractor

Fig. 6. The architecture of Jasmine System [88]. The first component is the Twitter
Fetcher that receives tweets from the 15 % of the Twitter stream and stores them in
a database. The geotag allocator geotag the tweets using the places database. The
popular place component keeps in memory the most popular places. Finally, the Key-
Term extractor extracts key-terms for localized events.

The TwitterStand system presented in [73] used 4 different sources of infor-
mation: (a) Twitter Gardenhose (deprecated privileged Twitter API providing
17 https://lucene.apache.org/solr/.

https://lucene.apache.org/solr/

Detecting Events in Online Social Networks 69

Fig. 7. The architecture of the TwInsight system [84].

10 % sample of tweets), (b) the BirdDog service (deprecated API for receiving
posts from up to 200, 000 Twitter users), (c) a 2000 user stream and (d) a key-
word stream of 2000 terms. The first component of the system is responsible
for collecting the tweets from the sources. The next component is a fast Naive
Bayes classifier with the purpose to filter out “junk” from “news” tweets. The
classifier is not trained on a static corpus but it is updated from a dynamic one.
This justifies the choice of the Naive Bayes classifiers since it has a low update
computational cost. Another benefit is that its simplicity makes it tolerant to
increased data volumes. The third component is the Clusterer that performs
topic clustering using textual features. The Clusterer depends on the classifier
component since it clusters only the tweets that are classified as “news”. The last
module is the Geo-Tagging Component that groups together the topic-clustered
tweets according to their geo-location. The above system is represented as a
graph of connected stream processing units, each of them receiving the output
of the previous one, defining a processing topology. Thus, it is straightforward
to think that it could be implemented from a stream processing framework such
as Apache Storm18 and distributed on multiple processing engines if necessary.
Units that act as bottlenecks can be enhanced with more cores.

Another system structured in multiple-components is presented in [84]. Two
approaches are presented. The first one uses Twitter data while the second one
exploits mobile information. Figure 7 presents the architecture of the approach
operating on Twitter data. This system is utilized by the TwInsight system
which is presented in [83]. The first layer consists of the Twitter feed fetcher. In
the second layer, an emotions classifier, a Gazetteer and a storage component
are included. The Gazetteer assigns geo-locations to tweets and users utilizing
an algorithm presented in [81]. This part can be a bottleneck for the system
and therefore can be replicated to multiple machines. Emotions are assigned to
tweets using a Machine Learning classifier. The storage component contains a
database that stores the tweets with their extracted meta-data from the previous

18 https://storm.apache.org/.

https://storm.apache.org/

70 N. Panagiotou et al.

two components including emotion as well as location information. Finally, the
resulting tweets are processed in the third layer by the event extractor. This
component performs the event detection and provides a summarization of the
detected events. A visualization component on the third layer is responsible for
providing sentiment level information on a map.

The purpose of INSIGHT’s19 Twitter Intelligent Sensor Agent (ISA) is to
detect in real-time traffic or flood related incidents in the city of Dublin. The
architecture of the Twitter-ISA consists of multiple components similar to [83].
The first component is a Tweet fetcher responsible for gathering topic related
tweets through the Twitter Filtered API20. This enables tracking of specific
users, keywords and locations in order to collect a decent number of topic related
tweets. Since the majority of tweets do not include location information, a Geo-
tagger is utilized. The Geotagger analyzes the tweets and checks whether there
are references to places. If this is the case, it assigns coordinates to tweets using
Open Street Maps21 and a Lucene22 index following the method described in [27].
The resulting tweets are forwarded to the Text Classifier component that identi-
fies tweets that talk about traffic or flood incidents. All identified event-related
tweets are stored to a MongoDB database for further analysis. The bottleneck
of the system are the Geotagger and the Text Classifier components. However,
these components are easily replicated on multiple machines each of them han-
dling a different sub-stream of the original stream without any impact on the
effectiveness of event detection. The architecture of the Twitter-ISA is presented
in Fig. 8.

Fig. 8. The architecture of the Twitter-ISA of the INSIGHT system.

6.2 Data Stream Topologies

The authors in [56] suggested a distributed framework for high-volume data
streams like the Twitter Firehose (nearly 100 % of the Twitter feed). They pro-
pose a Storm topology in order to enable parallel and distributed computations
19 http://www.insight-ict.eu/.
20 https://dev.twitter.com/streaming/reference/post/statuses/filter.
21 https://www.openstreetmap.org.
22 https://lucene.apache.org/.

http://www.insight-ict.eu/
https://dev.twitter.com/streaming/reference/post/statuses/filter
https://www.openstreetmap.org
https://lucene.apache.org/

Detecting Events in Online Social Networks 71

implementing the first story detection algorithm described in [66]. A key compo-
nent of this algorithm is finding the nearest neighbor of a document. The basic
idea of the distributed streaming topology is to divide the Twitter stream into
sub-streams without reducing the evidence that could aid event detection.

The first topology layer is the Vectorizer that converts the tweets to the vector
space using a bag-of-words approach. The next layer is the “Hashing” that dis-
tributes the tweets on different processing units. The authors suggest the usage of
Locality Sensitive Hashing (LSH) in order to partition the documents into mul-
tiple LSH-buckets, with similar content, belonging on Storm Bolts. The intuition
behind the multiple-bucket partitioning, using multiple LSH data-structures, is
to reduce the nearest neighbour error caused by LSH and is described in more
detail in [66]. Each document is sent to multiple bolts involving extra com-
munication cost but reducing the LSH error. Those bolts belong to the Local
Distance layer where each of them reports the nearest neighbour to a document
identified from its buckets. In the next layer named Global Distance, the nearest
neighbors are aggregated and the one with the smallest distance from the new
document is selected. Documents who have distance more than a threshold from
the global nearest neighbour are sent to the “K-Means clustering” layer that
performs online clustering, the rest are discarded. Each of the formed clusters
may correspond to a real world event. The storm topology is presented on Fig. 9.

(a) Stream

(b) Vectorizer (c) Hashing

(d) Local Distance

(e) Global
Distance

(f) K-Means
Clustering

Events

Events

Fig. 9. The storm topology with multiple bolts per component. The (d) local distance
layer is allocated the most cores since it is the most computationally intensive.

They found that the fastest layer is, as expected, the Vectorizer. The slowest
one is the Local Distance. This is explained by the fact that this bolt imple-
ments a nearest neighbour computation involving similarity calculations on high
dimensional vectors. It is important to measure the slowest layer in order to
allocate cores where it is necessary. The authors suggest that the throughput of
the system scales linearly as more and more cores are added to the right bolt
layers. After investigating the number of cores that will be needed in order to
process the entire Twitter Firehose (5000 tweets/s) the authors concluded that
70 cores or 9 8-core machines will suffice.

72 N. Panagiotou et al.

6.3 Summary

In this section, system architectures that are capable of performing real-time
event detection are presented. Most of them focus on the Twitter sample
stream and the Twitter Garden hose with almost 10 million tweets per day.
For managing and mining the sample stream (1 % of Twitter) a distributed
modular architecture is required.

Notably, the 1 % of the Twitter stream on March of 2014 was about 8 million
tweets per day. This volume is similar to the volume of the Gardenhose API (10 %
of Twitter) provided some years before. This fact confirms the growth of the
Twitter usage over the years. If one is willing to process the entire Twitter stream
she needs to turn to architectures like Storm and to use the appropriate number
of processing units. For a smaller dataset such as a stream of 1 million tweets per
day a single machine with high amounts of main memory and processing power
will be able to process the data at run-time. It is important to note that not all
modules involved in the methods presented can be replicated. This is due to the
fact that not all algorithms can be parallelised without affecting the quality of
results (e.g. [66]). A summary of the above approaches that contains the stream
rate and the approach architecture is presented on Table 4.

7 Applications

In this section, we present a set of interesting applications of event detection sys-
tems and methods. The applications range from generic global events to celebrity
specific incidents.

In [36] the authors used Twitter to identify tweets that are about health
issues. This study investigates what types of links the users consult for publishing
health related information. A similar application is presented in [7] where authors
collect tweets about Influeza and identify flu outbreaks. Their results are similar
to Google-trends based flu outbreak detection especially in the early stages of
the outbreak. It is easy to see the potential social impact of such applications.

[72] focuses on identifying earthquake incidents with Twitter users as sensors.
The authors make an effort to detect the location and the trajectory of the phe-
nomenon. The system monitors Twitter and emails citizens when an earthquake

Table 4. The size of corpus and frameworks used in the papers presented in this
Section.

Reference Data volume Frameworks

[86] 3 M/Day MongoDB Spatial-temporal indexes,
horizontally Scaling

[1] Twitter sample stream 10 M/day JOSM

[88] 15 M/day Apache Solr, geo-hash

[73] Above 15 M/day -

[56] Gardenhose and Firehose Storm Topology

Detecting Events in Online Social Networks 73

is detected. The response time of the system is proved to be quite fast, similar
to the Japan Meteorological Agency. In [30] the authors detect flood events in
Germany providing visual information on the map. The TEDAS system [52] tar-
gets Crime and Disaster incidents by identifying where and when they happened.
A map visualization of tweets is available. Flickr and Youtube are utilized in [68]
where the goal is to detect content related to an emergency. The above systems
help the authorities in detecting real-time incidents as well as in extracting useful
information after the event.

Another set of approaches focused on finding global important events for a
given time period. These include [12,43,66]. [66,67] emphasize on finding the first
story about a new event (new event detection). Such approaches are valuable
since they can aid in identifying unexpected events.

Medvent et al. [58] focused on detecting events related to specific brands.
They focused on three major brands: Google, Microsoft and Apple. Examples
of such events are the release of a new product like the new iPad or Microsoft’s
Security Essential software. In order to achieve the desired outcome, the authors
study the sentiment of the tweets. These techniques are utilized for marketing
purposes. A similar approach is presented in [69] where events of controversial
sentiment are targeted. Automatic identification of controversies is very useful
in order to track and manage a large number of discussion groups.

Noettcher et al. [15], developed an Android application that finds local events
given a specific geographic area. The application is able to provide summaries to
the users. The Jasmine system detects local events for the user according to the
desired size of event and the number of users attending it. It presents summaries
and some important tweets per event in order to provide with a short description.
This group of applications could support mobile users looking for “happenings”
near by.

In the area of sports analytics, the EvenTweet system [1] could detect the
start time and the location of football matches for UEFA 2012. The system
described in [94] was able to detect National Football League events of the
2010–2011 season. The events include touchdowns, interceptions and goals.

8 Evaluation

Event Detection in social media is a relatively new and rather complex problem,
especially when it comes to evaluating the suggested approaches. Most authors
have to evaluate their algorithms during a period where important global events
take place. This will enable the validation of their techniques. Another approach
is to insert artificially event tweets into the stream. In this section a review of
the most common evaluation practises is presented. Experimental set-up, utilized
metrics, and obtained results are presented. Moreover we will cover strategies
for labeling the data and provide links to publicly available datasets.

74 N. Panagiotou et al.

8.1 Dataset Labelling

Many approaches constructed a dataset using the Twitter API. From the col-
lected tweets they create clusters of messages and label these clusters either
using the most important words of the cluster or the centroid of the cluster.
Usually, more than one annotators are used and the agreement between them is
measured using Cohen’s Kappa [90]. Only the annotations with high agreement
are used in the most cases while the low agreement annotations are discarded
since they are considered noise.

The authors in [2] followed a supervised approach on classifying event-
candidate clusters as event or non-event. Their system required a training set
for the supervised classifier used by their method. In order to assemble such a
dataset they initially extracted 1000 clusters using their one pass online clus-
tering algorithm. Then they manually labelled these clusters. 319 clusters are
labeled as events whereas 681 are labelled as non-events suggesting that, as
expected, the two classes are slightly unbalanced.

In a similar fashion the authors in [12] tracked the same problem. Sharing
the supervised classification idea with [86] they required a training set consisting
of example clusters marked as event and non-event. They manually annotated
clusters, but these clusters are carefully selected. Instead of annotating the clus-
ters or annotating a random subset, they restricted the cluster selection to the
top-20 fastest growing clusters per hour. The assumption behind this is that
usually a cluster that suddenly increases in size, will be an event cluster. For
the testing set they sample randomly clusters per hour from the whole cluster
pool in order to depict the real balance between “event” and “no-event” clus-
ters. The annotators labelled the clusters as “real world event”, “Twitter centric
activity”, “non-event” and “ambiguous”. Two annotators provided judgments
and Cohen’s Kappa is used in order to measure the agreement. The clusters
used for the training are 504, favoring the event class due to the careful cluster
selection. The test-set consisted only of 300 clusters.

The authors in [66] used the Edinburgh Fist Story Detection (FSD) Corpus.
A simply modified version of this dataset will be presented in the next sec-
tions. From this dataset they created threads of messages using their threading
algorithm described in the same paper. The threading algorithm links related
documents according to their textual distance and creates clusters of similar
documents. Authors divided the stream in sliding windows and then for every
sliding window they extracted the fastest growing threads(clusters) and manu-
ally labelled them. The top 1000 fastest growing threads from a sliding window
of 100, 000 threads are labelled using two annotators and using Cohen’s Kappa
coefficient. Clearly, it is important to note that again the reason why the fastest
growing clusters are selected for annotation is in order to favor the event clus-
ters similarly to [12]. Otherwise, the dataset would contain only a very small
proportion of clusters labeled as “event”.

An alternative approach is described in [57]. There, the wisdom of the crowd
is utilized through Amazon’s Mechanical Turk.

Detecting Events in Online Social Networks 75

They selected candidate clusters of events using the LSH [66] algorithm and
the Cluster Summary algorithm [2]. They also utilized the Wikipedia Events
Portal in order to receive event clusters as well as tweets about the detected
events. Then the crowd is used to determine if the cluster tweets are about
the event. In addition some clever heuristics are used in order to increase the
annotators agreement and also to filter out low-quality annotations. On the same
time, these heuristics provided the annotators motivation to continue their high
quality work.

8.2 Evaluation Metrics and Results

In this section, we provide an overview of the results obtained by various studies
presented in previous sections. Given the fact that there is an absence of shared
datasets, a direct comparison is impossible. However, the following metrics serve
as indicators of performance in various problems. Furthermore we present infor-
mation on the metrics used in each case.

Many authors decided to test the performance of their algorithms on the
TDT5 dataset. This dataset contains news articles extracted from traditional
news media and was widely used for the TDT challenge. Naturally, results will
diverge in a Twitter dataset since the two information sources are different in
many ways. For example, the streaming FSD algorithm [66] demonstrated much
better performance on the TDT5 dataset in comparison to a Twitter dataset.

The most common evaluation metrics originate from fields like Information
Retrieval and Natural Language Processing. Typical examples are Precision,
Recall and the F-Measure in terms of the detected events. In some cases, Accu-
racy is reported whereas in others the number of detected events is used as an
indicator of effectiveness. The latter might be misleading in cases of unbalanced
classes such as event detection. At this point, we will define some of the basic
metrics frequently used in the literature. Precision is defined in Eq. 7. Actual
Events (or True Positives) is the number of times that the algorithm detected
an event and it is actually an event. Recall shows the percentage of the actual
events that the system is able to identify (see Eq. 8). F-Measure is the harmonic
mean of Precision and Recall and it is defined in Eq. 9.

Many approaches can achieve high Recall but with limited Precision due to
the large number of False Positives. This is one of the reasons that additional
‘filtering’ techniques are utilized before or after the core approach. Some meth-
ods use ranked versions of the above evaluation metrics such as Precision at
k (P@K). Such metrics allow the evaluation of methods that can provide an
ordered list of predicted events.

Precision =
Number of Actual Events Detected

Number of Detected Events
(7)

Recall =
Number of Actual Events Detected

Number of Actual Events
(8)

F -Measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(9)

76 N. Panagiotou et al.

The authors in [12] decided to use a manually labelled dataset for the evalua-
tion of their system. Their approach utilized classifiers that are compared based
on the F1 measure. SVMs outperformed the Naive Bayes classifier (0.837 over
0.702).

In [66] the authors evaluate their system in terms of average Precision. This
decision is straightforward since labels are available only for the detected events
(True Positives). The authors evaluate their first story detection system on the
top-k event stories ranked according to different scoring functions. The best
obtained results in terms of Precision at k (P@k) is 34.0%.

The same event detection system is tested in [67] where Wikipedia is utilized
in order to re-rank the detected events. The authors observed that the use of
Wikipedia provided an improvement in Precision. However, as the authors com-
ment, Wikipedia causes a two-hour delay in event detection in comparison with
the original approach [66].

The authors in [59] evaluated their system on the same dataset [66]. They
conclude that their approach outperformed UMASS [4] while the detection time
is only 3.5 times slower than the method in [66]. However, the benefits of the
approach are not so clear in Twitter data as they are in FSD data (TDT5).

[43] utilized the corpus of [59]. They used Detection Trade-off (DET) curves
for evaluating the effectiveness of the approach. DET curves display the ratio
of Miss Probability to False Alarm Probability). The conclusion is that their
system outperformed all baseline approaches included in the experiments. On
top of that, a significant improvement is observed in execution time.

In [86] the authors evaluated three classifiers in terms of Precision, Recall and
F-Measure. They used a manually labelled dataset by 10-fold cross-validation.
Their best performing classifier is a Pruned Decision Tree with a F1 score of
0.857. They also experimented with the impact of the content and non-content
features. The authors observed a statistically significant improvement when all
types of features are considered. One could note however that these results devi-
ate from the ones reported in [12,67]. This gap demonstrates the effect of the
dataset in an experimental evaluation.

The inventors of TwEvent [51] provided with their own definitions of Recall
and Duplicate Event Rate (DER) that are the metrics used in their evaluation.
Recall is defined as the number of detected events while DER is the ratio of
duplicate events found. DER is useful in order to penalize multiple alerts on
the same event. They compared the approach against the EdCow system [89]
and concluded that TwEvent achieved an important improvement in terms of
Recall (75 over 13 detected actual events). An improvement is also observed in
Precision (86.1% over 76.2%). The DER metric of TwEVent system and EdCow
is 16.0% and 23.1% respectively.

Similarly, Popescu et al. [69] utilized a manually labelled dataset that consists
of 800 labelled events using two human annotators. Three alternative approaches
are compared on Precision at k (P@k). The so-called blended model performed
best with 0.9 Precision at rank-1 and 0.80 Precision at rank-4. The Area Under
Curve (AUC) of the three models suggests that they have good discriminative

Detecting Events in Online Social Networks 77

power in comparison to baseline algorithms. A final note is that the performance
differences between the three systems is not statistically significant.

8.3 Available Datasets

The Edinburgh FSD corpus23 was created in order to test the method in [66].
The dataset contains 51, 879, 318 tweet IDs. The content of the tweets is removed
due to Twitter’s terms of use. In order to take advantage of the dataset one has to
use the Twitter API to download the messages that correspond to the tweet IDs.
The authors identified 27 topics in the data. 3034 tweets are labelled according
to the procedure described in [59]. This dataset was created for detecting first
stories. However, it is suitable (and was utilized) for general event detection
tasks.

A dataset that is not Twitter specific but is useful for event detection evalua-
tion is the NewsWire dataset24. The dataset contains links to news articles. The
articles contain a timestamp and a relevance value to some of the aforementioned
27 topics [65]. The dataset contains 47751 links to articles.

The dataset of the MediaEval challenge is also available and can be utilized
for event detection. The dataset consisted of Flickr images and 1.327 videos
from YouTube with their metadata. Another one consists of Instagram pictures
instead of Flickr images. The labelled part of the dataset was created using
human annotators. This dataset contains 8 event types. These are music events,
conferences, exhibitions, fashion shows, protests, sport events, theatrical/dance
events and other events.

9 Related Problems

Trend detection is a highly related task to event detection and is commonly
applied to social media (e.g. Twitter trending topics) and News portals (e.g.
Yahoo News). Many trend detection methods like [13,55] are similar to feature-
pivot event detection techniques. In these methods, a keyword burst identifica-
tion is a core element. Similarly to event detection, scalability for high volumes
of data is a major concern.

Information diffusion [37] is another problem that shares many similarities
with event detection. Twitter [71,91] and Facebook [10] have been extensively
studied on how information flows inside the network. Information diffusion exam-
ines the impact of the network structure, which users are influential or why some
content becomes viral.

‘Event Detection’ is a term commonly used in video/image analysis and com-
puter vision [40,79,95]. In this case the goal is to identify in a video feed an inci-
dent - usually of specific type. Similar efforts have been observed in image and
video streams in social networks like Instagram, Flick and YouTube [63,64,85].

Other domains for event detection emerge as new information sources become
available. Mobile and Urban data are now in abundance in smart cities. Hence,
23 Available at http://demeter.inf.ed.ac.uk/cross/docs/fsd corpus.tar.gz.
24 Available at http://demeter.inf.ed.ac.uk/cross/docs/Newswire Events.tar.gz.

http://demeter.inf.ed.ac.uk/cross/docs/fsd_corpus.tar.gz
http://demeter.inf.ed.ac.uk/cross/docs/Newswire_Events.tar.gz

78 N. Panagiotou et al.

data analysis and event processing techniques as well as complete streaming
frameworks are exploited in order to identify incidents in the streets of a city
[8,16,17,74]. Data sources that are utilized in such cases are SCATS25 data
(traffic volume information) or vehicle data like public transport data (e.g. GPS
location of buses moving around the city). The INSIGHT project develops a
system that targets at identifying disastrous events from city data.

10 Conclusion and Open Challenges

In this paper we presented an overview of the most recent techniques for detect-
ing events in online social networks. This is an area of research that emerged
during the last years, in parallel with the growth of user participation in social
networks. In this overview, we made an effort to organize the most important
research lines as well as their results. Furthermore we focused on the architec-
ture element of such systems. Due to large volumes of data, state-of-the-art data
stream and database frameworks had to be utilized. Finally we discussed how
the evaluation is being executed in event detection and mentioned the most
common evaluation metrics and datasets used. We believe that this survey will
benefit researchers in the field as well as practitioners working in commercial
applications that exploit social network applications.

The problem of event detection is a very challenging one. The definition of
the problem in Sect. 3, suggests that there are many dimensions to it. It is not
sufficient to detect that something happened, in other words, detect anomalies.
Event detection requires the automatic answering of what, when, where, and by
whom. After reporting on the most recent efforts in the area, it is clear that no
method addressed all of these questions. Therefore, there is a lot of space for
improvement towards this direction.

Another challenge that has to be addressed is the lack of public datasets.
Privacy issues along with Social Network companies’ terms of use hinder the
availability of shared data. This obstacle, is of great significance since it relates
to the repeatability of experiments and comparison between approaches. It is
not hard to observe that most approaches focus on the Twitter platform. This
is of course due to the usability and accessibility of the Twitter API. However, a
research area that depends on a single data source, as interesting as it is, entails
many risks. Nonetheless, it is expected that as new media sources emerge, event
detection will remain significant and challenging.

Acknowledgments. This work is funded by the projects EU FP7 INSIGHT (318225),
GGET Thalis DISFER and GeomComp.

References

1. Abdelhaq, H., Sengstock, C., Gertz, M.: EvenTweet: online localized event detec-
tion from twitter. Proc. VLDB Endow. 6(12), 1326–1329 (2013)

25 http://en.wikipedia.org/wiki/Sydney Coordinated Adaptive Traffic System.

http://en.wikipedia.org/wiki/Sydney_Coordinated_Adaptive_Traffic_System

Detecting Events in Online Social Networks 79

2. Aggarwal, C.C., Subbian, K.: Event detection in social streams. In: SDM, pp.
624–635. SIAM/Omnipress (2012)

3. Allan, J.: Introduction to topic detection and tracking. In: Allan, J. (ed.) Topic
Detection and Tracking, pp. 1–16. Springer, New York (2002)

4. Allan, J., Lavrenko, V., Malin, D., Swan, R.: Detections, bounds, and timelines:
Umass and TDT-3. In: Proceedings of Topic Detection and Tracking Workshop,
pp. 167–174 (2000)

5. Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In:
Proceedings of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM (1998)

6. Ankerst, M., Breunig, M., Kriegel, H., Sander, J.: OPTICS: ordering points to
identify the clustering structure. ACM SIGMOD Rec. 28, 49–60 (1999)

7. Aramaki, E., Maskawa, S., Morita, M.: Twitter catches the flu: detecting influenza
epidemics using Twitter. In: Proceedings of the Conference on empirical methods
in natural language processing, pp. 1568–1576 (2011). http://dl.acm.org/citation.
cfm?id=2145600

8. Artikis, A., Weidlich, M., Schnitzler, F., Boutsis, I., Liebig, T., Piatkowski, N.,
Bockermann, C., Morik, K., Kalogeraki, V., Marecek, J., et al.: Heterogeneous
stream processing and crowdsourcing for urban traffic management. In: EDBT,
pp. 712–723 (2014)

9. Atefeh, F., Khreich, W.: A survey of techniques for event detection in twitter.
Computat. Intell. 31, 132–164 (2013)

10. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in infor-
mation diffusion. In: Proceedings of the 21st International Conference on World
Wide Web, pp. 519–528. ACM (2012)

11. Becker, H., Iter, D., Naaman, M., Gravano, L.: Identifying content for planned
events across social media sites. In: Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining, WSDM 2012, p. 533 (2012)

12. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event
identification on twitter. In: Proceedings of the Fifth International AAAI Confer-
ence on Weblogs and Social Media (ICWSM 2011), pp. 1–17 (2011)

13. Benhardus, J., Kalita, J.: Streaming trend detection in twit-
ter. Int. J. Web Based Commun. 9(1), 122–139 (2013).
http://inderscience.metapress.com/index/906V117647682257.pdf

14. Bifet, A., Frank, E.: Sentiment knowledge discovery in twitter streaming data. In:
Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS, vol. 6332, pp.
1–15. Springer, Heidelberg (2010)

15. Boettcher, A., Lee, D.: EventRadar: a real-time local event detection scheme using
twitter stream. In: 2012 IEEE International Conference on Green Computing and
Communications, pp. 358–367, November 2012

16. Boutsis, I., Kalogeraki, V.: Privacy preservation for participatory sensing data. In:
2013 IEEE International Conference on Pervasive Computing and Communications
(PerCom), pp. 103–113. IEEE (2013)

17. Boutsis, I., Kalogeraki, V., Gunopulos, D.: Efficient event detection by exploiting
crowds. In: Proceedings of the 7th ACM International Conference on Distributed
Event-Based Systems, pp. 123–134. ACM (2013)

18. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence
in twitter: the million follower fallacy. In: ICWSM 2010, pp. 10–17 (2010)

19. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theort. Comput. Sci. 312(1), 3–15 (2004)

http://dl.acm.org/citation.cfm?id=2145600
http://dl.acm.org/citation.cfm?id=2145600
http://inderscience.metapress.com/index/906V117647682257.pdf

80 N. Panagiotou et al.

20. Chen, K., Chen, T., Zheng, G., Jin, O., Yao, E., Yu, Y.: Collaborative personalized
tweet recommendation. In: Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 661–670.
ACM (2012)

21. Chowdhury, G.: Introduction to Modern Information Retrieval. Facet Publishing,
London (2010)

22. Cordeiro, M.: Twitter event detection: combining wavelet analysis and topic infer-
ence summarization. In: Doctoral Symposium on Informatics Engineering, DSIE
(2012). http://paginas.fe.up.pt/prodei/dsie12/papers/paper 14.pdf

23. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. Theoretical Computer Science 55(1), 58–75 (2005).
http://linkinghub.elsevier.com/retrieve/pii/S0196677403001913

24. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. Theoretical Computer Science 30(1), 249–278 (2004).
http://portal.acm.org/citation.cfm?d=1061318.1061325

25. Cui, A., Zhang, M., Liu, Y., Ma, S., Zhang, K.: Discover breaking events with pop-
ular hashtags in twitter. In: Proceedings of the 21st ACM International Conference
on Information and Knowledge Management, CIKM 2012, p. 1794 (2012). http://
dl.acm.org/citation.cfm?d=2396761.2398519

26. Daly, E.M., Geyer, W.: Effective event discovery: using location and social infor-
mation for scoping event recommendations. In: Proceedings of the Fifth ACM
Conference on Recommender Systems, pp. 277–280. ACM (2011)

27. Daly, E.M., Lecue, F., Bicer, V.: Westland row why so slow?: fusing social media
and linked data sources for understanding real-time traffic conditions. In: Pro-
ceedings of the 2013 International Conference on Intelligent User Interfaces, pp.
203–212. ACM (2013)

28. De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via
social media. In: AAAI Conference on Weblogs and Social Media, vol. 2 (2013)

29. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York
(2012)

30. Fuchs, G., Andrienko, N., Andrienko, G., Bothe, S., Stange, H.: Tracing the
German centennial flood in the stream of tweets: first lessons learned. In: Proceed-
ings of the Second ACM SIGSPATIAL International Workshop on Crowdsourced
and Volunteered Geographic Information, GEOCROWD 2013, pp. 31–38. ACM,
New York (2013). http://doi.acm.org/10.1145/2534732.2534741

31. Fung, G.P.C., Yu, J.X., Yu, P.S., Lu, H.: Parameter free bursty events detection in
text streams. In: Proceedings of the 31st International Conference on Very Large
Data Bases, pp. 181–192. VLDB Endowment (2005)

32. Galuba, W., Aberer, K.: Outtweeting the twitterers-predicting information
cascades in microblogs. In: Proceedings of the 3rd Conference on Online
Social Networks (2010). http://static.usenix.org/events/wosn10/tech/full papers/
Galuba.pdf

33. Ghosh, S., Sharma, N., Benevenuto, F., Ganguly, N., Gummadi, K.: Cognos: crowd-
sourcing search for topic experts in microblogs. In: Proceedings of the 35th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 575–590. ACM (2012)

34. Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., Brilliant,
L.: Detecting influenza epidemics using search engine query data. Nature
457(7232), 1012–1014 (2009)

35. Go, A., Huang, L., Bhayani, R.: Twitter sentiment analysis. Nature 17, 1–6 (2009)

http://paginas.fe.up.pt/prodei/dsie12/papers/paper_14.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0196677403001913
http://portal.acm.org/citation.cfm?d=1061318.1061325
http://dl.acm.org/citation.cfm?d=2396761.2398519
http://dl.acm.org/citation.cfm?d=2396761.2398519
http://doi.acm.org/10.1145/2534732.2534741
http://static.usenix.org/events/wosn10/tech/full_papers/Galuba.pdf
http://static.usenix.org/events/wosn10/tech/full_papers/Galuba.pdf

Detecting Events in Online Social Networks 81

36. Goot, E.V.D., Tanev, H., Linge, J.: Combining twitter and media reports on public
health events in medisys. In: Proceedings of the 22nd International Conference on
World Wide Web Companion, pp. 703–705. International World Wide Web Con-
ferences Steering Committee (2013). http://dl.acm.org/citation.cfm?id=2488028

37. Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through
blogspace. In: Proceedings of the 13th International Conference on World Wide
Web, pp. 491–501. ACM (2004)

38. Guo, D., Wu, J., Chen, H., Yuan, Y., Luo, X.: The dynamic bloom filters. IEEE
Trans. Knowl. Data Eng. 22(1), 120–133 (2010)

39. Hua, T., Chen, F., Zhao, L., Lu, C., Ramakrishnan, N.: STED: Semi-
Supervised Targeted Event Detection (2013). people.cs.vt.edu, http://people.cs.
vt.edu/ramakris/papers/kdddemo13 sted.pdf

40. Itti, L., Baldi, P.: A principled approach to detecting surprising events in video. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR 2005, vol. 1, pp. 631–637. IEEE (2005)

41. Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared
near neighbors. IEEE Trans. Comput. 100(11), 1025–1034 (1973)

42. Kaleel, S.B.: Event Detection and trending in multiple social networking sites. In:
Proceedings of the 16th Communications and Networking Symposium. Society for
Computer Simulation International (2013)

43. Karkali, M., Rousseau, F., Ntoulas, A., Vazirgiannis, M.: Efficient online novelty
detection in news streams. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang,
G. (eds.) WISE 2013, Part I. LNCS, vol. 8180, pp. 57–71. Springer, Heidelberg
(2013)

44. Kleinberg, J.: Bursty and hierarchical structure in streams. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2002, p. 91 (2002). http://portal.acm.org/citation.cfm?d=775047.
775061

45. Knobel, M., Lankshear, C.: Online memes, affinities, and cultural production. In:
Knobel, M., Lankshear, C. (eds.) A New Literacies Sampler, pp. 199–227. Peter
Lang, New York (2007)

46. Kotsakos, D., Sakkos, P., Katakis, I., Gunopulos, D.: # tag: meme or event? In:
2014 IEEE/ACM International Conference on Advances in Social Networks Analy-
sis and Mining (ASONAM), pp. 391–394. IEEE (2014)

47. Kumar, S., Liu, H., Mehta, S., Subramaniam, L.V.: From tweets to events: explor-
ing a scalable solution for twitter streams. arXiv preprint, arXiv:1405.1392 (2014)

48. Kumaran, G., Allan, J.: Using names and topics for new event detection. In: Pro-
ceedings of the Conference on Human Language Technology and Empirical Meth-
ods in Natural Language Processing, pp. 121–128. Association for Computational
Linguistics (2005)

49. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web,
pp. 591–600. ACM (2010)

50. Levenberg, A., Osborne, M.: Stream-based randomised language models for SMT.
In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, vol. 2. Association for Computational Linguistics (2008)

51. Li, C., Sun, A., Datta, A.: Twevent: segment-based event detection from tweets.
Proceedings of the 21st ACM International Conference on Information and Knowl-
edge Management (2012). http://dl.acm.org/citation.cfm?id=2396785

http://dl.acm.org/citation.cfm?id=2488028
http://people.cs.vt.edu
http://people.cs.vt.edu/ramakris/papers/kdddemo13_sted.pdf
http://people.cs.vt.edu/ramakris/papers/kdddemo13_sted.pdf
http://portal.acm.org/citation.cfm?d=775047.775061
http://portal.acm.org/citation.cfm?d=775047.775061
http://arxiv.org/abs/1405.1392
http://dl.acm.org/citation.cfm?id=2396785

82 N. Panagiotou et al.

52. Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.C.: TEDAS: a twitter-based event
detection and analysis system. In: 2012 IEEE 28th International Conference on
Data Engineering, pp. 1273–1276, April 2012

53. Luo, G., Tang, C., Yu, P.S.: Resource-adaptive real-time new event detection. In:
Proceedings of the 2007 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2007, p. 497 (2007)

54. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proceedings of the 28th International Conference on Very Large Data Bases (2002).
http://dl.acm.org/citation.cfm?id=1287400

55. Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter
stream. In: Proceedings of the 2010 International Conference on Management of
Data, pp. 1155–1157 (2010). http://dl.acm.org/citation.cfm?id=1807306

56. McCreadie, R., Macdonald, C.: Scalable distributed event detection for Twitter.
In: 2013 IEEE International Conference on Big Data, 6–9 January 2013. IEEE
(2013)

57. McMinn, A.J., Moshfeghi, Y., Jose, J.M.: Building a large-scale corpus for evalu-
ating event detection on twitter. In: Proceedings of the 22nd ACM International
Conference on Conference on Information and Knowledge Management, CIKM
2013 pp. 409–418 (2013). http://dl.acm.org/citation.cfm?doid=2505515.2505695

58. Medvet, E., Bartoli, A.: Brand-related events detection, classification and sum-
marization on twitter. In: 2012 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology, pp. 297–302 (2012). http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6511900

59. Osborne, M., Petrovic, S.: Bieber no more: first story detection using Twitter and
Wikipedia. In: Proceedings of the Workshop on Time-Aware Information Access,
TAIA (2012)

60. Ozdikis, O., Senkul, P., Oguztuzun, H.: Semantic expansion of tweet contents for
enhanced event detection in twitter. In: 2012 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, pp. 20–24 (2012). http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6425790

61. Ozdikis, O., Senkul, P., Oguztuzun, H.: Semantic expansion of hashtags for
enhanced event detection in Twitter. In: Proceedings of the 1st International Work-
shop on Online Social Systems (2012). http://www.cs.ubc.ca/welu/woss2012/
papers/1-ozdikis.pdf

62. Packer, H.S., Samangooei, S., Hare, J.S., Gibbins, N., Lewis, P.H.: Event detection
using Twitter and structured semantic query expansion. In: Proceedings of the
1st International Workshop on Multimodal Crowd Sensing, CrowdSens 2012, p. 7
(2012)

63. Papadopoulos, S., Schinas, E., Mezaris, V., Troncy, R., Kompatsiaris, I.: The 2012
social event detection dataset. In: Proceedings of the 4th ACM Multimedia Systems
Conference, pp. 102–107. ACM (2013)

64. Papadopoulos, S., Troncy, R., Mezaris, V., Huet, B., Kompatsiaris, I.: Social event
detection at MediaEval 2011: challenges, dataset and evaluation. In: MediaEval
(2011)

65. Petrovic, S., Osborne, M.: Can twitter replace newswire for breaking news. In:
Proceedings of the Seventh International AAAI Conference on Weblogs and Social
Media 2011 (2013)

66. Petrovic, S., Osborne, M., Lavrenko, V.: Streaming first story detection with appli-
cation to twitter. In: Proceedings of the NAACL (2010)

http://dl.acm.org/citation.cfm?id=1287400
http://dl.acm.org/citation.cfm?id=1807306
http://dl.acm.org/citation.cfm?doid=2505515.2505695
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6511900
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6511900
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6425790
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6425790
http://www.cs.ubc.ca/ welu/woss2012/papers/1-ozdikis.pdf
http://www.cs.ubc.ca/ welu/woss2012/papers/1-ozdikis.pdf

Detecting Events in Online Social Networks 83

67. Petrović, S., Osborne, M., Lavrenko, V.: Using paraphrases for improving first
story detection in news and Twitter. In: Proceedings of the 2012 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 338–346 (2012)

68. Pohl, D., Bouchachia, A., Hellwagner, H.: Automatic sub-event detection in emer-
gency management using social media. In: Proceedings of the 21st International
Conference Companion on World Wide Web, WWW 2012 Companion, p. 683
(2012). http://dl.acm.org/citation.cfm?d=2187980.2188180

69. Popescu, A.M., Pennacchiotti, M.: Detecting controversial events from twitter. Pro-
ceedings of the 19th ACM International Conference on Information and Knowl-
edge Management, CIKM 2010, p. 1873 (2010). http://portal.acm.org/citation.
cfm?d=1871437.1871751

70. Psallidas, F., Becker, H., Naaman, M., Gravano, L.: Effective event iden-
tification in social media. IEEE Trans. Comput. 36(3), 42–50 (2013).
http://sites.computer.org/debull/A13sept/p42.pdf

71. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of informa-
tion diffusion across topics: idioms, political hashtags, and complex contagion on
twitter. In: Proceedings of the 20th International Conference on World Wide Web,
pp. 695–704. ACM (2011)

72. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time
event detection by social sensors. In: Proceedings of the 19th International Con-
ference on World Wide Web (2010). http://dl.acm.org/citation.cfm?id=1772777

73. Sankaranarayanan, J., Samet, H.: Twitterstand: news in tweets. In: Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM (2009). http://dl.acm.org/citation.cfm?id=1653781

74. Schnitzler, F., Liebig, T., Mannor, S., Morik, K.: Combining a Gauss-Markov model
and Gaussian process for traffic prediction in Dublin city center. In: Proceedings of
the Workshop on Mining Urban Data at the International Conference on Extending
Database Technology (2014, to appear)

75. Sharma, J., Vyas, A.: Twitter sentiment analysis. Indian Institute of Technology
(2010, unpublished). http://home.iitk.ac.in/jaysha/cs365/projects/report.pdf)

76. Signorini, A., Segre, A.M., Polgreen, P.M.: The use of Twitter to track levels of dis-
ease activity and public concern in the US during the influenza A H1N1 pandemic.
IEEE Trans. Comput. 6(5), e19467 (2011)

77. Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors [lec-
ture notes]. IEEE Trans. Comput. 25(2), 128–131 (2008)

78. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.:
Online outlier detection in sensor data using non-parametric models. In: Proceed-
ings of the 32nd International Conference on Very Large Data Bases, pp. 187–198.
VLDB Endowment (2006)

79. Tang, K., Fei-Fei, L., Koller, D.: Learning latent temporal structure for complex
event detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1250–1257. IEEE (2012)

80. Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections
with twitter: what 140 characters reveal about political sentiment. In: ICWSM
2010, 178–185 (2010)

81. Valkanas, G., Gunopulos, D.: Location extraction from social networks with com-
modity software and online data. In: 2012 IEEE 12th International Conference
on Data Mining Workshops pp. 827–834. http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6406525

http://dl.acm.org/citation.cfm?d=2187980.2188180
http://portal.acm.org/citation.cfm?d=1871437.1871751
http://portal.acm.org/citation.cfm?d=1871437.1871751
http://sites.computer.org/debull/A13sept/p42.pdf
http://dl.acm.org/citation.cfm?id=1772777
http://dl.acm.org/citation.cfm?id=1653781
http://home.iitk.ac.in/jaysha/cs365/projects/report.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6406525
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6406525

84 N. Panagiotou et al.

82. Valkanas, G., Gunopulos, D.: Event detection from social media data. IEEE Trans-
actions on Computers 36(3), 51–58 (2013)

83. Valkanas, G., Gunopulos, D.: How the live web feels about events. In: Proceed-
ings of the 22Nd ACM International Conference on Conference on Information
and Knowledge Management, CIKM 2013, pp. 639–648. ACM, New York (2013).
http://doi.acm.org/10.1145/2505515.2505572

84. Valkanas, G., Gunopulos, D., Boutsis, I., Kalogeraki, V.: An architecture for detect-
ing events in real-time using massive heterogeneous data sources. In: Proceedings of
the 2nd International Workshop on Big Data, Streams and Heterogeneous Source
Mining Algorithms, Systems, Programming Models and Applications, BigMine
2013, pp. 103–109 (2013). http://dl.acm.org/citation.cfm?d=2501221.2501235

85. Vavliakis, K.N., Tzima, F.A., Mitkas, P.A.: Event detection via LDA for the Medi-
aEval2012 SED task. In: MediaEval, pp. 5–6 (2012)

86. Walther, M., Kaisser, M.: Geo-spatial event detection in the twitter stream. In:
Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein,
E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 356–367.
Springer, Heidelberg (2013)

87. Wang, Y., Sundaram, H., Xie, L.: Social event detection with interaction graph
modeling. In: Proceedings of the 20th ACM International Conference on Multime-
dia (2012). http://dl.acm.org/citation.cfm?id=2396332

88. Watanabe, K., Ochi, M., Okabe, M., Onai, R.: Jasmine: a real-time local-event
detection system based on geolocation information propagated to microblogs.
In: Proceedings of the 20th ACM International Conference on Information and
Knowledge Management, pp. 2541–2544 (2011). http://dl.acm.org/citation.cfm?
id=2064014

89. Weng, J., Lee, B.: Event detection in twitter. In: ICWSM (2011)
90. Wood, J.M.: Understanding and computing Cohen’s kappa: a tutorial. WebPsy-

chEmpiricist. Web J. (2007) http://wpe.info/
91. Yang, J., Counts, S.: Predicting the speed, scale, and range of information diffusion

in twitter. In: ICWSM 2010, pp. 355–358 (2010)
92. Yang, Y., Pierce, T., Carbonell, J.: A study of retrospective and on-line event

detection. In: Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 28–36. ACM (1998)

93. Zhang, K., Zi, J., Wu, L.G.: New event detection based on indexing-tree and named
entity. In: Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2007, p. 215 (2007).
http://portal.acm.org/citation.cfm?d=1277741.1277780

94. Zhao, S., Zhong, L.: Human as real-time sensors of social and physical events: a
case study of twitter and sports games. arXiv preprint, arXiv:1106.4300, 1–9 June
2011. http://arxiv.org/abs/1106.4300

95. Zhong, H., Shi, J., Visontai, M.: Detecting unusual activity in video. In: Proceed-
ings of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, CVPR 2004, vol. 2, pp. II–819. IEEE (2004)

http://doi.acm.org/10.1145/2505515.2505572
http://dl.acm.org/citation.cfm?d=2501221.2501235
http://dl.acm.org/citation.cfm?id=2396332
http://dl.acm.org/citation.cfm?id=2064014
http://dl.acm.org/citation.cfm?id=2064014
http://wpe.info/
http://portal.acm.org/citation.cfm?d=1277741.1277780
http://arxiv.org/abs/1106.4300
http://arxiv.org/abs/1106.4300

http://www.springer.com/978-3-319-41705-9

	Detecting Events in Online Social Networks: Definitions, Trends and Challenges
	1 Introduction
	2 Research Challenges and Requirements
	3 Definitions and Context
	4 Organization of Methods
	4.1 Taxonomy
	4.2 NED vs. RED and Online vs. Offline

	5 Event Detection Methods
	5.1 Clustering Based Event Detection
	5.2 Anomaly Based Event Detection
	5.3 First Story Detection
	5.4 Topic Specific Event Detection

	6 Architecture
	6.1 Architectures of Multiple Components
	6.2 Data Stream Topologies
	6.3 Summary

	7 Applications
	8 Evaluation
	8.1 Dataset Labelling
	8.2 Evaluation Metrics and Results
	8.3 Available Datasets

	9 Related Problems
	10 Conclusion and Open Challenges
	References

