
Tamil Morphological Analyzer Using Support
Vector Machines

T. Mokanarangan(&), T. Pranavan, U. Megala, N. Nilusija, G. Dias,
S. Jayasena, and S. Ranathunga

Department of Computer Science Engineering, University of Moratuwa,
Moratuwa, Sri Lanka

{mokanarangan.11,pranavan.11,megala.11,nilu.11,gihan,

sanath,surangika}@cse.mrt.ac.lk

Abstract. Morphology is the process of analyzing the internal structure of
words. Grammatical features and properties are used for this analysis. Like other
Dravidian languages, Tamil is a highly agglutinative language with a rich
morphology. Most of the current morphological analyzers for Tamil mainly use
segmentation to deconstruct the word to generate all possible candidates and
then either grammar rules or tagging mismatch is used during post processing to
get the best candidate. This paper presents a morphological engine for Tamil that
uses grammar rules and an annotated corpus to get all possible candidates.
A support vector machines classifier is employed to determine the most probable
morphological deconstruction for a given word. Lexical labels, respective fre-
quency scores, average length and suffixes are used as features. The accuracy of
our system is 98.73 % and a F-measure of .943, which is more than the same
reported by other similar research.

Keywords: Tamil � Morphological analyzer � Support vector machine �
Natural language processing � Dravidian languages

1 Introduction

Morphological analysis is the process of segmentation of words into their component
morphemes, and the assignment of grammatical morphemes to grammatical categories
and lexical morphemes to lexemes [1]. Tamil language is morphologically rich and
agglutinative. Each word is pinned with morphemes and during morphological con-
struction, the original form of the word changes, hence making the morphological
deconstruction tough.

Morphological analysis is the basis for many natural language processing tasks
such as Named Entity Recognition, Part of Speech Tagging and Machine translation.
Morphological analysis can provide a wealth of information. For Tamil in particular,
like many other Dravidian languages, a good morphological analyzer can extract many
information about a word ranging from verb or noun to tense and gender due to its rich
morphology.

Previous attempts on morphological analysis for Tamil have been made using three
approaches: rule based, machine learning based, and hybrid approaches that combine

© Springer International Publishing Switzerland 2016
E. Métais et al. (Eds.): NLDB 2016, LNCS 9612, pp. 15–23, 2016.
DOI: 10.1007/978-3-319-41754-7_2

both the rule based and the machine learning approaches. This paper outlines an
approach that uses a morphological engine encompassing all grammar rules in Tamil
that generates all possible candidates for a word along with the Part of Speech
(PoS) tags for each morpheme. These PoS tags, respective frequency scores, average
length and suffixes are used as features in a Support Vector Machines (SVM) classifier
to select the best candidate out of the candidate list.

Rest of the paper is organized as follows. The next section discusses the previous
attempts on building morphological analyzers for Tamil. Third section describes our
approach and the fourth section gives the evaluation results. Final section discusses
future work and concludes the paper.

2 Related Work

First ever Tamil morphological analyzer was built by AU-KBC Research Centre in
2003 [2]. Since then research on Tamil morphological analysis was continued in two
directions, using machine learning and using rule based approaches. Selvam and
Natarajan [3] carried out research on morphological analysis and PoS tagging for Tamil
using a rule based approach via projection and induction techniques. Another mor-
phological analyzer for Tamil was implemented using the sequence labelling based
machine learning approach [4]. It was a supervised machine learning approach and a
corpus with morphological information was used for training. Another approach used
the open source platform apertium [5]. Apertium tool uses the computational algorithm
called Finite State Transducers for one-pass analysis and generation, and the database is
based on the morphological model called Word and Paradigm. In a very recent
research, a rule-based morphological analyzer was presented [6]. Researchers have
used a set of rules, a postposition suffix word list and a root word dictionary developed
from classical Tamil text. Not considering all the grammar rules coupled with high
ambiguity has been the problem for this approach.

Our approach drew inspiration from morphological analyzers designed for two dif-
ferent languages: first from an Arabic morphological analyzer [6]. In this approach, text is
broken down into each of the hundreds and thousands of possible lexical labels, which
represent their constituent elements including lemma ID and part-of-speech. Features are
computed for each lexical token based on their local and document-level context. Based
on these features the support vector machines classifier is implemented to do the classi-
fication. The second method was from a compound word splitting approach for German
[7]. This approach introduced methods to learn splitting rules from monolingual and
parallel corpora. These rules were then evaluated against a gold standard [7].

3 Our Approach

3.1 Outline

As show in the Fig. 1 the first step is to get all possible lexical units of a single word
and annotate each lexical unit with part of speech tags. In some cases one lexical unit

16 T. Mokanarangan et al.

can have more than one part of speech tag. For example (ōṭu) can mean ‘Roof’ and
‘Run’. Morphological rules of Tamil can also affect the spelling of the root.

Consider the following example for the word (Transliteration - ōṭināṉ,
Translation – ran) (Table 1).

In the next step, the annotated lexical labels along with other features were fed into
the SVM classifier. The SVM then predicts the best candidate for a certain word. The
reason to choose SVM over other available options such as multilayer perceptron and
boosted is the best trade-off SVM provided between accuracy and training time. This is
explained in detail below in Sect. 4.

3.2 Data Sources

To generate all possible candidates, annotate with PoS labels for each lexical label, and
to get the total frequency of each word, we used two sources: a lexicon corpus along
with PoS annotations, and a list of high frequency words along with the frequency
score for each word.

Fig. 1. Outline of the morphological analyzer

Table 1. All possible combinations for the word (transliteration - ōṭināṉ, translation –
ran)

Tamil Morphological Analyzer Using Support Vector Machines 17

3.2.1 Annotated Tamil Lexicon Corpus
Annotated Tamil lexicon corpus was obtained from an online Tamil lexicon created by
University of Madras [10]. Initially this corpus had 16 different types of lexical labels
but eventually we reduced to 5 types: verb, noun, adjective, adverb and other. The
purpose of this reduction is to limit the possibilities of combinations of lexical labels
and hence reducing the amount of training data. Table 2 illustrates a sample of how
words and tags are stored.

3.2.2 High Frequency Words List
The high frequency word list was built using the usage data obtained by crawling Tamil
Wikipedia and other Tamil news websites. Each entry in this list has the word and the
word count. Here the word count was used to calculate the frequency score.

3.3 Morphological Engine

Morphological Engine is the vital part in the system. Encompassing all the grammar
rules regarding morphological construction, this engine generates all possible candi-
dates along with their lexical labels. Some of the rules in morphological engine are
shown in Fig. 2.

As illustrated in the diagram. The word (Transliteration: Kiliyai, Trans-
lation: ‘the parrot’) can be deconstructed under two grammar rules:

Grammar rule 1: (Transliteration – “Uyir munn uyir
punarthal”, Translation: “Vowel on Vowel morphological construction”).

Grammar rule 2: (Transliteration – “Iyalpu punarchi”, Transla-
tion: “Natural morphological construction”).

Based on the last letter of the first word and the first letter of the second word the
grammar rules define the morphological construction. To ensure that all grammar rules
and all types of morphological deconstruction is covered, two Tamil grammar books
[9, 10] were followed to obtain 14 rules. Using these rules all the candidate are

Table 2. Lexicon words with tag

Word Tag
n

n

v

18 T. Mokanarangan et al.

generated and then lexical labels. To get all the approaches a finite state machine that
uses brute force approach to get all possible combinations was implemented.

The word given in the diagram is relatively easy to deconstruct, now consider a com-
plicated word: (Transliteration – Oodichchendran, Meaning – ‘He ran’).

All candidates possible for this is:

3.4 Classifier

3.4.1 Features Set

Frequency Based Scores

This frequency based approach was proposed by Koehn and Knight [8] to split com-
pound words in German. The more frequent a word occurring in a training corpus, the
bigger the statistical basis to estimate translation probabilities, and the more likely the
correct translation probability distribution is learned. This insight leads to define a
splitting metric based on word frequency [8].

Given the count of words in the corpus, the split S with the highest geometric mean
of word frequencies of its parts pi (n being the number of parts) is selected. Here
count pið Þ is frequency count the word pi obtained from the high frequency words list.

argmaxsð
Y

pi2S
countðpiÞÞ

1
n

Consider the following example:

Fig. 2. Grammar rules and morphological deconstruction

Tamil Morphological Analyzer Using Support Vector Machines 19

Lexical Labels

Other important feature set is the lexical labels generated by the morphological engine.
The morphology engine has been developed for the particular case of Tamil and the
particular set of lexical labels. This tagging order gives more priority to more com-
monly occurring patterns and indirectly covers more subtle grammar patterns in Tamil.

Suffix ()

Tamil is a morphologically rich language with many morphemes pinned to each word.
But in many cases, certain morphemes do not appear as suffixes for certain type of
words. For example ‘ ’ suffix is not present in a verb. In retrospect, the model was fed
with the final suffix of a word as a feature to the system to differentiate verbs, adjective,
adverbs and noun stem based words.

Average Length

This is a new feature that has not been tried in any previous approaches. When the
model was tried on with only the above mentioned features, it was found that for some
compound noun cases, the morphological deconstruction was going a step further.

Therefore, to eliminate this issue, we introduced a threshold feature called average
length. It is obtained by calculating the average length of the lexical parts in the
candidate. This feature was found out based on the factor analysis carried out on the
training data.

3.5 Training Data

Over 70,000 words were manually labelled and used as training data. Correct mor-
phological disambiguation candidate was labelled as ‘Yes’ while mismatches were
labelled as ‘No’.

20 T. Mokanarangan et al.

3.6 Prediction

Using the training data, a probabilistic model was built using the SVM classifier. The
candidates are then classified using the classifier and the one with highest probability of
classified as ‘Yes’ is selected. This probabilistic model not only provides us with the
best candidate but also if there is ambiguity the top candidates are displayed. This
feature can come in handy while implementing a Part of Speech tagger for Tamil.

4 Evaluation Results

Upon generating all the candidates, the next step is to feed the data into the classifier to
select the best suitable candidate. We selected SVM because of the best trade-off
between accuracy and time taken to build the model. Table 3 illustrates the comparison
of accuracies between various classifiers.

Table 4 illustrates the difference in accuracy by using average length and not using
average length as features.

Table 5 illustrates the difference in accuracy by using average length and not using
frequency scores as features.

Tables 6 and 7 show the results obtained from 10-Fold cross validation test for over
30,000 words. Table 6 illustrates the overall accuracy of the system while Table 7
illustrates the detailed accuracy by class.

Table 3. Comparisons of accuracy between various classifiers

Multilayer
perceptron

Boosted decision
tree

Support vector
machine

Correctly classified
instances

91.236 % 85 % 98.73 %

Table 4. Accuracy difference between with and without using average length

Accuracy without using average length 92.83 %
Accuracy using average length 98.73 %

Table 5. Accuracy difference between with and without using frequency scores

Accuracy without using frequency scores 47.36 %
Accuracy using frequency scores 98.73 %

Tamil Morphological Analyzer Using Support Vector Machines 21

5 Conclusion and Future Work

We presented a morphological engine for Tamil that uses grammar rules and an
annotated corpus to get all possible candidates. A support vector machines classifier
was employed to determine the most probable morphological deconstruction for a
given word. Lexical labels, respective frequency scores, average length and suffixes are
used as features. The accuracy of our system is 98.73 %, which is more than the same
reported by other similar research.

Tamil is a morphologically rich language. Computationally, each root word of can
take a few thousand inflected word-forms, out of which only a few hundred will exist in
a typical corpus. This morphological analyzer which uses a different approach from
previous approaches have proved to be effective.

Though the main intention of this approach is to tackle the ambiguity sometimes
this approach fails when encountering name entities. It tends to break into meaningless
morphological disambiguation. This is a pitfall that should be taken care of in the
further researches.

Since most Dravidian language share the same characteristics, hoping that this
approach can be used in other languages to get a highly accurate morphological ana-
lyzer. The analyzer not only outputs the construct the deconstructed morphology but
also the lexical labels.

As future work we intend to build on this approach and along with it build a PoS
tagger and Name Entity recognizer that uses the features extracted from morphological
analyzer. Once these goals have been achieved we eventually hope to build a successful
Tamil machine translator and eventually preserve an ancient endangered language.

Table 7. Detailed accuracy by class

TP rate FP rate Precision Recall F-measure Range of coverage area Class

0.89 0.01 0.888 0.899 0.89 0.99 Yes
0.99 0.10 0.994 0.993 0.99 0.99 No

Table 6. Stratified cross validation

Correctly classified instances 98.7376 %
Kappa statistic 0.8869
Mean absolute error 0.0265
Root mean squared error 0.1033
Relative absolute error 23.9067 %
Root relative squared error 43.8834 %

22 T. Mokanarangan et al.

References

1. Jayan, J.P., Rajeev, R., Rajendran, S.: Morphological analyzer and morphological generator
for Malayalam - Tamil machine translation. Int. J. Comput. Appl. (0975 – 8887) 13(8), 15–
18 (2011)

2. Au-kbc.org. Tamil Morphological Analyzer (2015)
3. Selvam, M., Natarajan, A.M.: Improvement of rule based morphological analysis and POS

tagging in Tamil language via projection and induction techniques. Int. J. Comput. 3(4),
357–367 (2009)

4. Anand Kumar, M., Dhanalakshmi, V., Soman, K.P., Rajendran, S.: A sequence labeling
approach to morphological analyzer for Tamil language. Int. J. Comput. Sci. Eng. 2(6),
1944–1951 (2010)

5. Parameshwari, K.: An implementation of APERTIUM morphological analyzer and
generator for Tamil. Probl. Parsing Indian Lang. 11, 41–44 (2011)

6. Akilan, R., Naganathan, E.R.: Morphological analyzer for classical Tamil texts: a rule-based
approach. Int. J. Innov. Sci. Eng. Technol. 1(5), 563–568 (2014)

7. Shah, R., Dhillon, P.S., Liberman, M., Foster, D., Maamouri, M., Ungar, L.: A new
approach to lexical disambiguation of Arabic text. In: Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Processing, Cambridge, Massachusetts,
pp. 725–735, 09–11 October 2010

8. Koehn, P., Knight, K.: Empirical methods for compound splitting. In: Proceedings of the
Tenth Conference on European Chapter of the Association for Computational Linguistics,
Budapest, Hungary, 12–17 April 2003

9. Nuhman, M.A.: , Revised edn, pp. 93–260.
Poobalasingam Publications, Sri Lanka (2010)

10. Naavalar, A.: , 10th edn, pp. 88–180. Poobalasingam Publications, Sri
Lanka (2008)

Tamil Morphological Analyzer Using Support Vector Machines 23

http://Au-kbc.org

http://www.springer.com/978-3-319-41753-0

	Tamil Morphological Analyzer Using Support Vector Machines
	Abstract
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Outline
	3.2 Data Sources
	3.2.1 Annotated Tamil Lexicon Corpus
	3.2.2 High Frequency Words List

	3.3 Morphological Engine
	3.4 Classifier
	3.4.1 Features Set
	Frequency Based Scores
	Lexical Labels
	Suffix ()
	Average Length

	3.5 Training Data
	3.6 Prediction

	4 Evaluation Results
	5 Conclusion and Future Work
	References

