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Darren Crowdy

Abstract The construction of novel Fourier/Mellin-type transform pairs that are
tailor-made for given planar regions within the special class of circular domains is
surveyed. Circular domains are those having boundary components that are either
circular arcs or straight lines. The new transform pairs generalize the classical Fourier
and Mellin transforms. These geometry-fitted transform pairs can be used to great
advantage in solving boundary value problems defined in these domains.
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1 Introduction

This article surveys some of the mathematical ideas laid out in the author’s plenary
lecture at 10th International ISAAC Meeting in Macau in 2015. The topic is the
construction of novel Fourier-Mellin type transform pairs that are “tailor-made” for
given planar domains within a special class.

The class of domains amenable to the construction—at the time of writing at
least—is the class of circular domains, either simply or multiply connected, having
boundary components made up of straight lines, arcs of circles, or a mixture of both.
Figure1 shows examples: a simply connected convex quadrilateral (a polygon), a
simply connected lens-shaped domain (a circular polygon), and the “disc-in-channel”
geometry (a doubly connected circular domain) that arises in many applications.

The author’s recent results in this area have been inspired by the extensive body
of mathematical work over the last few decades pioneered by A.S. Fokas and col-
laborators, and now commonly referred to as the Fokas method [11, 12]. That work
describes a unified transform approach to initial and boundary value problems for
both linear and nonlinear integrable partial differential equations. In one strand of
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38 D. Crowdy

Fig. 1 Example circular domains: a convex polygon, a lens-shaped circular-arc domain, and the
“disc-in-channel” geometry

this work a new constructive approach to the solution of boundary value problems
for Laplace’s equation in convex polygons has been described by Fokas and Kapaev
[10] with the extension to biharmonic fields made by Crowdy and Fokas [9]. That
work was based on an analytical formulation involving the spectral analysis of a
Lax pair and use of Riemann-Hilbert methods. The new approach outlined here—
and described in more detail in [2, 3]—has a more geometrical flavour and has led
the way to generalization of results previously pertaining only to simply connected
convex polygons to the much broader class of circular domains, including multiply
connected cases.

We first review the results described in [2, 3]. Given a bounded N -sided con-
vex polygon with straight line edges {Sn|n = 1, ..., N } inclined at angles {χn|n =
1, ..., N } to the positive real axis (e.g., the quadrilateral shown in Fig. 1)we can derive
the following transform pair to represent a function f (z) analytic in the polygon:

f (z) = 1

2π

N∑

j=1

∫

L
ρ j j (k)e

−iχ j eie
−iχ j kzdk, ρmn(k) =

∫

Sn

f (z′)e−ie−iχm kz′
dz′, (1)

where L is the ray along the positive real axis in the k-plane (see Fig. 2) and
where the spectral functions (or “transforms”) satisfy the so-called global relations
[2, 11, 12]

N∑

n=1

ρmn(k) = 0, k ∈ C, m = 1, ..., N . (2)

Only the diagonal elements of what we call the spectral matrix ρmn(k) appear in the
inverse transform formula for f (z).

In precise analogy, given a bounded convex N -sided circular polygon with edges
that are arcs of circles with centres {δn|n = 1, ..., N } and radii {qn|n = 1, ..., N }
(e.g., the lens-shaped domain of Fig. 1) we can derive the following transform pair
to represent a function f (z) analytic in it:
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f (z) = 1

2πi

N∑

j=1

{∫

L1

ρ j j (k)

1 − e2πik

[
z − δ j

q j

]k

dk +
∫

L2

ρ j j (k)

[
z − δ j

q j

]k

dk

+
∫

L3

ρ j j (k)e2πik

1 − e2πik

[
z − δ j

q j

]k

dk

}
,

ρmn(k) = 1

qm

∫

Cn

[
z′ − δm

qm

]−k−1

f (z′)dz′, (3)

where L1, L2 and L3 are the contours in the k-plane (see Fig. 2) andwhere the spectral
functions satisfy the global relations

N∑

n=1

ρmn(k) = 0, k ∈ −N, m = 1, ..., N . (4)

Again, only the diagonal elements of spectral matrix ρmn(k) appear in the inverse
transform formula for f (z).

The plan of the article is as follows. First, in Sects. 2 and 3, we discuss the geo-
metrical construction of the transform pairs (1) and (3). In Sect. 4 we combine those
general ideas to construct a useful Fourier-Mellin type transform pair for the dou-
bly connected disc-in-channel geometry of Fig. 1. Finally, Sect. 5 illustrates how the
transform pairs can be used in practice by solving an accessory parameter prob-
lem in conformal mapping theory and finding a useful conformal mapping function
associated with the disc-in-channel geometry of Fig. 1.

Fig. 2 The basic geometrical units in the z-plane, shown left, with the corresponding integration
contours in the k-plane shown to the right (0 < r < 1)
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2 Geometrical Approach to Transform Pairs

Suppose a point z′ lies on some finite length slit on the real axis and z is in the
upper-half plane (the left schematic of Fig. 3) then

0 < arg[z − z′] < π. (5)

It follows that ∫

L
eik(z−z′)dk =

[
eik(z−z′)

i(z − z′)

]∞

0

= 1

i(z′ − z)
(6)

or,
1

z′ − z
= i

∫

L
eik(z−z′)dk, 0 < arg[z − z′] < π. (7)

It is easy to check that the contribution from the upper limit of integration vanishes
for the particular choices of z′ and z to which we have restricted consideration.

On the other hand, suppose z′ lies on some other finite length slit making angle
χ with the positive real axis and suppose that z is in the slanted half plane shown
shaded in Fig. 3 (the half plane “to the left” of the slit as one follows its tangent with
uniform inclination angle χ). Now the transformation

z′ �→ e−iχ(z′ − α), z �→ e−iχ(z − α), (8)

for example, where the (unimportant) constant α is shown in Fig. 3, takes the slit to
the real axis, and z to the upper-half plane, and

0 < arg[e−iχ(z − α) − e−iχ(z′ − α)] < π. (9)

Fig. 3 Geometrical positioning of z and z′ for the validity of (6) and (11)
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Hence, on use of (7) with the substitutions (8), we can write

1

e−iχ(z′ − α) − e−iχ(z − α)
= i

∫

L
eik(e

−iχ(z−α)−e−iχ(z′−α))dk, (10)

or, on cancellation of α and rearrangement,

1

z′ − z
= i

∫

L
eie

−iχk(z−z′)e−iχdk. (11)

Now consider a bounded convex polygon P with N sides {Sj | j = 1, . . . , N }.
Figure4 shows an example with N = 3. For a function f (z) analytic in P , Cauchy’s
integral formula provides that for z ∈ P ,

f (z) = 1

2πi

∮

∂P

f (z′)dz′

z′ − z
(12)

or, on separating the boundary integral into a sum over the N sides,

f (z) = 1

2πi

N∑

j=1

∫

Sj

f (z′)
1

(z′ − z)
dz′. (13)

But if side Sj has inclination χ j then (11) can be used, with χ �→ χ j , to reexpress
the Cauchy kernel, that is 1/(z′ − z), uniformly for all z ∈ P and z′ on the respective
sides

Fig. 4 A convex polygon P as an intersection of N = 3 half planes with N angles {χ j | j = 1, 2, 3}.
Formula (11) can be used in the Cauchy integral formula with χ = χ j when z′ is on side S j (for
j = 1, 2, 3)
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f (z) = 1

2πi

N∑

j=1

∫

Sj

f (z′)
{
i
∫

L
eie

−iχ j k(z−z′)e−iχ j dk

}
dz′. (14)

On reversing the order of integration we can write

f (z) = 1

2π

N∑

j=1

∫

L
ρ j j (k)e

−iχ j eie
−iχ j kzdk, (15)

where, for integers m, n between 1 and N , we define the spectral matrix [2] to be

ρmn(k) ≡
∫

Sn

f (z′)e−ie−iχm kz′
dz′, (16)

and where L = [0,∞) is the fundamental contour [2] for straight line edges shown
in Fig. 2. We have then arrived at the transform pair (1).

The spectral matrix elements have their own analytical structure. Observe that,
for any k ∈ C, and for any m = 1, ..., N ,

N∑

n=1

ρmn(k) =
N∑

n=1

∫

Sn

f (z′)e−ie−iχm kz′
dz′ =

∫

∂P
f (z′)e−ie−iχm kz′

dz′ = 0, (17)

where we have used Cauchy’s theorem and the fact that f (z′)e−ie−iχm kz′
(for m =

1, ..., N ) is analytic inside P .

Special case: How does the traditional Fourier transform pair fit into this geometrical
view? Transform pairs for unbounded polygons, such as strips and semi-strips, can
be derived with minor modifications: the only difference is that the global relations
are now valid in restricted parts of the spectral k-plane where the spectral functions
are well defined. If P is the infinite strip −l < Im[z] < l then, geometrically, it is
the intersection of two half planes, so N = 2, with χ1 = 0 and χ2 = π. For any f (z)
analytic in this strip the transform representation derived above is

f (z) = 1

2π

∫

L
ρ11(k)e

ikzdk − 1

2π

∫

L
ρ22(k)e

−ikzdk, (18)

where the spectral functions are

ρ11(k) =
∫ ∞

−∞
f (z)e−ikzdz, ρ12(k) =

∫ −∞+il

∞+il
f (z)e−ikzdz, (19)

ρ21(k) =
∫ ∞

−∞
f (z)eikzdz ρ22(k) =

∫ −∞+il

+∞+il
f (z)eikzdz.
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The global relations in this case are

ρ11(k) + ρ12(k) = 0, ρ21(k) + ρ22(k) = 0, k ∈ R (20)

which, in contrast to the case of a bounded convex polygon (where the global relations
are valid for all k ∈ C), are only valid for k ∈ R. It is clear from their definitions that

ρ22(−k) = ρ12(k) (21)

implying, after a change of variable k �→ −k in the second integral of (18), that we
can write

f (z) = 1

2π

∫

L
ρ11(k)e

ikzdk + 1

2π

∫ −∞

0
ρ12(k)e

ikzdk. (22)

On use of the first global relation in (20) we can eliminate ρ12(k):

f (z) = 1

2π

∫

L
ρ11(k)e

ikzdk − 1

2π

∫ −∞

0
ρ11(k)e

ikzdk = 1

2π

∫ ∞

−∞
ρ11(k)e

ikzdk.

(23)
Dropping the (now unnecessary) subscripts on ρ11(k), we arrive at the well-known
Fourier transform pair

f (z) = 1

2π

∫ ∞

−∞
ρ(k)eikzdk, ρ(k) =

∫ ∞

−∞
f (z)e−ikzdz. (24)

In retrieving the classical Fourier transform in this way we see how our derivation
generalizes it to produce “geometry-fitted” transform pairs for any simply connected
convex polygon.

3 Transform Pairs for Circular Polygons

It is natural to ask if the construction extends to other domains beyond convex poly-
gons. The answer is in the affirmative, and the author [2] has recently shown how to
extend the construction to the much broader class of so-called circular domains, or
circular polygons, including multiply connected ones [3]. The simple convex poly-
gons just considered are a subset of this more general class.

A key step is to establish [2] the following formula valid for |z| < 1:

1

1 − z
=

∫

L1

1

1 − e2πik
zkdk +

∫

L2

zkdk +
∫

L3

e2πik

1 − e2πik
zkdk. (25)

This is the basic identity that replaces the result (7) in the construction of transform
pairs for circular polygons. The fundamental contour (for circular-arc edges [2]) is
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now made up of three components labelled L1, L2 and L3 and shown in Fig. 2. The
parameter r is arbitrary but must be chosen so that 0 < r < 1. In an appendix to [2]
the author shows how to derive (25) in a natural way from the results of the previous
section. We omit details here noting only that the appearance of the expressions zk

in (25) remind us of the classical Mellin transform.
Suppose, more generally, that z is a point inside some circle C j with centre

δ j ∈ C and radius q j ∈ R. Suppose too that z′ is a point on the circle C j . Then
|z − δ j | < |z′ − δ j | and, on use of (25), the Cauchy kernel for z′ on C j and z inside
C j has the spectral representation

1

z′ − z
= 1

(z′ − δ j ) − (z − δ j )

= 1

(z′ − δ j )

1

[1 − (z − δ j )/(z′ − δ j )]
=

∫

L1

1

1 − e2πik
(z − δ j )

k

(z′ − δ j )k+1
dk +

∫

L2

(z − δ j )
k

(z′ − δ j )k+1
dk

+
∫

L3

e2πik

1 − e2πik
(z − δ j )

k

(z′ − δ j )k+1
dk. (26)

It is important, especially for numerical implementations, to write this as

1

z′ − z
=

∫

L1

1

1 − e2πik
1

q j

(
z − δ j

q j

)k [
z′ − δ j

q j

]−k−1

dk

+
∫

L2

1

q j

(
z − δ j

q j

)k [
z′ − δ j

q j

]−k−1

dk

+
∫

L3

e2πik

1 − e2πik
1

q j

(
z − δ j

q j

)k [
z′ − δ j

q j

]−k−1

dk. (27)

Just as a convex N -sided polygon was interpreted geometrically as the intersection
of N half plane regions, a convex N -sided circular polygon can be viewed as the
intersection of N circular discs. Figure5 shows an example circular polygon D with
N = 3 bounded by circular arcs denoted by C1,C2 and C3. The Cauchy integral
formula for a function f (z) analytic in this region is

f (z) = 1

2πi

∮

∂D

f (z′)
z′ − z

dz′ = 1

2πi

N∑

j=1

∫

C j

f (z′)
z′ − z

dz′, (28)

where ∂D denotes the boundary of D and where, in the second equality, the integral
around ∂D has been separated into the N separate integrals around the individual
circular arcs {C j | j = 1, ..., N }.

Now for z ∈ D we can substitute (27) into the Cauchy integral formula (28) when
z′ sits on each of the separate boundary arcs {C j | j = 1, ..., N } to find
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Fig. 5 A circular polygon D
with N = 3 sides denoted by
C1,C2 and C3

δ1

δ2

δ3

C1

C2

C3

q3

q2

q1 D

f (z) = 1

2πi

N∑

j=1

{∫

L1

ρ j j (k)

1 − e2πik

[
z − δ j

q j

]k

dk +
∫

L2

ρ j j (k)

[
z − δ j

q j

]k

dk

+
∫

L3

ρ j j (k)e2πik

1 − e2πik

[
z − δ j

q j

]k

dk

}
, (29)

where we have swapped the order of integration and introduced the N -by-N spectral
matrix

ρmn(k) ≡ 1

qm

∫

Cn

[
z′ − δm

qm

]−k−1

f (z′)dz′. (30)

Global relations for this system are

N∑

n=1

ρmn(k) = 0, k ∈ −N (31)

for anym = 1, 2, . . . , N . There are N such global relations but each is an equivalent
statement of the analyticity of f (z) in the domain D. In this way, we have constructed
the “tailor-made” transform pair (3) for a circular polygon.

4 Disc-in-Channel Geometry

The geometrical construction can be extended tomultiply connected circular domains
[3], and to domains whose boundaries are a combination of straight line and circular-
arc edges. An example geometry, important in applications [4, 5, 13, 15, 16], is the
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disc-in-channel geometry of Fig. 2. The transform representation of a function χ̂(z)
that is analytic and single-valued in such a domain can be shown [3] to be

χ̂(z) = 1

2π

∫ ∞

0
ρ11(k)e

ikzdk + 1

2π

∫ −∞

0
ρ33(k)e

ikzdk
︸ ︷︷ ︸

Fourier−type transform

− 1

2πi

{∫

L1

ρ22(k)

1 − e2πik
1

zk+1
dk +

∫

L2

ρ22(k)
1

zk+1
dk +

∫

L3

ρ22(k)e2πik

1 − e2πik
1

zk+1
dk

}

︸ ︷︷ ︸
Mellin−type transform

,

(32)

where the simultaneous appearance of both “Fourier-type” and “Mellin-type” con-
tributions naturally reflects the hybrid geometry of the domain (and motivates the
designation “Fourier-Mellin transforms” [2]). The elements of the spectral matrix
are defined as follows:

ρ11(k) =
∫ +∞−il

−∞−il
χ̂(z)e−ikzdz = ρ31(k) ρ22(k) = −

∮

|z|=1
χ̂(z)zkdz, (33)

and

ρ33(k) =
∫ −∞+il

∞+il
χ̂(z)e−ikzdz = ρ13(k), (34)

with

ρ21(k) =
∫ +∞−il

−∞−il
χ̂(z)zkdz, ρ23(k) =

∫ −∞+il

∞+il
χ̂(z)zkdz, (35)

and

ρ12(k) = ρ32(k) = −
∮

|z|=1
χ̂(z)e−ikzdz. (36)

The functions appearing in the spectral matrix satisfy the global relations

ρ11(k) + ρ12(k) + ρ13(k) = 0, k ∈ R,

ρ31(k) + ρ32(k) + ρ33(k) = 0, k ∈ R, (37)

which are equivalent, and

ρ21(k) + ρ22(k) + ρ23(k) = 0, k ∈ −N. (38)

As discussed in [3], the doubly connected nature of the domain means that both (37)
and (38) must be analysed to find the unknown spectral functions.
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5 Application to Conformal Mapping

Suppose an application demands the solution for a harmonic field satisfying some
boundary value problem in the disc-in-channel geometry of Fig. 1. If that boundary
value problem is conformally invariant one might think to make use of conformal
mapping. Even so, this is more easily said than done. The domain is doubly con-
nected so a suitable pre-image domain is some annulus ρ < |ζ| < 1 in a parametric
complex ζ-plane (see Fig. 6); the conformal modulus ρ must be found as part of the
construction of the conformal mapping. The domain is also a circular-arc domain
and the construction of conformal mappings from the unit disc, say, to simply con-
nected circular-arc domains is treated in standard texts [1, 14]. The extension of that
theory to doubly connected domains (relevant to this example) has been presented
more recently by Crowdy and Fokas [6], with the extension to arbitrary multiply
connected domains given by Crowdy, Fokas and Green [7]. A well-known difficulty
in all these conformal mapping constructions is solving for the accessory parameters
[1, 6, 7, 14]. In this example ρ is one such accessory parameter.

Wenowshowhow that accessoryparameter problemcanbe conveniently solved—
linearized, in fact—by the generalized Fourier-Mellin transform pairs derived earlier.
The main idea is to use the transformmethod to construct not the conformal mapping
z = z(ζ), say, from the annulus ρ < |ζ| < 1 to the given disc-in-channel geometry,
but its inverse, which we denote by ζ = ζ(z). Actually, the latter function is often
more useful in applications since if a conformally invariant boundary value problem
can be solved in the more convenient annulus geometry ρ < |ζ| < 1 then knowledge
of the transformation ζ = ζ(z) allows immediate solution of the boundary value
problem in the original disc-in-channel geometry.

To proceed with the construction we define the subsidiary function

χ(z) ≡ log ζ(z). (39)

Fig. 6 Conformal mapping problem: to construct the mapping ζ = ζ(z) from the disc-in-channel
geometry to the concentric annulus ρ < |ζ| < 1
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It is reasonable to assume, on grounds of symmetry, that ζ = 1 maps to the end of
the channel as x → ∞ and ζ = −1 maps to x → −∞. We can write

χ(z) = log tanh
(πz

4l

)
+ χ̂(z), (40)

where χ̂(z) → 0 as x → ±∞. The first term is just the logarithm of the conformal
mapping of the channel (without the circular hole) to a unit disc; the latter is eas-
ily derived using elementary considerations (e.g., the classical Schwarz-Christoffel
formula [1, 8]). Since the boundary conditions on χ(z) are

Re[χ(z)] =
{
0, on y = ±l,
log ρ, on |z| = 1,

(41)

then, on use of (40), the following boundary conditions on χ̂(z) pertain:

Re[χ̂(z)] =

⎧
⎪⎪⎨

⎪⎪⎩

log
∣∣∣coth

(πz

4l

)∣∣∣, on y = ±l,

log ρ + log
∣∣∣coth

(πz

4l

)∣∣∣, on |z| = 1.

(42)

Recall that ρ is not known in advance and must be found.
By the symmetries of the proposed mapping between regions we expect that if a

point ζ = eiθ on the upper-half unit circle corresponds to z = x + il then the point
ζ will correspond to z = x − il. This means that, for each x ,

χ(x + il) = log ζ = iθ = −χ(x − il), (43)

implying the relation
χ(z + 2il) = −χ(z). (44)

Since the first term in (40) also satisfies this identity then we infer

χ̂(z + 2il) = −χ̂(z). (45)

It follows that

χ̂ =
{−G(x), on y = l,
G(x), on y = −l,

(46)

for some (purely imaginary) function G(x). On |z| = 1 we will write

χ̂(z) = r(z) + iH(z) (47)
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where

r(z) = log ρ + log
∣∣∣coth

(πz

4l

)∣∣∣ , H(z) = a0 +
∑

m≥1

amz
m + am

zm
, (48)

and where the coefficients a0 ∈ R, {am ∈ C|m ≥ 1} are to be found. We also expect,
on grounds of symmetry,

χ(z) = χ(z), on z = z (49)

implying that

r(z) − iH(z) = r(z) + iH(z), or H(z) = −H(z). (50)

This condition implies a0 = 0 and

an = ibn, (51)

for some real set {bn}. We will make use of these facts later.
The key observation is this: the function χ̂(z) is single-valued and analytic in the

fluid region D. It therefore has a transform representation of the form (32). To find
it, we must determine the unknown spectral functions. This can be done by analysis
of the global relations (37) and (38).

Now (37) and (38) give, respectively,

∫ ∞

−∞
G(x)e−ikx

[
e−kl + ekl

]
dx −

∮

|z|=1
e−ikzχ̂(z)dz = 0, k ∈ R, (52)

∫ ∞

−∞
G(x)

[
1

(x − il)n
+ 1

(x + il)n

]
dx −

∮

|z|=1
χ̂(z)

dz

zn
= 0, n ∈ N. (53)

Equation (52) implies that

2 cosh(kl)G(k) = B(k) + R1(k), (54)

where

G(k) ≡
∫ ∞

−∞
G(x)e−ikxdx (55)

and

B(k) ≡
∮

|z|=1
iH(z)e−ikzdz, R1(k) ≡

∮

|z|=1
r(z)e−ikzdz. (56)
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It follows that

G(k) = B(k) + R1(k)

2 cosh(kl)
(57)

and the inverse Fourier transform provides

G(x) = 1

2π

∫ ∞

−∞

[
B(k) + R1(k)

2 cosh(kl)

]
eikxdk. (58)

The second global relation (53) implies that, for n ∈ N,

∮

|z|=1

iH(z)

zn
dz + R2(n − 1) =

∫ ∞

−∞
G(x)

[
1

(x − il)n
+ 1

(x + il)n

]
dx, (59)

where we define

R2(n) ≡
∮

|z|=1

r(z)

zn+1
dz. (60)

It is easy to show that for n ≥ 1,

∮

|z|=1

iH(z)

zn
dz = −2πan−1. (61)

Equation (59) then implies that

an−1 = − 1

2π

∫ ∞

−∞
G(x)

[
1

(x − il)n
+ 1

(x + il)n

]
dx + R2(n − 1)

2π
. (62)

On substitution of (58) for G(x), we find

an−1 =
∫ ∞

−∞
J (k, n − 1)

[
B(k) + R1(k)

2 cosh(kl)

]
dk + R2(n − 1)

2π
, n ≥ 1, (63)

where we define

J (k, n) ≡ − 1

4π2

∫ ∞

−∞
eikx

[
1

(x − il)n+1
+ 1

(x + il)n+1

]
dx . (64)

Some residue calculus reveals that for n ≥ 1,

J (k, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ie−kl(ik)n

2πn! , k ≥ 0,

iekl(ik)n

2πn! , k < 0,

(65)
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and, for n = 0,

J (k, 0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− ie−kl

2π
, k > 0,

0, k = 0,

iekl

2π
, k < 0.

(66)

It follows that, for n ≥ 1,

an−1 =
∫ ∞

−∞
J (k, n − 1)B(k)

2 cosh(kl)
dk +

∫ ∞

−∞
J (k, n − 1)R1(k)

2 cosh(kl)
dk + R2(n − 1)

2π
. (67)

But

B(k) =
∮

|z|=1
e−ikz iH(z)dz =

∮

|z|=1
ie−ikz

[
a0 +

∑

m≥1

amz
m + am

zm

]
dz

= −2π
∑

m≥1

am(−ik)m−1

(m − 1)! . (68)

Hence
an−1 +

∑

m≥1

An−1,mam = En−1, n ≥ 1, (69)

where

An,m = π

∫ ∞

−∞
J (k, n)(−ik)m−1

(m − 1)! cosh(kl)dk,

En =
∫ ∞

−∞
J (k, n)R1(k)

2 cosh(kl)
dk + R2(n)

2π
. (70)

Finally, on use of (51), system (69) becomes the system of real equations

∑

m≥1

A0mbm = iE0, (71)

bn −
∑

m≥1

Anmbm = −iEn, n ≥ 1. (72)

It can be checked easily that E0 is the only quantity that depends on the unknown
log ρ. We can therefore solve (72) for the set of coefficients {bn|n ≥ 1} and then
use (71) a posteriori to determine log ρ. With the coefficients determined from this
simple linear system all the spectral functions needed in the representation (32) of
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the required function χ̂(z) can be found. The required inverse conformal mapping
ζ(z) then follows.

The construction above was originally presented in an appendix to [5] where it
was used as a check on a solution given there.

6 Summary

It is hoped that this article provides a useful overview of recent developments con-
cerning these “geometry-fitted” Fourier-Mellin transform pairs, and how to make
constructive use of them. The author has recently employed the new transform pairs
described here in a number of different applications [2–5] with much earlier work
on solving various PDEs in convex polygons carried out by other authors [11, 12].
We believe that the full scope and implications of the method for applications, and
its various extensions, have yet to be explored.
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