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Abstract. Neural networks and fuzzy logic have proven to be efficient
when applied individually to a variety of domain-specific problems, but
their precision is enhanced when hybridized. This contribution presents
a combined framework for improving the accuracy of prosodic models. It
adopts the Adaptive Neuro-fuzzy Inference System (ANFIS), to offer self-
tuned cognitive-learning capabilities, suitable for predicting the impre-
cise nature of speech prosody. After initializing the Fuzzy Inference Sys-
tem (FIS) structure, an Ibibio (ISO 693-3: nic; Ethnologue: IBB) speech
dataset was trained using the gradient descent and non-negative least
squares estimator (LSE) to demonstrate the feasibility of the proposed
model. The model was then validated using synthesized speech corpus
dataset of fundamental frequency (F0) values of ibibio tones, captured at
various contour positions (initial, mid, final) within the courpus. Results
obtained showed an insignificant difference between the predicted output
and the check dataset with a checking error of 0.0412, and validates our
claim that the proposed model is satisfactory and suitable for improving
prosody prediction of synthetic speech.

Keywords: ANFIS - Prosody - Speech synthesis - Under-resourced
language

1 Introduction

The formulation of prosodic structures (phrase breaks, pitch accents, phrase
accents and boundary tones) of utterances remains a major challenge in Text-To-
Speech (TTS) synthesis. Hence, the prediction of these elements largely depends
on the accuracy and quality of error-prone linguistic procedures such as part
of speech tagging, syntax and morphology analysis [1]. In tone languages, tones
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(characterized by the variation of speech within syllable) are lexically impor-
tant as key determinants to speech fluency and therefore constitute the most
significant prosodic features in speech synthesis of tone languages [2,3].

The quality and acceptability of synthetic speech is determined by the
prosodic well-formedness of the utterances [4]. Well-formedness is a product
of various constraints and is classified into four categories namely, metrical,
morpho-syntactic, semantic-pragmatic, and alignment. An utterance is prosod-
ically well-formed if the rules that associates the segmental and prosodic tiers
are consistent with those governing the formation of prosodic patterns in that
language. Thus, a more comprehensive approach is required to account for the
constraint hierarchy and effect at the various levels where linguistic and paralin-
guistic units are processed. This explains why some of the basic principles are
violated. Optimality Theory [5] appears to offer some promising solutions in this
area, but it is not clear how such a theory is applied in today’s TTS synthesis.

The emergence of soft computing (SC) has offered attractive solutions for
modelling highly nonlinear or partially defined complex systems and processes.
SC techniques are known to cover two major optimization concepts: approxi-
mate reasoning and function approximation. Prominent SC techniques include
evolutionary computing, fuzzy logic, neural networks and Bayesian statistics. To
further improve the quality of synthesized speech, the fuzzy Logic (FL) tech-
nique in [6] is combined with the neural network (NN) technique, to obtain an
Adaptive Neuro-fuzzy Inference System (ANFIS). The resulting system is then
used to train and predict the accuracy of the prosodic features data - mainly the
fundamental frequency (F0) of Ibibio tones (i.e., High - H, Low - L, Downstepped
-D, Rising - LH, and Falling - HL), extracted at various contour positions (high,
mid and low) from original (recorded) and synthesized speech corpora.

2 Tone and Prosody Prediction

One major aspect in T'TS synthesis is the successful prediction of tonal events [7],
and most predictive models require data labeled with intermediate representa-
tions such as Tone Boundary Index (TOBI) symbols. However, this approach
is difficult, expensive and error prone [2]. In [8], sentence logarithmic FO con-
tour is represented as a superposition of tone features on phrase components
as in the case of a generation process model - FO model. The tone components
were realized by concatenating their fragments at the tone nuclei predicted by
a corpus-based method, while the phrase components were generated by rules
under the FO model framework. Beyond differences in FO height and contours,
tonal contrasts are often accompanied by systematic variations in duration and
phonation [9]. A variety of techniques have been explored to improve prosody
in tone language synthesis. Hence, with a larger speech corpus from a target
speaker, a concatenative approach with unit selection of the FO contour offers
good performance [10,11]. But, this approach greatly suffers for under-resourced
languages, given the limited amount of available speech corpus. HMM-based
approaches have provided solution to the data sparseness problem experienced
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by unit selection systems, and can be exploited to efficiently estimate relatively
shallow features close to the text itself. In [2], these features are applied directly
as contexts without attempting explicit prediction of intermediate representa-
tions. In [4], we arrived at a generic HMM sequence that describes the contextual
dependency of the features with prosodic factors defined for tone language syn-
thesis, as,
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where, 00 tone(i,n)e{1,2,...n}> represents a vector of current tones of the

intended language; 6 ,,.05(i,n), i8S a vector of current prosody of the language;
tonepat(i,n) € {(1,1),(1,2),...,(i,n)}, describes the tone patterns defined by
the tone pair iteration; t(i, n), t(i,n+1); C(i,n) € {0,1,2,...,C,C+1}, describes
the co-articulation (effect of sound interaction) at inter-syllable locations
f
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between the current syllable, n, and the next syllable, n + 1; 6

—
and 0 g(i,n)vtmemt(m), are the forward and backward transitions of the tone
patterns, respectively, with its implied co-articulation. Eq. 1 is most suitable for
modelling the state features of a HMM-based tone language synthesis system

and is currently being investigated for completeness.

2.1 Predicting and Evaluating Prosodic Features

Once a prosodic model has been obtained for a system, the prosodic variation
with its accompanying prediction scheme from input text can be determined.
Early TTS systems relied on hand-crafted rules that predict prosody assign-
ment based on simple part-of-speech (PoS) features or more elaborate syntactic
parsing. The major drawback of this approach is extension and maintenance
difficulties. Mostly, new rules for prosodic assignments are trailed by unforeseen
and undesirable consequences. Corpus-based techniques - the use of relatively
huge speech database have since rescued hand-crafted rule systems. They rep-
resent annotations of prosodic features and are used as training materials for
machine learning algorithms, where decision procedures are derived from auto-
mated textual analysis. The automatically derived decisions appear to be limited
by the amount of hand-labelled data available for training; but the provision of
correct examples in the training corpus must sufficiently outweigh the data that
could yield undesirable prediction, else, errors may easily go unnoticed. The chal-
lenges here extend beyond those involved in the derivation of prosodic patterning
from grammatical information, since general text additionally requires seman-
tic/pragmatic background information on emphasis and contrast, for instance.
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But, with some degree of explicit control over prosodic variation, the natural-
ness of TTS systems could be improved. This control may be accomplished
by providing precise user-specific markup capabilities. Evaluating TTS systems
in general is extremely challenging. Today, most synthesis systems are of very
high quality. Although subjective judgment ratings are mostly used to evalu-
ate prosodic assignments, this subject (prosody assignment) remains a major
research question.

3 Owur Approach

3.1 The ANFIS Architecture

A block diagram showing the ANFIS process flow is presented in Fig.1, with
the fuzzifier, defuzzifier, rule base and fuzzy inference system as components.
Fuzzifier converts the crisp inputs into linguistic variables (low, mid and high)
using membership functions while, defuzzfier performs a scale mapping, and con-
verts the range of values of output variables into the corresponding universes of
discourse (UoD), thus finally producing a crisp output from an inferred fuzzy
control action. The rule base consists of a number of fuzzy IF-THEN rules that
guides the inference engine in its reasoning. The fuzzy inference engine forms
the kernel of ANFIS. It has the capability of simulating human decision-making
processes based on fuzzy concepts, and inferring fuzzy control actions by employ-
ing fuzzy implication with the rules of inference in the fuzzy rule base. The most
common types of fuzzy inference methods are Mamdani and Sugeno methods
[12]. The difference between these two methods lies in the consequent parame-
ter of the fuzzy rules. This paper adopts the Mamdani inference mechanism for
the evaluation and extraction of rules and production of the fuzzy output. The
reason for using Mamdani is that it is intuitive and has widespread acceptance.
In addition, it is well suited to human input. The ANFIS inference engine is a
five layered architecture [13], and the rule base consists of rules of the form:

IF (z;is A} ) and (y; is A} ) THEN zis C} (2)

where, r is the rule-number, x and y are input variables, z is the output vari-
able. A}, are the linguistic terms, characterized by the appropriate membership

Fuzzy rule base

4”)“‘ i ] l arni Output
Fuzzifier |(_|Fuzzy inference/learnin, Defuzzifier
mechanism ? |———>

Membership Functions

Fig. 1. A generic ANFIS Block diagram
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function, 4, . ANFIS uses a combination of gradient descent and least square
estimator (LSE) depending on the application, with two sets of parameters: a set
of premise and a set of consequent parameters. The process of parameter update
is achieved using a forward and backward pass learning algorithm. The forward
pass (FP) learning computes the neuron outputs, layer after layer, and identi-
fies the consequent parameters by the LSE, leading to the final (single) output.
The backward pass (BP) propagates error signals and updates the antecedent
parameters according to a chain rule. Each layer of ANFIS consists of nodes
described by the node function.

Layer 1 is the input fuzzification layer, where each node in this layer generates
fuzzy membership grades for the inputs, and is given by:

O =pa,(z;) i=1,2,....n
Ofl:/LA](y]) ]:1a27an (3)
OkZ/,LAk(Lk) k:1,2,...,n

The general form of the triangular MF is defined as [13]:

1 if z=0b
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0 if e=2x

or

T—a c—x
= max | min , ,0 5
pa ( (b —a c— b) ) (5)
where, a and ¢, are parameters governing triangular MF; b is the value for which
pw(z) =1, and is given as, b = 4=,
Layer 2, is the rule evaluation node, and uses either the disjunction or con-

junction operator (AND or OR) to determine the firing strengths. This is eval-
uated using the max (Eq. (6)) or min (Eq. (7)) operator, respectively:

paB(x) = max pa(z), pp(e) (6)

jaB(@) = min pa (@), 15 (x) (7)
The firing strengths, O%, are the products of the corresponding membership

degrees obtained from layer 1, and is given as:

O} = w; = pa, (x:)ps, ;) kp, (Li) (8)

Layer 3 is the normalization layer and computes the ratio of each rule firing
strength to the sum of all rules firing strength. The output, w;, is defined in
Eq. (9). The defuzzification layer (layer 4), consists of consequent nodes for calcu-
lating the contribution of each rule to the overall output and is given in Eq. (10).
The overall output of the ANFIS model is finally obtained by summing (aggre-
gating) all incoming signals, by layer 5. In this paper, the centroid method as
depicted in Eq. (11) is used for this purpose.
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3.2 Neuro-fuzzy System Model

A hybridized approach (a fusion of least-square and back propagation gradi-
ent descent methods) [14], is adopted in this paper for training and validat-
ing the input dataset. This approach consists of forward and backward passes.
In the forward pass, each node’s output proceeds until the fourth layer when
the consequent parameters are identified by the least squares method. During
the backward pass, the premise parameters are updated by gradient descent as
the error signal re-propagates backwards. In Fig. 2, the proposed ANFIS-based
model architecture is presented, illustrating the contribution of inputs to the
various rules. The inputs are crisp (non-fuzzy) numbers limited to a specific
range.

Output

Predicted Tone
Value (FO range)

Input
Layer

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Fig. 2. Proposed ANFIS model

All the rules (a set of IF-THEN statements) are evaluated in parallel - from
a set of decomposed linguistic terms (or membership functions) describing the
various tones of the language, using fuzzy reasoning. The results of the rules
are finally merged and distilled (defuzzified) using the membership functions.
The membership functions are used to map the non-fuzzy input values to fuzzy
linguistic terms and vice versa. They are used to quantify the membership terms,
which mappings finally yield a crisp (non-fuzzy) output (number). Five linguistic
variables were identified as input to the fuzzy inference system (FIS). These
variables enumerate the tones (including the phonemic variations) of Ibibio,
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FIS_TONE

(Engine)

Predict

Fig. 3. FIS tone system

ie,, L, H, D, R, F tones. Figure 3 shows a MatLab interface implementing the
FIS component of the ANFIS model.

Input Membership Functions: Three linguistic terms were defined over the Uni-
verse of Discourse (UoD) for each input variable. The linguistic terms are FO
values extracted from the speech contour described by: FO0(t) = {initial, mid,
final}, where, t denotes the linguistic variables.

Egs. (12), (13), (14), (15) and (16) describe the membership functions of the
respective linguistic variables. They represent experimental values annotated
using the Praat annotation software:

80 < F0 <150, initial
pr(FO) =< 100 < FO < 140, mid (12)
55 < F0 <90, final

90 < F0 < 170,  initial
pg(FO) =< 145 < FO < 190,  mid (13)
80 < FO <120,  final

140 < FO < 190,  initial
pp(F0) ={ 120 < FO <150,  mid (14)
80 < FO <130,  final

135 < FO < 180, initial
pr(F0)={ 120 < FO <170,  mid (15)
80 < FO <130,  final

100 < F0 < 150, initial
ur(F0) =< 115 < F0 < 160, mid (16)
80 < F0 <130, final

Output Membership Function: The output membership function was defined
by assignment, following a careful analysis and observation of the speech data
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by domain experts. The output membership function is viewed as a continuum
with each output element spreading across a spectrum area (selection) of the
continuum.

ANFIS Engine: As earlier mentioned, the Mamdani-type fuzzy inference mech-
anism is used to formulate the mapping from a given input to an output using
fuzzy logic. This mapping provides the basis on which decisions could be made or
patterns discerned. The inference process includes the following: block building,
structuring, firing, implication and aggregation of rules. The number of rules is
determined by the complexity of the associated fuzzy system. Though we have
established 3°=243 rules for evaluating the tone contour patterns of the speech
corpus, not all the rules fired. Snippets of the extracted FO data used for train-
ing the ANFIS system and coded representations (1-initial, 2-mid,3-final) for
building the respective rules, are shown in Tables 1 and 2, respectively.

Table 1. FOs of Ibibio tones, randomly selected for training

S/no | FO (L) FO (H) Fo (DH) FO (LH) FO (HL) | Predict
1 104 124 154 146 127 1
2 128 81 | 115 169 108 2
3103|141 98 165 101 2
4 136 175|128 168 112 2
5 140 180 | 172 174 83 1
6 130 | 156 80 151 127 2
7112 160 | 117 179 138 2
8 1105 146 | 156 146 144 1
9 122 94 | 147 175 119 2
241 101 119 120 122 141 2
242 | 95 160 | 129 137 123 2
243 (110 117 121 127 113

Details of the interface implementation of the fuzzy membership functions,
rules and consequences can be found in [6].

Different implication operators fit different aggregation operators (e.g. union
and intersection). Whereas the union operator uses the Mamdani and Larsen
operators, the intersection uses the Lukasiewicz operator [15]. The Mamdani
operator is applied in this paper. After inference, the overall result is a fuzzy
value and should be defuzzified to obtain a final crisp output. There are differ-
ent algorithms for defuzzification namely, Centre of Gravity (CoG) or Centroid
Average (CA), Maximum Centre Average (MCA), Mean of Maximum (MoM),
Smallest of Maximum (SoM) and Largest of Maximum (LoM). As earlier men-
tioned, the CoG algorithm (Centroid) as defined in Eq. (11) is used in this paper.
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Table 2. Coded representation of Table 1 used for building the rules

Rule | FO (L) | FO (H) | F0 (DH) | F0 (LH) | FO (HL) | Predict
11 1 1 1 1 1
2 |2 3 3 1 3 2
3 12 1 3 1 3 2
4 |2 2 2 1 3 2
5 |2 2 1 1 3 1
6 |2 2 3 1 2 2
7|2 2 3 1 1 2
8 |2 1 1 1 1 1
9 |2 3 2 1 2 2
241 |1 3 2 2 1 2
242 |1 2

243 |1

4 Experiment and Results

4.1 FL Model Validation

To validate the feasibility of the proposed ANFIS model, we annotated and
extracted, using Praat - a speech processing and annotation software, FO val-
ues of Ibibio tones at various contour positions (initial, mid and final) from
both recorded and synthesised speech corpus. Figure4 shows a sample annota-
tion of a synthesised Ibibio speech. The sample size used for this experiment
were long utterances containing the various tones of the language selected from
a set of 1140 sentences used for HMM-based Ibibio synthesis experiment [16].
An objective evaluation of the annotations revealed that falling (F) tones were
wrongly perceived as either downstepped (D) or high (H) tones, mostly on the o
(O — SAMPA equivalent) sound, which indicated a possibility of phoneme/tone
confusion. The evaluation of phoneme and tone confusions for synthesised voices
used for this experiment has been investigated in [17]. Using the extracted para-
meters, the degree of certainty (crisp output) of the FIS was simulated for the
purpose of comparing the original and synthesised annotations. Tables 3 and 4
present the input (average F0) values at different contour positions for the var-
ious tones of Ibibio, and the simulated crisp output for original and synthesized
voices, respectively. We observed from these tables that the degree of certainty of
the original speech was higher, compared to the synthesised speech. This result
implies that tone patterns of the original voices are well predicted by the FL
system.

Generally, predictions at the final positions in both cases were poor. The rea-
son for this may not be unconnected with the fact that rising (R) and falling (F)
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Fig. 4. Sample annotation of a synthesised male speaker

Table 3. Input FOs and crisp output for original male speaker

S/N | Position Input (average FO) | Crisp output
L H |[D |[R |F
Initial 98 | 130|165 | 158 | 125 | 0.693
Mid 120 | 168 | 135 | 145 | 138 | 0.664
Final 781100 | 105|100 | 105 | 0.301

Table 4. Input F0s and crisp output for synthesised male speaker

S/N | Position Input (average FO) | Crisp output
L H |[D |[R |F
Initial | 186|192 |144|115|150 | 0.500
Mid 112146 | 139 | 121|126 | 0.647
Final 85| 98| 87| 88| 97 |0.250

Lusnana F

Sample point

Fig. 5. Graph showing implication and aggregation of prosody rules
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tones most rarely occur at the final positions in a well-formed Ibibio utter-
ance/sentence. Also, the resultant FO averages used for the prediction at these
positions were gathered from a range of (tone) values appearing few distances
away from the end of the sentence(s). Figure 5 shows plots of rules predictions
at the various contour positions for the original and synthesized voices. In Fig. 5,
we observe that for original voices, most of the tone rules at the initial and mid
positions fired with average FO predictions of 0.683 and 0.693, respectively; while
tone rules at the final position experienced poor firing - i.e. gave a low average FO
prediction of 0.542. For synthesized voices, most tone rules at the mid position
fired, compared to rules at the initial and final positions, which yielded poor
predictions of 0.07 and 0.498, respectively. The FIS results therefore call for an
investigation into the poor synthesis of tones at the initial and final positions in
a given utterance. In the next section, we re-train the synthesis data using our
ANFIS model to improve on the current results.

4.2 Model Training and Checking

A simulated structure of the proposed ANFIS model, generated in MatLab is
presented in Fig. 6.

As shown in Fig.6, the proposed model is five layered, with five inputs,
each with 3 input membership terms. The rule base comprises 243 rules. The
properties of the ANFIS model are as listed in Table 5.

ANFIS model training was concluded at the 2nd epoch with training and
testing errors of 0.0545 and 2.276, respectively. The graph of the testing and
checking of the ANFIS model is presented in Fig. 7. In Fig. 7, the ANFIS output
is mapped against the checking dataset. We observed that there is an insignificant
difference between the predicted output (*) and the check dataset (+) with a
checking error of 0.0412. Hence the proposed solution is satisfactory and suitable
for improving prosody prediction of synthetic speech.

B Anfis Model Structure S8 % § k| Lol
input - Cartosnt output

Click on each node to see detailed information “ Update | Help

Fig. 6. Simulated ANFIS structure
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Table 5. Properties of ANFIS model for prosody prediction

S/No | Parameter Number
1 Nodes 524
2 Linear Parameters 1458
3 Nonlinear parameters 45
4 Training data pairs 170
6 Checking data pairs 37
7 Testing data pairs 37
8 Fuzzy rules 243

Checking data : + FIS output : *

3l 4 Akt + 4+ o+
5
S 204+ ++T h e B4+ R #
o

1t o+ 4 +

0 5 10 15 20 25 30 35 40

Fig. 7. Plots for checking and training data set

5 Conclusion and Future Work

The production of quality (natural and intelligible) synthetic speech depends, in
part, on the correctness of the language’s prosody. Prosody modelling is useful
for associating the variations of prosodic features with changes in structure,
meaning and context of spoken languages. These features to a great extent,
contribute to enhancing the perceived quality of speech. This paper has presented
an adaptive fuzzy Inference system for modelling the prosody of synthetic speech.
The proposed model is suitable for the precise prediction of FO contour patterns
in human and synthetic speech. In the future, we shall explore the use of genetic
algorithm in determining optimal parameters of the weights and structure of
the current approaches and investigate the effectiveness of the design, in a bid
to provide a more efficient solution to the prosody problem presented by tone
language systems.
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