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Abstract. Software design requires deployment of interdependent mod-
els conforming to different metamodels. This set of models is called a
multimodel, and it must satisfy a set of global constraints regulating
interaction of the multimodel components. A straightforward approach
to global consistency checking would require merging component meta-
models modulo their overlap, adding, perhaps, new global constraints to
this merge, merging component models modulo their overlap, and check-
ing the latter merge against the constraints in the former one. Being
a natural definition for global consistency, these steps can not be used
algorithmically because of two major practical drawbacks: they involve
costly (meta)model matching to specify overlaps, and require building
big and unfeasible merged metamodels and models.

The present paper makes two contributions. First, it presents a new
algorithm to check each global constraint individually, and as local as
possible, i.e., only using those (meta)model elements that affect the valid-
ity of the constraint. Second, it develops a mathematical foundation that
allows us to formally prove that this individual local consistency checking
is sound and complete w.r.t. the definition of global consistency.

1 Introduction

Modeling a complex system normally results in a multimodel, i.e., a set of het-
erogenous models each one conforming to its own metamodel. A fundamental
fact about multimodeling is that the merge of legal local models can result in
a model violating global constraints declared in the integrated metamodel. This
can be easily observed even for the simple homogeneous case, when all local
models, and hence their merge, are instances of the same metamodel. For exam-
ple, suppose that the metamodel of a domain says that persons in the domain
are uniquely identified by their names, i.e., attribute ‘name’ is a key to class
‘Person’. Then the merge of two perfectly legal local instances can violate the
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constraint, if there are different persons with the same name but they do not
appear in the same instance.

Heterogeneous multimodeling expands the issue of global consistency enor-
mously. For example, consider a metamodel M1 that extends the class Person
above with attribute ‘birthdate’, and a metamodel M2 that extends ‘Person’
with reference ‘drives’ to class ‘Car’ owning attribute ‘carType’. Suppose that
the domain is subject to the constraint that persons with age under 25 only drive
sporty cars. This global constraint cannot be declared in either of the metamod-
els (the first one knows nothing about cars, the second one does not know ages of
persons), yet checking its validity for a multimodel (A1, A2) with A1,2 being legal
instances of M1,2 is important. A more complex example is consistency between
a UML sequence diagram specifying collaborative behavior, and a statechart
specifying a state machine protocol for that behavior. An obvious consistency
requirement that traces specified by the sequence diagram should be allowed by
the statechart is again global and cannot be declared in either of the local meta-
models. Following [6], we call such requirements inter-metamodel constraints.

A straightforward approach to global consistency checking would require
merging component metamodels Mi modulo their overlap (class ‘Person’ with
attribute ‘name’ in the example above), adding, perhaps, new global constraints
to this merge (‘young persons drive sporty cars’), merging component models Ai

modulo their overlap, and checking the model merge A+ against the constraints
over the metamodel merge M+. In fact, this specification can be regarded as a
definition of global consistency of a multimodel [6]. However, using this definition
algorithmically as a specification of a workflow for global consistency checking
would be impractical because of (a) costly (meta)model matching needed to
specify the overlaps, and (b) necessity to build big and unfeasible merges of
metamodels and models. A more efficient approach proposed in [2,6] prescribes
to do matching, merging and checking not for entire component models but for
their projections to the respective metamodel overlaps, hence, the name local
consistency checking. It was a conjecture (not proven formally) that the local
approach is sound and complete w.r.t. (i.e., equivalent to) the above mentioned
definition of global consistency.

The present paper makes two essential contributions to the local approach.
The first is pushing the local checking idea even further up to its extreme: we
propose to check each global constraint C individually, and correspondingly
do matching and merging as minimally as required for checking C, i.e., only
using those (meta)model elements that affect the validity of C. Based on this
technique, we can control the granularity of consistency checking by combining
constraints into groups checked separately. (The two extremes are a multitude
of groups having one global constraint each, and one big group embracing all
global constraints.) Thus, while the original local approach of [6] reduces one
huge global consistency check to a set of several lesser but still significant checks
(with the correspondingly significant matches and merges), in this paper we
propose an approach with a set of small checks (based on respectively easy
matches and merges) in a size-controllable way. Correspondingly, we call the
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former local approach to consistency collective, while the latter one individual.
Besides reduced matching and merging workload, additional advantages of the
local-individual approach are (a) better tailored and stepwise model repairing
(in the per constraint fashion), and (b) possibilities to realize the living with
inconsistency paradigm [9], when non-urgent consistency repairs (together with
the respective matching and merging) can be postponed.

Our second contribution to local checking is an accurately defined mathemat-
ical framework that allows us to prove that individual consistency checking is
sound and complete w.r.t. the definition of global consistency, and is equivalent
to collective checking of [6]. Having specification (definition) and implementa-
tion (algorithms) separated is always useful as the former defines an optimization
space for the latter. In addition, although conditions for our equivalence results
are not too restrictive, they are not absolutely universal and (as we will show)
can be violated if the global constraint to be checked badly interacts with inter-
model correspondence specification involving queries against component models.

The paper is structured as follows: Constraint checking in general is contained
in Sects. 2.1 and 2.2. Multimodels are introduced in Sect. 2.3. Section 3 combines
these two topics: it explains how global constraint declarations are managed
and states the main theorem, which precisely formulates the above mentioned
equivalence. Section 4 is devoted to related work, Sect. 5 concludes.

2 Background

Metamodels are usually specified by UML class diagrams. The compact syntax
of the latter hides many details that need to be explicated and formalized to
allow our machinery to work. In this section, we show how it can be done in
the formal framework of typed graphs (e.g., [8]) and diagrammatic constraints.
The formalism of diagrammatic constraints, first developed under the cryptic
name of generalized sketches [3,5], and then promoted as the Diagram Predicate
Framework, DPF [18,19], is less known, and we present in Sect. 2.2 its basics in
the amount needed for our work in the paper to make it self-contained. Finally,
Sect. 2.3 introduces multimodels.

2.1 From Class Diagrams to Graphs, I: Typing

The left lower quadrant of Fig. 1 presents a fragment of a simplified metamodel
for UML class diagrams with several constraints declared. Three multiplicity
constraints are depicted in the usual UML style. They prescribe each operation
to have a name and belong to at most one class, and prohibit multiple inheri-
tance. A more complex OCL-constraint is specified in the top right corner of the
metamodel box and says that if there is no superclass, there should be at least
one interface implementation and vice versa (which shall guide the developers
to code their programs in a polymorphic style). The left upper quadrant shows
a class diagram (model) instantiating the metamodel. To use our machinery, we
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Fig. 1. UML model and metamodel represented as typed graph

need to translate the metamodel, the model, and the conformance relation into
formal objects.

The right half of the figure shows the first step of the translation. The
metamodel is presented by a pair M = (GM , CM ) with GM a type graph
and CM a set of four constraint declarations. Each of them consists of a con-
straint name given in square brackets, and the constraint scope shown by dashed
lines, i.e., set of elements over which the constraint is declared. The model
is a pair A = (GA, τA) with GA a data graph, and τA : GA → GM a typ-
ing mapping between graphs, which assigns types to every data element, e.g.
τA(Order) = Class, τA(op1) = Operation, τA(getCustomer) = String, as well
as τA(1: implmnts) = implmnts, τA(1: super) = super and so on. Model A is a
typed graph and we will also say that A is typed over M , and often write a: T (read
“element a is of type T”) if τ(a) = T . A standard formalization of the notion of
graphs and mappings between them is briefly described below. Constraints and
conformance of a model to constraints is specified in Sect. 2.2.

A (directed multi-)graph G = (VG, EG, s, t) consists of a set V of vertices (or
nodes), a set E of edges, and two functions s : E → V, t : E → V that assign
to each edge its source and target. Writing x ∈ G means that x is a node or
an edge of G. We depict graph vertices by ellipses (or circles) and edges by
arrows from their source to their target vertex, cf. Fig. 1, graphs GA and GM .
A graph mapping or morphism f : G → G′ is a pair of functions fV : V → V ′

and fE : E → E′ preserving the incidence between vertices and edges. Since the
definition of f on an edge e determines its values for e’s source and target, we
will often omit the latter from the mapping definition.

2.2 From Class Diagrams to Graphs, II: Diagrammatic Constraints

A key feature of constraints used in metamodeling is their diagrammatic nature:
the set of elements over which a constraint is declared is actually a diagram of
some shape specific for the constraint. For example, the shape of any multiplicity
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constraint is a single arrow, while the shape of the or-constraint is two arrows
with a common source, see Table 1.

Table 1. Sample constraints

Name Shape

[0..1] 1
12

2

[or] 1 0
0201

2

To declare a constraint over a metamodel
graph GM , we recognize the constraint shape
in the graph and visualize it as was shown in
Fig. 1. Formally, this recognition is a graph map-
ping δ : Sc → GM (called (shape) binding) from
the shape Sc of a constraint with name c to
graph GM . E.g. in Fig. 1, we have constraint [or]
declared by binding δ : S[or] → GM (S[or] is
shown in Table 1) with δ(01) = implmnts, δ(02) = super, i.e. δ(1) = Interface,
δ(0) = Class = δ(2). The set of elements in GM the shape is mapped to, is
called the image of the binding. In the example, the image of δ consists of ver-
tices Interface and Class, and edges implmnts and super.

Fig. 2. Three constraint declarations

The pair (c, δ) is a con-
straint declaration. The bind-
ings of all relevant constraints of
graph GM are shown in detail
in Fig. 2. Note the practicality
of the DPF framework: for the
[0..1]-declarations in GM we can
reuse shape S[0..1] in two differ-
ent bindings: one of them maps
edge 12 to edge super, the other
maps 12 to edge class. Thus, val-
idation logic is encapsulated and
can be reused for all constraint
declarations of type [0..1]. In the
sequel, we write a pair (c, δ) as
c@δ, meaning constraint c is imposed on metamodel GM at the image of
binding δ.

In order to check consistency of model A, i.e. typed graph A = (GA, τA),
against a fixed constraint declaration c@δ, we need to define c’s semantics irre-
spective of A. This is done by programming a function validatec(B:Model):
boolean which has input typed graph B = (GB , τB) where τB : GB → Sc, i.e.
B is a model typed over c’s shape only. For example, function validate[or]
acts on models typed over S[or] (cf. Table 1): it returns true for a model
X = (GX , τX : GX → S[or]), iff each element of type 0 in GX has an outgo-
ing edge to some element of type 1 or to some element of type 2.

So defined semantics is used in the check function:

check(A: Model, c@δ: Constraint): boolean



24 H. König and Z. Diskin

which, basically, performs three steps:

1. Restrict A to elements, whose types are in the image of δ in GM .
2. Retype elements of this new structure to formal typing over Sc. This yields

typed graph B = (GB , τB).
3. Return the result of validatec(B).

We say that A satisfies c@δ and write A |= c@δ, if check(A, c@δ)=true. Model
A is a legal model over metamodel M , if it satisfies all constraints declared in M .
For example, checking constraint declaration [or]@δ is shown in Fig. 3. The image
of δ is shown in the lower right part (elements not in the image are greyed out),
the restriction GA is in the top right quadrant, and B = (GB , τB : GB → S[or]) is
the corresponding retyping. As validate[or](B) = true, we conclude A |= [or]@δ.
Note the copy procedure during retyping: for each class-instance in the restriction
of GA, we have to create two vertices in GB , because we must incorporate their
two possible roles as subclass (source of edge super) and superclass (target of
edge super). This is a general procedure: each vertex or edge in GA has to be
represented n times in GB , if its type in GM has n preimages under δ. In this
way, we can consider elements in all possible occupied roles. This “role-based”
retyping procedure is actually carried out via the general mathematical pullback
construction [1,13].

Fig. 3. How function check works

2.3 Multimodeling

Modeling a complex system normally results in a multimodel, i.e., a set of het-
erogenous models each one conforming to its own metamodel. Besides class dia-
grams, other types of UML diagrams are produced, for instance sequence dia-
grams, statecharts, activity diagrams, etc. Even class diagrams may conform
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to different metamodels: Business analysts may use behavioural specifications
only [10] with no attributes or associations, M1 in Fig. 4, whereas for another
modeling team, class models are more technically oriented and associations and
attributes are used (M2). In all cases, the models collectively represent a single
system to be build, and any formal treatment has to consider overlaps, i.e. the
definitions of common terminology in different models. E.g., the (meta) concept
class occurs in both of the above-mentioned metamodels. Names of common con-
cepts, however, may differ: one team may use the term String, while the other
may use Text, yet speaking of the same concept.

Fig. 4. Multimodel and merge

In the binary case (two meta-
models M1 and M2), overlaps can
be specified by two graph map-

pings M1 M12
r1�� r2 �� M2

in which M12 contains all com-
mon concepts. Any pair x1 ∈ M1

and x2 ∈ M2 is declared to be the
same, if there is x ∈ M12 such
that r1(x) = x1 and r2(x) =
x2. We call this configuration of
metamodels and mappings a mul-
timetamodel M and write M =
(M1,M2,M12, r1, r2) or shorter
M = (r1, r2), if domain and
codomain of r1 and r2 are clear
from the context.

In the sequel, all (meta)models will be (typed) graphs, such that we simplify
notation by using letters M (metamodels) and A (models) with subscripts to
distinguish different graphs. A multimetamodel M is shown in Fig. 4: M1 was
already used in Sect. 2.1, Fig. 1. M2 is the above mentioned technical metamodel.
The overlap specification M12 declares Class together with its super-relation
to be the same and, since r1(Str Txt) = String and r2(Str Txt) = Text, it
declares sameness of String and Text (see the shaded vertices). The merge (union)
M+ of the two components of M is shown in the lower half of Fig. 4. We introduce
merges in Sect. 3.

3 Managing Global Constraints

In the present section we analyse global constraints, i.e., constraints that reside
in neither of the component metamodels alone, and thus involve elements from
several metamodels. Correspondingly, we use the name inter-metamodel con-
straints that accurately describes the case. In Sect. 3.1, we will state a definition
of global satisfaction against an inter-metamodel constraint. The definition treats
the binary case only, but the generalization for the N-ary case is straightfor-
ward. Models typed over different metamodels are said to be globally consistent
if they satisfy all imposed inter-metamodel constraints. We will argue that it is
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impractical to use this definition as an algorithm for global consistency checking.
Hence, in Sect. 3.2, we introduce another algorithm, in which global satisfiabil-
ity against an inter-metamodel constraint is checked locally, and illustrate its
advantages with a running example. Section 3.3 compares the global satisfaction
definition of Sect. 3.1 with the local algorithm of Sect. 3.2 and, additionally, with
the collective method of [6]. Finally, equivalence of all three methods is stated
(main theorem).

3.1 Global Consistency

Global inter-metamodel constraints are spread over different components of a
multimetamodel. Consider e.g. the binary multimetamodel in Fig. 4 with the
following constraint declaration C (a standard requirement for Java Beans):

For each attribute named “n” there must be an accessor operation with name
“getN”!
to be checked for models A1 over metamodel M1 and A2 over metamodel M2.

In the diagrammatic constraint framework, to declare C, we need to find a
corresponding constraint c and binding mapping δ : Sc → M . For this, we take
for M the merge M+ of M1 and M2 w.r.t. overlap M12. This is shown in the lower
half of Fig. 4. Basically, it is the union of M1 and M2 modulo M12: Since Class
is common to both components, it appears only once in the merge. The same
is true for String and Text being represented by Str Txt in M+. However, the
two edges labelled name in M1 and M2 are not unified: They are not declared
the same in the overlap (one is an operation’s name, the other the name of an
attribute). r1 : M1 → M+ and r2 : M2 → M+ map all elements of M1 and M2

to the corresponding elements in the merge. Now we can impose c to M+ via
binding map δ. This is shown in Fig. 5.

c’s intended semantics is controlled by function validatec (cf. Sect. 2.2),
which has input graph B = (GB , τB) typed over Sc. If Sc is bound as shown in
Fig. 5, it will return true if and only if for each own class attribute with name n,
there is an owned operation with name getN in the same class. Note that the
super relation is not included in the image of δ, because getters shall exist for
own attributes only (inherited attributes already yield respective get-methods).

In Sect. 2.3, we described two modeling teams. Assume the first team creates
legal model (one or more class diagrams) A1 typed over metamodel M1, and the
other team creates legal model A2 typed over metamodel M2. Global consistency
requires validity of the name alignment constraint c@δ introduced above. Con-
joint treatment of models requires their matching, i.e., specifying their common
concepts. But model overlap might not be possible to be inferred automatically:
e.g., entity Onl(ine)Order in model A1 may be called Onl(ine)Purchase Order
in A2, cf. Fig. 6. In general, cross-(meta)model terminology may be very hetero-
geneous, and the structure of models may vary significantly while still reflecting
identical concepts. Given a significant size of practical models, model matching
can be a costly procedure that needs special tools and user input.
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Fig. 5. Imposing global constraint on merged multimodel

Formally – and similarly to metamodels – one must determine two graph

mappings A1 A12

r′
1�� r′

2 �� A2 that are compatible with typing1. We call
this configuration of models and mappings a multimodel A over multimetamodel
M and write A = (r′

1, r
′
2)

2. Only now is it possible to merge multimodel A, which,
basically, is performed in the same way as for metamodels: One constructs the
union GA+ of the data graphs of A1 and A2 wrt. to A12. This yields a unique
typing mapping τA+ : GA+ → M+ (this can formally be proved, because merging
is a special case of the universal construction of pushouts [1]) and hence model
merge A+ = (G+, τA+).

Definition 1 (Global Consistency [6,20]). Let c@δ be an inter-metamodel
constraint over multimetamodel M = (r1, r2). We say that multimodel A =
(r′

1, r
′
2) over M satisfies c@δ, if the above constructed model merge A+ satisfies

c@δ over M+. If A satisfies all inter-metamodel constraints imposed on M, we
call A globally consistent.

We remark that the binary case can be generalized to the N-ary case by con-
structing M+ as colimit, a categorical construction encompassing binary merging
[6,20].

Unfortunately, practical consistency checking along the lines of this defini-
tion, i.e., constructing globally typed data before checking, has major disadvan-
tages:

1. One has to deal with the entire union of data (usually a huge structure) -
independent of whether there is only a small portion being affected by the
constraint.

2. To specify overlaps of typed data structures, this enormous collection of data
has to be traversed manually or at least semi-automatically. Overlaps have
to be complete, i.e. they are not specific to the given constraint declaration.

1 Formally, r′
i (i ∈ {1, 2}) map the data graph of A12 and respect behavior of ri, i.e.

r′
i; τi = τ12; ri.

2 Again assuming domain and codomain of r′
1 and r′

2 to be clear from the context.
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Fig. 6. Multimodel: models with overlap

Consider e.g. Fig. 6: A1 contains owned operations and implemented interfaces
of the order classes. A2 represents the same order classes. Shaded nodes and
their : super-links are in the overlap A12, i.e. OnlOrder and OnlPurchaseOrder
are declared to be the same classes despite their different names. Besides own
attributes, A2 contains the shop assistant who processed the offline order (via a
directed association). A+ is the union of all these elements w.r.t. the overlap. It
is not reprinted due to lack of space.

If we want to check whether A = (r′
1, r

′
2) satisfies constraint c@δ, the above

mentioned disadvantages manifest as follows:

1. Although c@δ only “talks” about classes and names of their attributes and
operations, we have to deal with interface implementations and operation’s
reference to its class (from A1), as well as (usually many) associations (from
A2) but also with superclass relations (in the overlap).

2. The user must search the set of all classes and all their superclass relations for
identical concepts. In the example he must specify sameness of OnlOrder and
OnlPurchaseOrder, the other two identities Order and OfflOrder may auto-
matically be proposed based on identical naming, yet have to be confirmed
by the user. The user also has to declare several superclass relations to be
the same although the constraint declaration does not talk about inheritance
relation.

Both aspects become more severe, if there is a big number of diagrams, probably
stored with different techniques. Moreover, our examples are small compared
with real diagrams, where the proportion of matching (i.e. overlap specification)
of non-relevant data (being outside the fragment that matters for checking) will
be significantly bigger.

3.2 Local-Individual Checking

Is there a technique for checking inter-metamodel constraints that would be
more efficient than a direct execution of the definition (Definition 1 in Sect. 3.1)
as proposed in [20]? A better approach would be to consider only those pieces of
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data and models and their overlaps that matter for checking, i.e., make checking
constraints as local as possible:

Definition 2. The following algorithm for global consistency checking is called
local-individual checking. Let A = (A1, A2, A12, r

′
1, r

′
2) be a multimodel over

multimetamodel M = (M1,M2,M12, r1, r2). Let r1 and r2 be inclusion maps
of M1 and M2 into the metamodel merge M+ as is Fig. 4. An inter-metamodel
constraint c@δ is verified as follows (the following four steps will be illustrated
afterwards by way of example):

1. Let M c
1 , M c

2 , and M c
12 consist of all elements of M1, M2, and M12, resp.,

which are mapped to the image of δ by r1, r2, and r1; r1 (= r2; r2), resp.3
2. Restrict models A1 and A2 to those elements being typed over M c

1 and M c
2

resp. Call this data Ac
1 and Ac

2.
3. Determine overlap Ac

12 of Ac
1 and Ac

2.
4. Apply check(Ac

+, c@δ), where Ac
+ is the local merge of Ac

1 and Ac
2.

Fig. 7. Individually local consistency checking: steps 1 to 3

We illustrate application of the algorithm for our running example, where
multimodel (r′

1, r
′
2) from Fig. 6 will be checked against constraint declaration

c@δ from Fig. 5. Steps 1 to 3 are illustrated in Fig. 7:

Step 1 : M c
1 ,M c

2 , and M c
12 are depicted in the lower half. Once the complete

overlap M12 is known, they are automatically derived from the scope of the
constraint. Shaded vertices again depict overlap. The important improvement
is that Interfaces together with their operations and interface implementations
now vanish. In the same way, class membership of operations can be omitted.
Since the constraint declaration does not involve superclass relations, they can
be omitted, too. Moreover, we need not care about associations and their source
and targets.
3 We still consider c@δ to be imposed on the merge M+ of M1 and M2, i.e. δ : Sc →

M+. Recall that the image of δ is the set of those elements in M+, the shape of c is
mapped to.
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Step 2 : The upper half shows appropriately narrowed Ac
1 and Ac

2. Again, this
step can be carried out automatically (similar to the retype step of function
check as described in Sect. 2.2). Note that OnlPurchaseOrder is omitted since
it does not possess own attributes and hence automatically satisfies constraint
declaration c@δ.

Step 3 : The only manual activity is overlap specification. It is now reduced to the
selection of classes Order and OfflOrder. We do not have to deal with superclass
relations and classes without attributes in the overlap. Additionally, no text
matching is necessary, since model structures simplify accordingly. Moreover,
declaration of OnlOrder-OnlPurchaseOrder-identity is no longer necessary.

Fig. 8. Local consistency checking: step 4

Step 4 : Calculation of local merge Ac
+ is again an automatic procedure. In Fig. 8,

it is depicted together with the part M c
+ of the integrated metamodel that mat-

ters for checking. The resulting data space (Ac
+) now contains no superfluous

elements. It is reduced to four involved classes only: OnlOrder still appears (but
now only as automatic leftover from A1). The other three classes can easily be
traversed. Function check has input a narrowed model (only those model ele-
ments typed over elements in the image of the binding). In the example it detects
satisfaction for classes Order and OfflOrder but violation for class Employee (grey
rectangles).

The reader may compare the unstructured contents of Fig. 6 with the reduced
data in the upper half of Fig. 7. The presented technique obviously reduces model
merging and matching workload, if constraints shall be checked in the per con-
straint fashion. It can also be applied, if it is temporarily possible to live with
inconsistency, i.e. with delayed non-urgent consistency repairs [9].

It remains to ensure global-local-equivalence, i.e. the algorithm must always
yield the same result as the global definition (cf. Definition 1). This equivalence
may seem obvious, but it can be invalid for model structures richer than simple
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typed graphs. For instance, assume that (meta)models can be augmented with
derived associations: if class C1 has an association a to C2 and C2 has association
b to C3, then there is a derived association /ab from C1 to C3 (note dashed arrow
in M+ in Fig. 9). In Fig. 9, model M+ is the merge of M1 and M2, in which class
C2 is assumed to be common in both metamodels.

Fig. 9. Derived association

Now consider a constraint declara-
tion “Each object instantiating C1 must
reference at least one C3-object via an
/ab-link.” Its binding map δ has image
consisting of the derived association and
classes C1 and C3. Then the global
check procedure of Definition 1 for mul-
timodel A with models (A1, A2) that
share the object : C2 (in Fig. 9, object
identifiers are omitted) will construct
the whole model merge with a derived
/ab-link from the C1-object to the C3-
object. Hence, A is consistent w.r.t.
Definition 1.

However, the local algorithm (Definition 2) hides class C2 in step 1, because
C2 is not in the image of the constraint declaration. Hence, the restricted model
Ac

1 only contains object :C1, and Ac
2 only contains :C3 (step 2), and we then

necessarily have an empty overlap (step 3). The local merge (step 4) does not
contain any association, and hence no derived one. Thus, in contrast to the global
check, the local check returns false!

This mismatch shows that investigation of global-local equivalence must be
carried out carefully, specifically, when dealing with correspondences involving
derived elements [6]. However, in the next section we show that the equivalence
always holds in the framework of typed graphs without derived elements.

3.3 Global-Local-Equivalence

In order to ensure that all proposed algorithms are correct in the context of
typed graphs, we have to prove (a) that the new local-individual approach is
correct w.r.t. the original definition of global consistency in Sect. 3.1, and (b) that
local-individual checking is equivalent to the local-collective grouping technique
proposed in [6], where special portions of the metamodel are determined such
that constraint groups imposed on this portion can be checked simultaneously.

We include a short proof sketch of the global-local-equivalence theorem,
which is stated in the end of this section (a detailed proof is given in [13]):
both, the above definition and the invented algorithm contain a merging step:
one for the entire metamodel (which yields M+) and one for only those parts that
matter for the constraint (which yields M c

+). In the proof of our theorem we com-
pare both approaches by - virtually - carrying them out in parallel: We use the
fact that these simultaneous merges can be controlled with the so-called Van
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Kampen Property [8], whenever one of the two graph mappings r1 and r2 is injec-
tive4. It is an exactness property for typed graphs, which guarantees that both
operations, merge and restriction, behave and interact well. It fails in categories
where augmentation effects as described above occur. Basically, one can show
that the well-behavedness of the simultaneous metamodel merge (M+ and M c

+)
carries over to the model level (A+ and Ac

+). Then it is not difficult to deduce
that check(A+, c@δ) = validatec(retype(Ac

+)), where retype performs Step 2
of function check in Sect. 2.2. Global-local-equivalence then follows, since, by
construction, Ac

+ is the restriction of A+ (Step 1 of function check).
It is also important to compare the approach with the local-collective method

of [6], in which checking the global consistency of multimodel A against a group
of constraints C = {c1@δ1, . . . , cn@δn}, which is locally satisfied by component
models, is reduced to checking consistency against C at the model overlap. It
is not difficult to show that this setting can be seen as a special case of our
framework, in which a global constraint declaration c@δ encodes the entire group
C: constraint c is a logical conjunction of constraints ci in some precisely defined
sense, and the image of δ is the union of images of δ1, . . . , δn. Then collective
checking of group C is equivalent to individual checking of constraint c@δ.

From all these considerations we deduce our main theorem:

Main Theorem. Let metamodels be graphs, models be typed graphs, and model

mappings are typed graph morphisms. Let M = ( M1 M12
r1�� r2 �� M2 ) be

a multimetamodel with r1 or r2 injective, A = ( A1 A12

r′
1�� r′

2 �� A2 ) be a
multimodel over M, and c@δ be an inter-metamodel constraint declaration over
the merged metamodel M+. Then the following statements are equivalent:

– A satisfies c@δ according to Definition 1.
– The local-individual algorithm of Definition 2 returns true for c@δ.
– If c@δ encodes a group C of constraint declarations, then A satisfies C accord-

ing to the local-collective approach of [6]. ��

4 Related Work

Approaches to heterogeneous multimodeling can be roughly divided into global
and local. For the former, heterogeneity is managed by relating all local models
to one global model, and checking consistency wrt. this global model. In contrast,
there is no global model in local approaches.

The most direct (and most well-known) global approach to consistency check-
ing is via monitoring satisfiability of consistency rules. All local models are
considered as instances of some all-embracing global model given a priori, and
inter-model consistency is given by rules specified in a special language “under-
standing” all local models. A representative of this approach is described in [15]:

4 All examples in the present paper are such that both r1 and r2 are injective.
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inter-metamodel constraints are called inter- or multi-feature rules, and are inves-
tigated in the context of feature-oriented software development. Inconsistency
detection, for instance, is performed by mapping feature models to propositional
logic. Different to our approach, matching is only allowed when elements have
same types and same names. Hence, matching can well be automated. A mini-
survey of similar approaches can be found in [6].

Another global approach is consistency checking via merging (CCVM) pro-
posed in [20] for homogeneous structural modeling, and earlier discussed in [7]
for behavioral modeling; in [6], it was generalized for the heterogeneous case.
The global model is not given a priori but is computed by merging all local
models modulo their correspondences; the latter must be explicitly specified. An
essential advantage of CCVM approaches over monitoring consistency rules is
that complex types of model matching are allowed. Contributions of the present
paper into CCVM were discussed in the introduction in detail.

For local approaches, explicit specification of inter-model correspondences is a
central issue, and different types of notation and techniques were developed [17].
Besides the usual distinction between manual and (semi-)automatic procedures,
e.g. [23], more sophisticated approaches have been elaborated [12]. A distinctive
feature of our approach is that the set of correspondences is reified as a special
model endowed with correspondence mappings – a span. This is a standard
categorical idea, which was repeatedly employed in homogeneous multimodeling
frameworks based on category theory, the most prominent being [21], where
spans are themselves subject of evolution. The most difficult issue is indirect
correspondences, when sets of elements in different models are related but their
relationships cannot be specified by equating the elements. Such correspondences
are usually specified by correspondence rules [17], but their formal treatment
needs the machinery of Kleisli mappings [4]; incorporating the latter into the
framework developed in this paper is our important future work.

Finally, the Van Kampen property (originally invented in algebraic topology)
reveals a remarkable correspondence between software engineering and a math-
ematical method for inferring properties of a global structure from its known
local characteristics, cf. [8,22]. Since our work is also about interconnection of
the local and the global, it is not surprising that the Van Kampen property is
fundamental for our framework as well.

5 Conclusion

We presented a new approach for local checking of constraints imposed on hetero-
geneous multimodels, which significantly reduces model matching and merging
workload. Our second contribution is a formal underpinning of global consis-
tency, which essentially employs the diagrammatic nature of constraint. In this
framework, we were able to prove the equivalence of two local approaches to the
global consistency definition, so that the latter provides an optimization space
for the former.
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The most important direction for future research is to generalize the pro-
posed binary overlapping algorithm together with a necessary equivalence the-
orem for the general N-ary overlapping case considered in [6]. Moreover, view
definitions (on metamodels) and view execution (on models) [6] should also be
taken into consideration. The challenge will be to find appropriate generaliza-
tion and extensions of our mathematical machinery for model correspondences
involving derived elements. Another direction of future research is to extend the
scope of underlying graphical structures beyond simple directed (typed) graphs
and include, e.g., attributed graphs [8]. Obviously, this also requires a general-
ization of the underlying diagrammatic framework.

We also plan to evaluate the algorithm in the tooling framework developed
at Bergen University College [14,16]. Our idea is to enhance DPF editors to
make them inter-metamodel aware. Alternatively, we can try to integrate our
approach with another constraint checking tools, e.g. USE, a tool to specify and
check OCL constraints [11].
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