
Chapter 2
Computational Tools

In this chapter we introduce the computational methods needed for the analysis of
the causal action principle in the continuum limit. These methods are the backbone
of the analysis given in Chaps. 3–5. Nevertheless, in order to facilitate the reading
of the book, we made the subsequent chapters accessible even without a detailed
knowledge of the computational tools. To this end, all the technical computations
are given in the appendices, whereas in the main Chaps. 3–5 these results are merely
stated and explained. Therefore, a reader who is willing to accept the results of the
detailed computations may skip the present chapter in a first reading.

Our main objective is to construct the fermionic projector in the presence of an
external potential and to analyze it in position space. The first task is to define the
unregularized fermionic projector P(x, y) in the presence of the external potential. In
this setting, the fermionic projector was constructed in a perturbation expansion in B
in [F3, FG1, FT2].More recently, a non-perturbative construction was given in [FR2,
FR3, FMR] (see also the brief review in Sect. 1.5.1). For the explicit analysis of the
causal action principle to be carried out in this book, we need the detailed formulas
of the perturbation expansion. In order to focus on what is really needed in this
book, we here restrict attention to the perturbative treatment (Sect. 2.1). The reader
interested in non-perturbative methods is referred to the introduction in [FKT] or to
the research papers [FR2, FR3, FMR].

Our next task is to derive detailed formulas for the fermionic projector in position
space. Such formulas are most conveniently obtained using the so-called light-cone
expansion as first developed in [F5, F6]. In Sect. 2.2 we give a self-contained intro-
duction to the light-cone expansion.

In Sect. 2.3 the causal perturbation expansion and the light-cone expansion are
adapted to the description of linearized gravity.

In Sect. 2.4 we turn attention to the ultraviolet regularization of the fermionic
projector. This leads us to the so-called formalism of the continuum limit, which
makes it possible to analyze how the different contributions to the causal action
depend on the regularization. In order to make the presentation easily accessible, we
begin with the example of an iε-regularization (Sect. 2.4.1). Then we consider linear
combinations of such regularizations (Sect. 2.4.2) and explain further regularization
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effects (Sect. 2.4.3). Then the formalism of the continuum is introduced (Sect. 2.4.4),
and its derivation is outlined (Sect. 2.4.5). Our presentation is not as general as the
original derivation as given in [F7, Chap.4], but instead it aims at clarifying the main
points of the construction.

In Sect. 2.5 we explain how to compute the local trace. This is important in view
of the rescaling procedure explained in Sect. 1.4.1 (see (1.4.11)).

Finally, in Sect. 2.6 it is explained how the EL equations as derived in Sect. 1.4.1
can can be analyzed in the formalism of the continuum limit.

2.1 The Fermionic Projector in an External Potential

2.1.1 The Fermionic Projector of the Vacuum

Our starting point is the unregularized kernel of the fermionic projector of the vac-
uum which we already encountered in Sect. 1.2.5 (see Lemma 1.2.8, (1.2.25) and
Lemma 1.2.9). For the later constructions, it is convenient to clarify that we are in
the Minkowski vacuum by adding an index “vac.” Moreover, we denote the mass by
an additional index m. Thus we define the kernel of the fermionic projector of the
vacuum as the bi-distribution

Pvac
m (x, y) =

ˆ
d4k

(2π)4
Pvac
m (k) e−ik(x−y) , (2.1.1)

where Pvac
m (k) is the distribution in momentum space

Pvac
m (k) = (/k + m) δ(k2 − m2) �(−k0) (2.1.2)

(and� denotes the Heaviside function). We also consider the distribution Pvac
m (x, y)

as the integral kernel of an operator acting on wave functions in space-time, i.e.

Pvac
m : C∞

0 (M , SM ) → C∞(M , SM ) , (Pvac
m ψ)(x) =

ˆ
M

Pvac
m (x, y) ψ(y) d4y .

(2.1.3)
This operator is the so-called fermionic projector of the vacuum.

Before going on, we briefly recall the physical picture. In (2.1.1) we integrate over
all the plane-wave solutions of the Dirac equation of negative frequency (the decom-
position into plane-wave solutionswas explained in detail in Chap.1; see (1.2.20) and
Lemma 1.2.8). Thus Pvac

m describes the ensemble of all negative-frequency solutions
of the Dirac equation. As already mentioned in Sect. 1.2.5, we use this Dirac sea con-
figuration to describe the vacuum in Minkowski space. In order to describe a system
with an additional particle, we simply add the corresponding bra/ket-combination
by setting
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P(x, y) = Pvac
m (x, y) − 1

2π
ψ(x)ψ(y) ,

where ψ is a positive-frequency solution of the Dirac equation (for the prefac-
tor −1/(2π) and the normalization of the wave function see Sect. 2.1.7). Similarly,
we occupy several states by adding the bra/ket-combinations of several particle states,

P(x, y) = Pvac
m (x, y) − 1

2π

np∑

k=1

ψk(x)ψk(y)

(which need to be suitably ortho-normalized; see again Sect. 2.1.7). In order to
introduce anti-particles, we similarly subtract bra/ket-combinations

P(x, y) = Pvac
m (x, y) − 1

2π

np∑

k=1

ψk(x)ψk(y) + 1

2π

na∑

l=1

φl(x)φl(y) , (2.1.4)

where φ1, . . . ,φna are the wave functions of negative-frequency solutions. Thus in
simple terms, we take Dirac’s concept of the Dirac sea literally and describe particles
by additional occupied states and anti-particles by “holes” in the sea.

With the methods introduced so far, this description of particles and anti-particles
by occupying states and creating “holes” can only be performed in the non-interacting
situation in which we can work with plane-wave solutions of the Dirac equation. But
it is not obvious how the construction should be carried out if an external potential
is present. In order to tackle this problem, we first analyze how to describe the com-
pletely filledDirac sea in the presence of an external potential (see Sects. 2.1.2–2.1.6).
Afterwards, we will come back to the description of systems involving particles and
anti-particles (see Sect. 2.1.7).

2.1.2 The External Field Problem

We now return to the Dirac equation in the presence of an external potential (1.5.1),

(i /∂ + B − m)ψ(x) = 0 , (2.1.5)

where B is a smooth potential with suitable decay properties at spatial infinity and
for large times (to be specified in Lemma 2.1.2). We now explain the basic problem
in defining the fermionic projector in the presence of an external potential.

The definition of the fermionic projector of the vacuum (2.1.1) and (2.1.2) makes
essential use of the fact that the solution space of the Dirac equation splits into
two subspaces of negative and positive frequency, respectively. Indeed, this made
it possible in (2.1.2) to integrate only over the solutions of negative frequency. In
order to extend the definition of the fermionic projector to the case when an external
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potential is present (2.1.5), one needs to again decompose the solution space into
two subspaces. In the special case that B is static, one can still separate the time
dependence by the plane wave ansatz ψ(t, �x) = e−iωt ψω(�x), so that the sign of ω
gives a canonical splitting of the solution space. This procedure is often referred to
as the frequency splitting. In the general time-dependent setting, however, no plane
wave ansatz can be used, so that the frequency splitting breaks down. Therefore, it
is no longer obvious if there still is a canonical decomposition of the solution space
into two subspaces.

This problem is sometimes referred to as the external field problem (for more
details see Exercise 2.1 or the exposition in [F7, Sect. 2.1]). It is a common belief that
in the presence of a general time-dependent external potential, there no longer exists
a canonical decomposition of the solution space into two subspaces. Nevertheless, it
is still possible to decompose the solution space into two subspaces, for example by
using the sign of the spectrum of the Dirac Hamiltonian on a distinguished Cauchy
surface. But the decomposition is no longer canonical in the sense that it involves an
arbitrariness. This arbitrariness is often associated to an observer, so that the choice
of the subspaces depends on the observer. As a consequence, the interpretation of the
fermionic many-particle state in terms of particles and anti-particles also depends on
the observer. This observer dependence of the particle interpretation becomes most
apparent in the Unruh effect in which the vacuum of the observer at rest is described
by a uniformly accelerated observer in terms of a thermal state involving particles
and anti-particles.

Nevertheless, this reduction to particles and anti-particles as being objects asso-
ciated to observers only tells part of the truth. Namely, as shall be developed in what
follows, even in the presence of a time-dependent external potential there is a canon-
ical decomposition of the solution space into two subspaces. In the static situation,
this decomposition reduces to the frequency splitting. In the time-dependent situa-
tion, however, this decomposition depends on the global behavior ofB in space-time.
In particular, this decomposition cannot be associated to a local observer. Starting
from the canonical decomposition of the solution space, one can again generate par-
ticles and holes, giving rise to an interpretation of the many-particle state in terms of
particles and anti-particles. This particle interpretation is again independent of the
choice of an observer. All constructions are explicitly covariant.

2.1.3 Main Ingredients to the Construction

Before entering the constructions, we explain a few ingredients and ideas. Generally
speaking, we shall make use of additional properties of the fermionic projector of the
vacuum, which are not immediately apparent in the Fourier decomposition (2.1.1)
and (2.1.2). One ingredient is to use that causality is built into Pvac(x, y). To see
how this comes about, we decompose Pvac

m as

Pvac
m (x, y) = 1

2

(
pm(x, y) − km(x, y)

)
, (2.1.6)
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where pm(x, y) and km(x, y) are the Fourier transforms of the distributions in
momentum space

pm(q) = (/q + m) δ(q2 − m2) (2.1.7)

km(q) = (/q + m) δ(q2 − m2) ε(q0) (2.1.8)

(and ε in (2.1.8) is again the sign function ε(x) = 1 for x ≥ 0 and ε(x) = −1 oth-
erwise). All these Fourier integrals are well-defined tempered distributions, which
are also distributional solutions of the vacuum Dirac equation. The point is that the
distribution km(x, y) is causal in the sense that it vanishes if x and y have spacelike
separation. In order to see this, it is useful to introduce the advanced and the retarded
Green’s functions by

s∨
m(q) = lim

ν↘0

/q + m

q2 − m2 − iνq0
and s∧

m(q) = lim
ν↘0

/q + m

q2 − m2 + iνq0
, (2.1.9)

respectively (with the limit ν ↘ 0 taken in the distributional sense). Taking their
Fourier transform

sm(x, y) =
ˆ

d4q

(2π)4
sm(q) e−iq(x−y) , (2.1.10)

we obtain corresponding bi-distributions s∨
m(x, y) and s∧

m(x, y). By direct computa-
tion one verifies that these Green’s functions satisfy the distributional equation

(i /∂x − m) sm(x, y) = δ4(x − y) . (2.1.11)

Moreover, computing the Fourier integral (2.1.10) with residues, one sees that the
support of these Green’s functions lies in the upper respectively lower light cone, i.e.

supp s∨
m(x, .) ⊂ J∨

x , supp s∧
m(x, .) ⊂ J∧

x , (2.1.12)

where J∨
x and J∧

x denote the points in the causal future respectively past of x ,

J∨
x = {y ∈ M | (y − x)2 ≥ 0, (y0 − x0) ≥ 0}
J∧
x = {y ∈ M | (y − x)2 ≥ 0, (y0 − x0) ≤ 0}

(for details see Exercise 2.2 or [FKT, Chap.4]). In view of (2.1.11), the difference of
the advanced and retarded Greens’ functions is a solution of the homogeneous Dirac
equation. In order to compute it in detail, we again make use of (1.2.33) to obtain

s∨
m(q) − s∧

m(q) = (/q + m) lim
ν↘0

[
1

q2 − m2 − iνq0
− 1

q2 − m2 + iνq0

]

= (/q + m) lim
ν↘0

[
1

q2 − m2 − iν
− 1

q2 − m2 + iν

]
ε(q0)

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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= 2πi (/q + m) δ(q2 − m2) ε(q0) (2.1.13)

(for details see Exercise 2.4). Comparingwith (2.1.8), we conclude that the difference
of the advanced and retarded Green’s functions is a multiple of km

km(x, y) = 1

2πi

(
s∨(x, y) − s∧(x, y)

)
. (2.1.14)

In particular, this shows that km is indeed causal, i.e.

supp km(x, .) ⊂ Jx , (2.1.15)

where Jx := J∨
x ∪ J∧

x . We refer to km as the causal fundamental solution.
Now (2.1.6) can be understood as the decomposition of the vacuum fermionic

projector into a causal part (the distribution km) and a part which is not causal
(the distribution pm ; note that the explicit formulas in (1.2.25) and Lemma 1.2.9
show that pm(x, y) is indeed non-zero for spacelike distances). One idea behind
our constructions is to perform the perturbation expansion in such a way that the
decomposition of P(x, y) in to a causal and a non-causal part is preserved.

Another ingredient to our constructions is that the distributions pm and km are
related to each other by a functional calculus, as we now explain. We first point out
that for the space-time integral in (2.1.3) to exist, we had to assume that the wave
functionψ has suitable decay properties at infinity.More specifically, the time integral
in (2.1.3) in general diverges if ψ is a physical wave function, being a solution of the
Dirac equation. In particular, the operator in (2.1.3) cannot be defined as an operator
from a vector space to itself, but it necessarily maps one function space to another
function space. As a consequence, it is impossible to multiply the operator Pm by
itself. This is obvious because the formal integral

ˆ
Pvac
m (x, z) Pvac

m (z, y) d4z (2.1.16)

is ill-defined. This problemcan be understood similarly inmomentum space.Namely,
using that convolution in position space corresponds to multiplication in momentum
space, the integral in (2.1.16) corresponds to the formal product

Pvac
m (q) Pvac

m (q) ,

which is again ill-defined because the square of the δ-distribution in (2.1.2) makes no
mathematical sense. As we shall see, these obvious problems in the naive treatment
of the fermionic projector are not only a mathematical subtlety. On the contrary, the
methods for overcoming these problems will involve a careful analysis of the causal
structure of the fermionic projector and of its proper normalization.
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It is important to observe that the above operator product does make sense if we
consider two different mass parameters. Namely,

Pvac
m (q) Pvac

m ′ (q) = (/q + m) δ(q2 − m2) �(−q0) (/q + m ′) δ(q2 − (m ′)2) �(−q0)

= (q2 + (m + m ′) /q + mm ′) δ(m2 − (m ′)2) δ(q2 − m2) �(−q0)

= (q2 + (m + m ′) /q + mm ′) 1

2m
δ(m − m ′) δ(q2 − m2) �(−q0)

= δ(m − m ′) (/q + m) δ(q2 − m2) �(−q0) .

giving rise to the distributional identity

Pvac
m Pvac

m ′ = δ(m − m ′) Pvac
m . (2.1.17)

This resembles idempotence, but it involves a δ-distribution in the mass parame-
ter. We remark that this δ-normalization in the mass parameter can be treated in a
mathematically convincing way using the notion of the mass oscillation property as
introduced in [FR3]. For brevity, we shall not enter these constructions here. Instead,
we are content with the fact that (2.1.17) is well-defined if we test in both m and q.

This calculus can be used similarly for the operators pm and km obtained by con-
sidering the distributions (2.1.7) and (2.1.8) asmultiplication operators inmomentum
space. In particular, this gives rise to the relation

km km ′ = δ(m − m ′) pm (2.1.18)

(for details see Lemma 2.1.3). This identity is very useful because it allows us to
deduce pm from km . Therefore, our strategy is to first construct km in the presence
of an external potential using the underlying causal structure (2.1.14). Then we
take (2.1.18) to define pm in the presence of the external potential. Finally, we
use (2.1.6) to define the fermionic projector.

There is one subtle point in the construction which we want to mention here:
the proper normalization of the states of the fermionic projector. The most obvious
method is to interpret and use the identity (2.1.17) as a normalization condition.
This so-called mass normalization was used in [F3, FG1]; see also [F7, Chap.2].
More recently, the non-perturbative construction in [FR3] revealed that on a general
globally hyperbolic manifold, the mass normalization cannot be used and should
be replaced by the so-called spatial normalization. In [FT2] the causal perturbation
expansion is worked out for both the mass and the spatial normalizations, and the
methods and results are compared. In [FT2, Sect. 2.2] the advantages of the spatial
normalization are discussed, but no decisive argument in favor of one of the normal-
ization methods is given. Finally, the Noether-like theorems in [FK2] showed that
the spatial normalization is the proper normalization method, because it reflects the
intrinsic conservation laws of the causal fermion system (see [FK2, Remark 5.13] or
the brief outline in Sect. 1.4.2).

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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With these results in mind, we here restrict attention to the spatial normaliza-
tion, which we now introduce. Recall that for a Dirac wave function ψ, the quan-
tity (ψγ0ψ)(t0, �x) has the interpretation as the probability density for the particle at
time t0 to be at position �x . Integrating over space and polarizing, we obtain the scalar
product (1.2.2), which we also denote by

(ψ|φ)t0 = 2π
ˆ
R3

ψ(t0, �y)γ0φ(t0, �y) d3y . (2.1.19)

It follows from current conservation that for any solutionsψ,φ of the Dirac equation,
this scalar product is independent of the choice of t0. This is the case even in the
presence of an external potential (2.1.5), provided that the potential is symmetric
with respect to the inner product on the spinors (1.2.18), i.e.

≺ψ|Bφ� =≺Bψ|φ� (2.1.20)

(see Exercise 2.5). Since the kernel of the fermionic projector is a solution of the
Dirac equation, one is led to evaluating the integral in (2.1.19) for φ(y) = P(y, z)
and ψ(y) = P(x, y). In the vacuum, the resulting integral can be computed, giving
a simple result.

Lemma 2.1.1 For any t ∈ R, there is the distributional relation

2π
ˆ
R3

Pvac
m

(
x, (t, �y)) γ0 Pvac

m

(
(t, �y), z) d3y = −Pvac

m (x, z) . (2.1.21)

Proof The identity follows by a straightforward computation, which was already
given in the proof of Lemma 1.2.8 (see (1.2.24) and the computation thereafter). �

We refer to (2.1.21) as the spatial normalization of the fermionic projector. It has
the advantage that it is well-defined even for fixed m. Moreover, the normalization
method is closely related to the probabilistic interpretation of the Dirac equation.

In the following Sects. 2.1.4–2.1.6, we shall carry out the construction of the
fermionic projector describing the completely filled Dirac sea in the presence of the
external potential B. Our method will make essential use of generalizations of the
underlying causal structure (as is apparent in (2.1.6) and (2.1.12)), of the relation
between km and pm as expressed by (2.1.18), and of the spatial normalization (2.1.21).
Finally, in Sect. 2.1.7 we shall extend the construction to allow for particles and anti-
particles.
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2.1.4 The Perturbation Expansion of the Causal Green’s
Functions

Using the causal support property, the advanced and retarded Green’s functions s̃∨
m

and s̃∧
m are uniquely defined even in the presence of an external potential (2.1.5). They

can be constructed non-perturbatively using the theory of symmetric hyperbolic
systems (see [J] or [FKT, Chap.5]). For our purposes, it is sufficient to work out
their perturbation expansions: The retarded Green’s function is characterized by the
conditions

(i /∂ + B − m) s̃∧
m(x, y) = δ4(x − y) and supp s̃∧

m(x, .) ⊂ J∧
x .

Employing the perturbation ansatz

s̃∧
m =

∞∑

n=0

s∧
(n) with s∧

(0) = s∧
m

(where the subscript (n) denotes the order of perturbation theory), we obtain for n =
1, 2, . . . the inductive conditions

(i /∂ − m) s∧
(n) = −B s∧

(n−1) and supp s̃∧
(n)(x, .) ⊂ J∧

x . (2.1.22)

Using the defining property of the Green’s function (2.1.11), one sees that the left
equation in (2.1.22) can be solved in the case n = 1 by

s∧
(1) = −sm B s∧

m , (2.1.23)

where the operator product is defined as follows,

(sm B s∧
m)(x, y) :=

ˆ
d4z sm(x, z)B(z) s∧

m(z, y) (2.1.24)

(the analytic justification of this and all other operator products in this section will be
given in Lemma 2.1.2). The operator sm in (2.1.23) is any Green’s function (like the
advanced, retarded or the symmetric Green’s function). In order to determine which
Green’s function to choose, we evaluate the condition on the right side of (2.1.22).
Namely, if we choose sm in (2.1.23) again as the retarded Green’s function, then the
integral in (2.1.24) vanishes if x lies in the past of y because in this case the supports
of the distributions s∧

m(x, .) and s∧
m(., y) do not intersect. This leads us to setting

s∧
(1) = −s∧

m B s∧
m .

Now we can evaluate (2.1.22) inductively to obtain
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s∧
(n) = −s∧

m B s∧
(n−1) = (− s∧

m B
)n

s∧
m .

Proceeding similarly for the advanced Green’s function, we obtain the unique per-
turbation series

s̃∨
m =

∞∑

n=0

(− s∨
m B
)n

s∨
m , s̃∧

m =
∞∑

n=0

(− s∧
m B
)n

s∧
m . (2.1.25)

Having derived a perturbation series for the causal Green’s functions, we can also
define the causal fundamental solution in generalization of (2.1.14) by

k̃m := 1

2πi
(s̃∨

m − s̃∧
m) , (2.1.26)

We now specify a class of potentials for which all the operator products appearing
here and later in this book are all well-defined in the distributional sense:

Lemma 2.1.2 Let (C j ), 0 ≤ j ≤ n, be a choice of operators C j ∈ {km, pm, s∨
m, s∧

m}
(and pm, km according to (2.1.7) and (2.1.8)). If the external potential B is smooth
and decays so fast at infinity that the functions B(x), x iB(x), and xi x jB(x) are
integrable, then the operator product

(Cn B Cn−1 B · · ·B C0)(x, y) (2.1.27)

is a well-defined tempered distribution on R
4 × R

4.

Proof Calculating the Fourier transform of (2.1.27) gives the formal expression

M(q2, q1) :=
ˆ

d4 p1
(2π)4

· · ·
ˆ

d4 pn−1

(2π)4
Cn(q2) B̂(q2 − pn−1)

× Cn−1(pn−1) B̂(pn−1 − pn−2) · · · C1(p1) B̂(p1 − q1) C0(q1) , (2.1.28)

where we consider theC j as multiplication operators in momentum space and where
B̂ denotes the Fourier transform of the function B (it is more convenient to work
in momentum space because the operators C j are then diagonal). We will show
that M(q2, q1) is a well-defined tempered distribution; the Lemma then immediately
follows by transforming back to position space.

The assumptions on B yield that B̂ is C2 and has rapid decay at infinity, i.e.

sup
q∈R4, |κ|≤2

|qi1 · · · qin ∂κB̂(q)| < ∞

for all n, all tensor indices i1, . . . , in and all multi-indices κ (with κ = (κ1, . . . ,κq),
|κ| := q). As is verified explicitly in momentum space, the distributions km , pm
and sm are bounded in the Schwartz norms of the test functions involving derivatives
of only first order. More precisely,
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|C( f )| ≤ const ‖ f ‖4,1 with C = km, pm or sm and f ∈ S(R4,C4) ,

where S(R4,C4) is the Schwartz space, and the Schwartz norms are defined as usual
by

‖ f ‖p,q = max|I |≤p, |J |≤q
sup
x∈R4

|x I ∂J f (x)|

(for basics on the Schwartz space and distributions see for example [Fr]). As a
consequence, we can apply the corresponding operators even to functions with rapid
decaywhich are onlyC1. Furthermore,we can form the convolution of such functions
with C ; this gives continuous functions (which will no longer have rapid decay,
however). Since C involves first derivatives, a convolution decreases the order of
differentiability of the function by one.

We consider the combination of multiplication and convolution

F(p2) :=
ˆ

d4 p1
(2π)4

f (p2 − p1) C(p1) g(p1) , (2.1.29)

where we assume that f ∈ C2 has rapid decay and g ∈ C1 is bounded together with
its first derivatives, ‖g‖0,1 < ∞. For any fixed p2, the integral in (2.1.29) is well-
defined and finite because f (p2 − .) g(.) is C1 and has rapid decay. The resulting
function F is C1 and bounded together with its first derivatives, more precisely

‖F‖0,1 ≤ const ‖ f ‖4,2 ‖g‖0,1 . (2.1.30)

After these preparations, we can estimate the integrals in (2.1.28) from the right to
the left: We choose two test functions f, g ∈ S(R4,C4) and introduce the functions

F1(p1) =
ˆ

d4q2
(2π)4

B̂(p1 − q1) C0(q1) g(q1) (2.1.31)

Fj (p j ) =
ˆ

d4 p j−1

(2π)4
B̂(p j − p j−1) C j−1(p j−1) Fj−1(p j−1) , 1 < j ≤ n .

(2.1.32)

The integral (2.1.31) is of the form (2.1.29) and satisfies the above assumptions on the
integrand. Using the bound (2.1.30), we can proceed inductively in (2.1.32). Finally,
we perform the q2-integration,

M( f, g) =
ˆ

d4q2
(2π)4

f (q2) Cn(q2) Fn(q2) . (2.1.33)

We conclude that M is a linear functional on S(R4,C4) × S(R4,C4), which is
bounded in the Schwartz norm ‖.‖4,1 of the test functions. �
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We remark that the assumptions in this lemma are stronger than what is needed
for the operator products in (2.1.25) and (2.1.26) to be well-defined: First of all,
the smoothness assumption for B is unnecessarily strong; for example, it would
be sufficient to assume that B is twice differentiable. Moreover, using the causal
structure, the contributions to the above perturbation expansions are well-defined
even without the decay assumptions in Lemma 2.1.2. Namely, these perturbation
expansions are all causal in the sense that for any given x, y ∈ M , the distributions
s̃∨(x, y) and s̃∧(x, y) depend on the potential B only on in the so-called

causal diamond
(
J∨
x ∩ J∧

y

) ∪ (J∧
x ∩ J∨

y

)
.

Since the causal diamond is a bounded region of space-time, we may modify B
outside this bounded set to arrange the decay assumptions without changing the
contributions to the above perturbation expansions.

The reasonwhyweprefer to imposewith the stronger assumptions inLemma2.1.2
is that they will be needed later on. Indeed, for the operator products appearing in the
causal perturbation expansionof theDirac sea, the decay assumptions inLemma2.1.2
will be required. Moreover, the smoothness of B will be needed for the light-cone
expansion.

The summands of the above perturbation expansions (2.1.25) and (2.1.26) arise
similarly in quantum field theory and are then depicted by Feynman diagrams (see
Fig. 2.1). Using the language of quantum field theory, we also refer to the summands
of our perturbation expansions as Feynman diagrams. Then the result of the last
lemma can be understood from the fact that in the presence of an external field one
only encounters tree diagrams, which are all finite.

2.1.5 Computation of Operator Products

We saw in (2.1.17) and (2.1.18) that operator products can be formed if the mass is
considered as a variable parameter.We nowdevelop thismethodmore systematically.
It is usually most convenient to work with the symmetric Green’s function defined
by

sm = 1

2
(s∨

m + s∧
m) . (2.1.34)

B

· · · C0C1Cn−1Cn Cn−2

B B B

Fig. 2.1 A Feynman tree diagram



2.1 The Fermionic Projector in an External Potential 93

Lemma 2.1.3 The following identities hold:

pm pm ′ = km km ′ = δ(m − m ′) pm (2.1.35)

pm km ′ = km pm ′ = δ(m − m ′) km (2.1.36)

pm sm ′ = sm ′ pm = PP

m − m ′ pm (2.1.37)

km sm ′ = sm ′ km = PP

m − m ′ km (2.1.38)

sm sm ′ = PP

m − m ′ (sm − sm ′) + π2 δ(m − m ′) pm , (2.1.39)

where PP denotes the principal value defined in analogy to (1.2.27) alternatively
by

ˆ ∞

−∞
PP

m
η(m) dm = lim

ν↘0

(ˆ −ν

−∞
+
ˆ ∞

ν

)
η(m)

m
dm (2.1.40)

= lim
ν↘0

1

2

∑

±

ˆ ∞

−∞
η(m)

m ± iν
dm .

Proof Calculating pointwise in momentum space, we obtain

pm(q) pm ′(q) = (/q + m) δ(q2 − m2) (/q + m ′) δ(q2 − m ′2)

= δ(m2 − m ′2) δ(q2 − m2)
(
q2 + (m + m ′)/q + mm ′

)

= 1

2m
δ(m − m ′) δ(q2 − m2)

(
m2 + (m + m ′)/q + mm ′)

= 1

2m
δ(m − m ′) δ(q2 − m2) 2m (m + /q) = δ(m − m ′) pm(q) .

This gives the first part of (2.1.35). The second part of this formula as well as formula
(2.1.36) are obtained analogously. The formulas (2.1.37) and (2.1.38) are obtained
as follows:

2 pm(q) sm ′(q) = lim
ν↘0

δ(q2 − m2)(/q + m)

×
(

/q + m ′

q2 − m ′2 − iνq0
+ /q + m ′

q2 − m ′2 + iνq0

)

= lim
ν↘0

δ(q2 − m2)
(
q2 + (m + m ′)/q + mm ′

)

×
(

1

q2 − m ′2 − iνq0
+ 1

q2 − m ′2 + iνq0

)

= lim
ν↘0

δ(q2 − m2)
(
m2 + (m + m ′)/q + mm ′

)

×
(

1

m2 − m ′2 − iνq0
+ 1

m2 − m ′2 + iνq0

)

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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= lim
ν↘0

δ(q2 − m2)(/q + m)

×
(

(m + m ′)
(m + m ′)(m − m ′) − iνq0

+ (m + m ′)
(m + m ′)(m − m ′) + iνq0

)

= 2
PP

m − m ′ pm(q) .

The derivation of (2.1.39) is a bit more involved. Combining (2.1.14) and (2.1.34),
we obtain

sm = s∨
m − iπkm = s∧

m + iπkm . (2.1.41)

Thus we can express the product sm(q) sm ′(q) in two ways, namely as

sm(q) sm ′(q) = (s∨
m(q) − iπkm(q))(s∨

m ′(q) − iπkm ′(q))

= s∨
m(q) s∨

m ′(q) − π2δ(m − m ′) pm(q)

− iπ lim
ν↘0

(
km ′(q)

1

m ′ − m − iνq0
+ km(q)

1

m − m ′ − iνq0

)
,

or alternatively as

sm(q) sm ′(q) = (s∧
m(q) + iπkm(q))(s∧

m ′(q) + iπkm ′(q))

= s∧
m(q) s∧

m ′(q) − π2δ(m − m ′) pm(q)

+ iπ lim
ν↘0

(
km ′(q)

1

m ′ − m + iνq0
+ km(q)

1

m − m ′ + iνq0

)
.

Adding these two formulas yields

2 sm(q) sm ′(q) − (s∨
m(q) s∨

m ′(q) + s∧
m(q) s∧

m ′(q)) + 2π2δ(m − m ′) pm(q)

= iπ lim
ν↘0

km ′(q)

(
1

m ′ − m + iνq0
− 1

m ′ − m − iνq0

)

+ iπ lim
ν↘0

km(q)

(
1

m − m ′ + iνq0
− 1

m − m ′ − iνq0

)

(∗)= iπkm ′(q)ε(−q0) 2πi δ(m ′ − m) + iπkm(q)ε(−q0) 2πi δ(m − m ′)

= −2π2δ(m ′ − m)(−pm ′(q)) − 2π2δ(m − m ′)(−pm(q)) ,

where in (∗) we applied (1.2.33), and in the last line we used the definitions of pm
and km . We thus obtain

sm sm ′ = 1

2

(
s∨
m s∨

m ′ + s∧
m s∧

m ′
)+ π2 δ(m − m ′) pm . (2.1.42)

It remains to derive the relations

s∨
m s∨

m ′ = PP

m − m ′ (s
∨
m − s∨

m ′) and s∧
m s∧

m ′ = PP

m − m ′ (s
∧
m − s∧

m ′) , (2.1.43)

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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which can be regarded as “resolvent identities” for the causal Green’s functions. It
suffices to consider the case of the advanced Green’s function. Clearly, the operators
on the right side of (2.1.43) satisfy the support condition supp((s∨

m − s∨
m ′)(x, .)) ⊂

J∨
x , and from

s∨
m s∨

m ′(x, y) =
ˆ

d4z s∨
m(x, z) s∨

m ′(z, y)

we see that the operators on the left side of (2.1.43) satisfy this support condition as
well. Moreover, the calculations

(i /∂x − m) s∨
m s∨

m ′(x, y) = s∨
m ′(x, y)

and

(i /∂x − m)
PP

m − m ′ (s
∨
m − s∨

m ′)(x, y)

= PP

m − m ′
(
δ(x − y) − (m ′ − m)s∨

m ′(x, y) − δ(x − y)
)

= s∨
m ′(x, y)

show that both sides of (2.1.43) satisfy the same inhomogeneous Dirac equation.
Hence their difference is a distributional solution of the homogeneous Dirac equation
which vanishes outside J∨

x . The uniqueness of the solution of the Cauchy problem for
hyperbolic PDEs yields that this difference vanishes identically. This proves (2.1.43)
and thus concludes the proof of (2.1.39). �

In the above operator products we get contributions of two different forms: those
involving a factor δ(m − m ′) and those involving the principal value of 1/(m − m ′).
In order to simplify the structure of the multiplication rules, it is useful to get rid of
the principal values by restricting attention to combinations in which all principal
values drop out in telescopic sums. To this end, we introduce the series of operator
products

b<
m =

∞∑

n=0

(− smB
)n

, bm =
∞∑

n=0

(− Bsm
)n

B , b>
m =

∞∑

n=0

(− Bsm
)n

.

(2.1.44)

Corollary 2.1.4 Let C ∈ {pm, km} and C ′ ∈ {pm ′ , km ′ } as well as b<
m, b

>
m as in

(2.1.44). Then the following calculation rule holds:

C b>
mb

<
m ′ C ′ = CC ′ + δ(m − m ′) π2 C bm pm bm C ′. (2.1.45)

Proof Using the calculation rules of the previous lemma, we obtain

C
( 1∑

l=0

(Bsm)l(sm ′B)n−l
)
C ′ = Csm ′ BC ′ + C B sm C ′

= PP

m − m ′
(
C BC ′ − C BC ′) = 0 .
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The same method also applies to higher order. We again get a telescopic sum, but
the last summand in (2.1.39) gives additional contributions. More precisely, for any
n ≥ 2,

C
( n∑

l=0

(Bsm)l(sm ′B)n−l
)
C ′

= C(Bsm)nC ′ + C(sm ′B)nC ′ + C

[ n−1∑

l=1

(Bsm)l(sm ′B)n−l

]
C ′

= C
PP

m − m ′
[−(Bsm)n−1B + B(sm ′B)n−1

]
C ′

+ C
n−1∑

l=1

(Bsm)l−1B

(
PP

m − m ′ (sm − sm ′) + δ(m − m ′)π2 pm

)
B(sm ′B)n−l−1C ′

= PP

m − m ′ C
[−(Bsm)n−1B + B(sm ′B)n−1

]
C ′

+ PP

m − m ′ C
( n−1∑

l=1

(Bsm)l(Bsm ′)n−l−1B −
n−2∑

l=0

(Bsm)l(Bsm ′)n−l−1B
)
C ′

+ δ(m − m ′) π2 C
n−1∑

l=1

(Bsm)l−1BpmB(sm ′B)n−l−1C ′

= δ(m − m ′) π2 C
n−1∑

l=1

(Bsm)l−1BpmB(sm ′B)n−l−1C ′

= δ(m − m ′) π2 C
n−2∑

l=0

(Bsm)lBpmB(sm ′B)n−l−2C ′.

Thus, performing an index shift, we obtain

C b>
mb

<
m ′ C ′ = C

∞∑

n=0

(−Bsm)n
∞∑

n′=0

(−sm ′B)n
′
C ′

= C
∞∑

n=0

n∑

l=0

(−Bsm)l(−sm ′B)n−lC ′

= CC ′ + δ(m − m ′)π2
∞∑

n=2

(−1)nC

(
n−2∑

l=0

(Bsm)lBpmB(sm ′B)n−l−2

)
C ′

= CC ′ + δ(m − m ′)π2
∞∑

n=0

(−1)nC

(
n∑

l=0

(Bsm)lBpmB(sm ′B)n−l

)
C ′

= CC ′ + δ(m − m ′)π2C bm pmbm C ′.

This concludes the proof. �
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In what follows, we rewrite all operator products in terms of B and pm , km as well
as the above combinations b<

m , bm and b>
m . In order to explain how this can be done,

we rewrite the perturbation expansion for k̃m in this form.

Proposition 2.1.5 The perturbation expansion for k̃m as given by (2.1.26) can be
written as

k̃m =
∞∑

β=0

(−iπ)2βb<
mkm(bmkm)2βb>

m , (2.1.46)

where the factors b<
m, bm and b>

m are again the operator products in (2.1.44),

Proof An explicit calculation shows that

(i /∂ + B − m) b<
m = 0 .

As all operator products in (2.1.46) have a factor b<
m at the left, the series in (2.1.46)

is a solution of the Dirac equation.
From (2.1.14) and (2.1.34), we have

s∨
m = sm + iπkm , s∧

m = sm − iπkm . (2.1.47)

We substitute the series (2.1.25) into (2.1.26), insert (2.1.47) and expand. A reorder-
ing of the resulting sum gives the claim. The details of the reordering process can be
found in [F3]. �

2.1.6 The Causal Perturbation Expansion

We follow the constructions in [FT2]. Recall that, in the presence of an external
potential B, the perturbation expansion of the advanced and retarded Green’s func-
tions is unique by causality (2.1.25). Moreover, Proposition 2.1.5 gave us a unique
perturbation expansion of the causal fundamental solution (2.1.46).

In the following constructions, we need to multiply the operator products in
(2.1.46). These products have amathematicalmeaning as distributions in the involved
mass parameters. Namely, according to Lemma 2.1.3 and Corollary 2.1.4,

pm pm ′ = km km ′ = δ(m − m ′) pm (2.1.48)

pm km ′ = km pm ′ = δ(m − m ′) km (2.1.49)

km b>
m b<

m ′ km ′ = δ(m − m ′)
(
pm + π2 km bm pm bm km

)
. (2.1.50)

Since these formulas all involve a common prefactor δ(m − m ′), we can introduce
a convenient notation by leaving out this factor and omitting the mass indices. For
clarity, we denote this short notation with a dot, i.e. symbolically
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A · B = C stands for Am Bm ′ = δ(m − m ′) Cm . (2.1.51)

With this short notation, the above multiplication rules can be written in the compact
form

p · p = k · k = p , p · k = k · p = k , k b> · b<k = p + π2 kbpbk .

(2.1.52)
Writing (2.1.46) as

k̃ =
∞∑

β=0

(−iπ)2β b< k (bk)2β b> , (2.1.53)

powers of the operator k̃ with the product (2.1.51) are well-defined using the multi-
plication rules (2.1.52). This makes it possible to develop a spectral calculus for k̃.
In particular, in [FG1] the operator Psea is constructed as the projection operator on
the negative spectral subspace of k̃. We now give an equivalent construction using
contour integrals, which gives a more systematic procedure for computing all the
contributions to the expansion (for basics on the resolvent and contour integrals see
Exercise 2.6).

We introduce the resolvent by

R̃λ = (k̃ − λ
)−1

. (2.1.54)

Writing k̃ as
k̃ = k + �k , (2.1.55)

(where k is the corresponding distribution in the vacuum), the resolvent R̃λ can be
written as a Neumann series,

R̃λ = (k − λ + �k)−1 = (1 + Rλ · �k)−1 · Rλ =
∞∑

n=0

(−Rλ · �k)n · Rλ .

(2.1.56)
The multiplication rules (2.1.52) imply that p is idempotent and thus has the eigen-
values 1 and 0. Since the operator k commutes with p and its square equals p, it
has the eigenvalues ±1 and 0. A short computation shows that the corresponding
spectral projection operators are (p ± k)/2 and 11 − p, respectively. Hence we can
write the unperturbed resolvent Rλ := (k − λ)−1 as

Rλ = p + k

2

(
1

1 − λ

)
+ p − k

2

(
1

−1 − λ

)
− 11 − p

λ
. (2.1.57)

Using this formula in (2.1.56), to every order in perturbation theory we obtain a
meromorphic function in λ having poles only at λ = 0 and λ = ±1.
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We now use contour integral methods to develop a spectral calculus. To this end,
we choose a contour �− which encloses the point−1 in counter-clockwise direction
and does not enclose the points 1 and 0. Similarly,�+ is a contour which encloses the
point +1 in counter-clockwise direction and does not enclose the points −1 and 0.
Moreover, we let f be a holomorphic function defined on an open neighborhood of
the points ±1. We define f (k̃) as the contour integral

f
(
k̃
) := − 1

2πi

‰
�+∪�−

f (λ) R̃λ dλ . (2.1.58)

Using (2.1.56) together with the fact that to every order in perturbation theory, the
integrand is a meromorphic function in λ having poles only at λ = 0 and λ = ±1,
one sees that the operator f (k̃) is well-defined to every order in perturbation theory
and is independent of the choice of the contours �+ and �−.

Theorem 2.1.6 (functional calculus) For any functions f, g which are holomorphic
in discs around ±1 which contain the contours �±,

(i /∂ + B − m) f
(
k̃
) = 0 (2.1.59)

f
(
k̃
) · g(k̃) = ( f g)

(
k̃
)
. (2.1.60)

Proof Since the operator k̃ maps to solutions of the Dirac equation, we know that

(i /∂ + B − m) R̃λ = (i /∂ + B − m)
(− λ−1

)
.

Taking the contour integral (2.1.58) gives (2.1.59).
The starting point for proving (2.1.60) is the resolvent identity

R̃λ · R̃λ′ = 1

λ − λ′
(
R̃λ − R̃λ′

)
. (2.1.61)

We set � = �+ ∪ �− and denote the corresponding contour for λ′ by �′. Since the
integral (2.1.58) is independent of the precise choice of the contour, we may choose

� = ∂Bδ(1) ∪ ∂Bδ(−1) and �′ = ∂B2δ(1) ∪ ∂B2δ(−1)

for sufficiently small δ < 1/2. Then � does not enclose any point of �′, implying
that ‰

�

f (λ)

λ − λ′ dλ = 0 for all λ′ ∈ �′ . (2.1.62)

On the other hand, �′ encloses every point of �, so that

‰
�′

f (λ) g(λ′)
R̃λ

λ − λ′ dλ′ = −2πi f (λ) g(λ) R̃λ for all λ ∈ � . (2.1.63)
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Combining (2.1.61) with (2.1.62) and (2.1.63), we obtain

f
(
k̃
) · g(k̃) = − 1

4π2

‰
�

f (λ) dλ

‰
�′

g(λ′) dλ′ 1

λ − λ′
(
R̃λ − R̃λ′

)

= − 1

2πi

‰
�

f (λ) g(λ) R̃λ dλ = ( f g)
(
k̃
)
.

This concludes the proof. �

The fermionic projector P sea is obtained by choosing a specific function f , as we
nowexplain. First, the desired splitting of the solution space of theDirac equation into
two subspaces (see Sect. 2.1.2) can now be obtained using the sign of the spectrum
of k̃. More precisely, we choose Psea such that its image coincides with the negative
spectral subspace of k̃. To this end, we choose a function f which vanishes identically
in a neighborhood of+1. In a neighborhood of−1, on the other hand, the form of f is
determined by the spatial normalization condition (see (2.1.21)). Namely, the correct
definition is

P sea = − 1

2πi

‰
�−

(−λ) R̃λ dλ , (2.1.64)

as becomes clear in the next proposition.

Proposition 2.1.7 The expansion Psea has the properties

(i /∂ + B − m) P sea = 0 (2.1.65)

2π
ˆ
R3

P sea
(
x, (t, �y)) γ0 P sea

(
(t, �y), z) d3y = −P sea(x, z) . (2.1.66)

Moreover, Psea is symmetric
(Psea)∗ = Psea , (2.1.67)

where the star denotes the adjoint with respect to the space-time inner product (1.5.2).

We note for clarity that for the kernel of the fermionic projector, the symmetry
property (2.1.67) means that

(
P sea(x, y)

)∗ = P sea(y, x) , (2.1.68)

where the star denotes the adjoint with respect to the spin scalar product (1.2.18).
In order to simplify the notation in the proof, we abbreviate the spatial integral

in (2.1.66) by |t , i.e.

(A |t B)(x, z) := 2π
ˆ
R3

A
(
x, (t, �y)) γ0 B

(
(t, �y), z) d3y .

We begin with a preparatory lemma.

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
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Lemma 2.1.8 For any t0 ∈ R, the distribution (2.1.26) has the property

k̃m |t0 k̃m = k̃m .

Proof Clearly, it suffices to prove the relation when evaluated by a test function f .
Then φ̃ := k̃m( f ) is a smooth solution of the Dirac equation with spatially compact
support. Therefore, it suffices to show that for any such solution,

φ̃(t, �x) = 2π
ˆ
R3

k̃m(t, �x; t0, �y) γ0 φ̃0(�y) d3y .

Since φ̃ and k̃m satisfy the Dirac equation, it suffices to prove this equation in the
case t > t0. In this case, the equation simplifies in view of (2.1.26) to

φ̃(x) = i
ˆ
R3

s̃∧
m(x, y) γ0 φ̃0(y)

∣∣
y=(t0,�y) d

3y ,

wherewe set x = (t, �x). This identity is derived as follows:We choose a non-negative
function η ∈ C∞(R)with η|[t0,t] ≡ 1 and η(−∞,t0−1) ≡ 0.We also consider η = η(x0)
as a function of the time variable in space-time. Then

φ̃(x) = (ηφ̃)(x) = s̃∧
m

(
(i /∂ + B − m)(ηφ̃)

) = s̃∧
m

(
iγ0 η̇ φ̃)

)
,

where we used the defining equation of the Green’s function s̃∧
m(i /∂x + B − m) = 11

together with the fact that φ̃ is a solution of the Dirac equation. To conclude the
proof, we choose a sequence ηl such that the sequence of derivatives η̇l converges
as l → ∞ in the distributional sense to the δ-distribution δt0 supported at t0. Then

s̃∧
m

(
iγ0 η̇ φ̃)

)
(x) =

ˆ (
s̃∧
m(x, y)

(
iγ0 η̇(y0) φ̃(y)

))
d4y

→
ˆ
R3

(
s̃∧
m(x, y)

(
iγ0φ̃)

) ∣∣
y=(t0,�y) d

3y ,

giving the result. �

An alternative, more computational proof of this lemma is sketched in Exer-
cise 2.7.

Proof of Proposition 2.1.7 The Dirac equation (2.1.65) follows immediately from
the identity (2.1.59). In order to prove (2.1.66), we integrate the relations

R̃λ · (k̃ − λ) = 11 = (k̃ − λ) · R̃λ ,

to obtain ‰
�−

R̃λ · k̃ dλ =
‰

�−
R̃λ λ dλ =

‰
�−

k̃ R̃λ dλ .
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As a consequence,

P sea |t P sea = − 1

4π2

‰
�−

dλ

‰
�′−

dλ′ R̃λ · k̃ |t k̃ · R̃λ′ ,

and applying Lemma 2.1.8 for t0 = t gives

Psea |t Psea = − 1

4π2

‰
�−

dλ

‰
�′−

dλ′ R̃λ · k̃ · R̃λ′ = − 1

4π2

‰
�−

λ dλ

‰
�′−

dλ′ R̃λ · R̃λ′ .

Now we can again apply (2.1.61) and (2.1.62) (which remains valid if the integrand
involves an additional factor λ) as well as (2.1.63). We thus obtain

P sea |t P sea = − 1

2πi

‰
�−

λ R̃λ dλ = −P sea .

It remains to prove the symmetry property (2.1.67). The operators pm , km and sm
are obviously symmetric (with respect to the inner product (1.5.2)). According
to (2.1.46), the operator k̃m is also symmetric. Hence the resolvent R̃λ defined
by (2.1.54) has the property

R̃∗
λ = R̃λ .

This property implies that if we consider the Laurent expansion of−λ R̃λ aroundλ =
−1,

−λ R̃λ = A−1

λ + 1
+ A0 + A1 (1 + λ) + · · · ,

then the operators A−1, A0, . . . are all symmetric with respect to (1.5.2). Since the
contour integral (2.1.64) simply gives the residue −A−1, we obtain (2.1.67). This
concludes the proof. �

In order to illustrate the above constructions,wenowcompute thefirst orders of the
perturbation expansion (2.1.64).Wefirst recall that in the computation rules (2.1.48)–
(2.1.50) no principal values occur. Using these rules in (2.1.56) and (2.1.64), one
sees that also P sea involves no principal values. With this in mind, we may omit all
principal values in the computation, even if we consider other operator products. In
particular, we may write the computation rules of Lemma 2.1.3 as

p · s = s · p = k · s = s · k = 0 and s · s = π2 p . (2.1.69)

Combining (2.1.52) and (2.1.69) with (2.1.57), we obtain

Rλ · s = s · Rλ = − 1

λ
s

Rλ · k = k · Rλ = p + k

2

(
1

1 − λ

)
− p − k

2

(
1

−1 − λ

)

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
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According to (2.1.53) and (2.1.55),

�k = −sBk − kBs + kBsBs + sBkBs + sBsBk − π2kBkBk + O(B3) .

Hence, using (2.1.56),

R̃λ =
∞∑

n=0

(−Rλ · �k)n · Rλ = Rλ − Rλ · �k · Rλ + Rλ · �k · Rλ · �k · Rλ + O(B3)

= Rλ − Rλ ·
(
−sBk − kBs + kBsBs + sBkBs + sBsBk − π2kBkBk

)
· Rλ

+ Rλ · (−sBk − kBs) · Rλ · (−sBk − kBs) · Rλ + O(B3) .

Using (2.1.57) and computing the contour integrals, one obtains to first order

P sea = −λ
p − k

2
− sB

p − k

2
− p − k

2
B s
∣∣∣
λ=−1

+ O(B2)

= p − k

2
− sB

p − k

2
− p − k

2
B s + O(B2) . (2.1.70)

To second and higher orders, the resolvent R̃λ involves higher poles at λ = −1.
This gives rise to derivatives of the factor (−λ) in (2.1.64), having an influence
of the combinatorics of the perturbation expansion (see Exercise 2.8). The reader
interested in more details is referred to [FT2, Appendix A]. A few structural results
of the causal perturbation expansion are treated in Exercises 2.9–2.11.

2.1.7 Introducing Particles and Anti-Particles

We shall now make the method of occupying particle and anti-particle states (2.1.4)
precise in the presence of an external potential. To this end, it is useful to construct
out of the kernel of the fermionic projector a projection operator on a Hilbert space,
as we now explain. On the smooth solutions of the Dirac equation (2.1.5) with
spatially compact support one can introduce the scalar product (1.2.2). Due to current
conservation, this scalar product is again independent of the choice of t . Taking the
completion, the solution space of the Dirac equation becomes a Hilbert space, which
we denote by (Hm, (.|.)m). We now introduce on the Dirac wave functions at time t
the operator

�sea : C∞
0 (Nt , SM ) → C∞(M , SM ) ,

(�seaψ)(x) = −2π
ˆ
R3

P sea
(
x, (t, �y)) γ0 ψ(�y) d3y , (2.1.71)

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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where Nt := {t} × R
3 ⊂ M denotes the spatial hyperplane at time t . According

to (2.1.65), this operator maps to the solutions of the Dirac equation. Moreover,
the spatial normalization property (2.1.66) implies that �sea can be extended by
continuity to a projection operator onHm , i.e.

�sea : Hm → Hm with (�sea)∗ = �sea = �2
sea

(where the star now denotes the adjoint with respect to the scalar product (1.2.2);
note that the last equation follows from the symmetry of the kernel (2.1.68)).

Nowwe can form another operator by adding and subtracting projection operators.
More precisely, the operator

� := �sea + �span(ψ1,...,ψnp )
− �span(φ1,...,φna )

(where �U : Hm → Hm denotes the orthogonal projection to a subspace U ⊂ Hm)
is again a projection operator, provided that the functions φl are vectors in Hm

which lie in the image of �sea, whereas the vectors ψk ∈ Hm are in the orthogonal
complement of the image of�sea. In order to comply with the usual normalization of
wave functions in quantum mechanics, we orthonormalize these vectors as follows,

(ψk |ψk ′)m = 2π δk,k ′ and (φl |φl ′)m = 2π δl,l ′ (2.1.72)

(we included the factor 2π in order to account for the factor 2π in (1.2.2)). Then we
can write � more explicitly as

�ψ := �seaψ + 1

2π

np∑

k=1

ψk (ψk |ψ)m − 1

2π

na∑

l=1

φl (φl |ψ)m .

This new projection operator can again be written in the form (2.1.71) with the
distribution

P(x, y) = Pvac
m (x, y) − 1

2π

np∑

k=1

ψk(x)ψk(y) + 1

2π

na∑

l=1

φl(x)φl(y) .

This relation gives a mathematical justification for (2.1.4) in the presence of an
external potential. Note that the wave functions ψk and φl must be solutions of the
Dirac equation (2.1.5). Moreover, the φl must be in the image of�sea, whereas theψk

must be in the orthogonal complement of the image of�sea. Finally, the normalization
conditions (2.1.72) can be written as

ˆ
R3

(ψkγ
0ψk ′)(t, �x) d3x = δk,k ′ ,

ˆ
R3

(φlγ
0φl ′)(t, �x) d3x = δl,l ′ .

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
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2.2 The Light-Cone Expansion

The light-cone expansion is a powerful tool for analyzing the fermionic projector in
position space. We now outline the constructions and results as first given in [F5]
and [F6]. Before beginning, we point out that the light-cone expansion is closely tied
to the causal perturbation expansion. Namely, we will shall see that the “causality”
of the perturbation expansion (as built in via (2.1.26) into the resolvent (2.1.54)) will
become apparent in the light-cone expansion of P(x, y) in the fact that all appearing
line integrals will be bounded integrals along the line segment xy. This specific
feature of the light-cone expansion is of central importance for the analysis of the
continuum limit.

2.2.1 Basic Definition

Wefirst give the basic definition of the light-cone expansion and explain it afterwards.

Definition 2.2.1 A distribution A(x, y) on M × M is of the order O((y − x)2p)
for p ∈ Z if the product

(y − x)−2p A(x, y)

is a regular distribution (i.e. a locally integrable function). An expansion of the form

A(x, y) =
∞∑

j=g

A[ j](x, y) (2.2.1)

with g ∈ Z is called light-cone expansion if the A[ j](x, y) are distributions of the
order O((y − x)2 j ) and if A is approximated by the partial sums in the sense that for
all p ≥ g,

A(x, y) −
p∑

j=g

A[ j](x, y) is of the order O
(
(y − x)2p+2

)
. (2.2.2)

The parameter g gives the leading order of the singularity of A(x, y) on the light
cone.We point out that we do not demand that the infinite series in (2.2.1) converges.
Thus, similar to a formal Taylor series, the series in (2.2.1) is defined only via the
approximation by the partial sums (2.2.2). The notion of the light-cone expansion is
illustrated in Exercise 2.12.

As a simple example for a light-cone expansion, we consider the distribu-
tion Tm2(x, y) as introduced in (1.2.26) and analyzed in Lemma 1.2.9. Expanding
the Bessel functions in (1.2.29) in a power series, one obtains (see [OLBC, (10.2.2),
(10.8.1) and (10.25.2), (10.31.1)])

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
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Tm2(x, y) = − 1

8π3

(
PP

(y − x)2
+ iπδ

(
(y − x)2

)
ε
(
(y − x)0

))

+ m2

32π3

∞∑

j=0

(−1) j

j ! ( j + 1)!
(
m2(y − x)2

) j

4 j

×
(
log
∣∣m2(y − x)2

∣∣+ c j + iπ �
(
(y − x)2

)
ε
(
(y − x)0

))
(2.2.3)

with real coefficients c j (here � and ε are again the Heaviside and the sign function,
respectively). Due to the factors (y − x)2 j , this series representation is a light-cone
expansion.The termwith the leading singularity becomes integrable aftermultiplying
by (y − x)2, showing that g = −1.

The light-cone expansion of the kernel of the fermionic projector of the vacuum
Pvac(x, y) (see (2.1.1) and (2.1.2)) is readily obtained using the relation (1.2.25).
To this end, one simply applies the differential operator i /∂ + m to the above series
expansion of Tm2 and computes the derivatives term by term. Since differentiation
increases the order of the singularity on the light cone by one, we thus obtain a
light-cone expansion of the form (2.2.1) with g = −2.

2.2.2 Inductive Light-Cone Expansion of the Green’s
Functions

We now return to the perturbation series for the causal Green’s functions (2.1.25)
derived in Sect. 2.1.4. Our goal is to develop a method for performing the light-cone
expansion of each summand of this perturbation series. In order to get a first idea
for how to proceed, we begin by considering the free advanced Green’s function s∨

m
of a the Dirac equation of mass m in position space: Similar to (1.2.25), it is again
convenient to pull the Dirac matrices out of s∨

m by setting

s∨
m(x, y) = (i /∂x + m) S∨

m2(x, y) , (2.2.4)

where S∨
m2 is the advanced Green’s function of the Klein-Gordon operator,

S∨
m2(x, y) = lim

ν↘0

ˆ
d4 p

(2π)4

1

p2 − m2 − iν p0
e−i p(x−y) . (2.2.5)

Computing this Fourier integral and expanding the resulting Bessel function in a
power series gives (for details see Exercise 2.13)

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
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S∨
m2(x, y) = − 1

2π
δ
(
(y − x)2

)
�
(
y0 − x0

)

+ m2

4π

J1
(√

m2 (y − x)2
)

√
m2 (y − x)2

�
(
(y − x)2

)
�
(
y0 − x0

)
(2.2.6)

= − 1

2π
δ
(
(y − x)2

)
�
(
y0 − x0

)

+ m2

8π

∞∑

j=0

(−1) j

j ! ( j + 1)!
(
m2(y − x)2

) j

4 j
�
(
(y − x)2

)
�
(
y0 − x0

)
.

(2.2.7)

This computation shows that S∨
m2(x, y) has a δ((y − x)2)-like singularity on the light

cone. Furthermore, one sees that S∨
m2 is a power series in m2. The important point

for what follows is that the higher order contributions in m2 contain more factors
(y − x)2 and are thus of higher order on the light cone. More precisely,

(
d

dm2

)n

S∨
m2(x, y)

∣∣∣
m=0

is of the order O
(
(y − x)2n−2

)
. (2.2.8)

According to (2.2.4), the Dirac Green’s function is obtained by computing the first
partial derivatives of (2.2.7). Therefore, s∨

m(x, y) has a singularity on the light cone
which is even∼δ′((y − x)2). The higher order contributions inm are again of increas-
ing order on the light cone. This means that we can view the Taylor expansion of
(2.2.4) in m,

s∨
m(x, y) =

∞∑

n=0

(i /∂ + m)
1

n!
(

d

dm2

)n

S∨
m2(x, y)

∣∣∣
m=0

,

as a light-cone expansion of the free Green’s function. Our idea is to generalize this
formula to the casewith interaction.More precisely, wewant to express the perturbed
Green’s function in the form

s̃∨(x, y) =
∞∑

n=0

Fn(x, y)

(
d

dm2

)n

S∨
m2(x, y)

∣∣∣
m=0

(2.2.9)

with factors Fn which depend on the external potential. We will see that this method
is very convenient; especially, we can in this way avoid working with the rather com-
plicated explicit formula (2.2.7). Apart from giving a motivation for the desired form
(2.2.9) of the formulas of the light-cone expansion, the mass expansion (2.2.7) leads
to the conjecture that even the higher order contributions in the mass to the perturbed
Green’s functions might be of higher order on the light cone. If this conjecture was
true, it would be a good idea to expand the perturbation expansion for s̃ with respect
to the parameter m. Therefore, our strategy is to first expand (2.1.25) with respect to
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the mass and to try to express the contributions to the resulting expansion in a form
similar to (2.2.9).

The expansion of (2.1.25) with respect to m gives a double sum over the orders
in the mass parameter and in the external potential. It is convenient to combine these
two expansions in a single perturbation series. To this end, we rewrite the Dirac
operator as

i /∂ + B − m = i /∂ + B with B := B − m . (2.2.10)

For the light-cone expansion of the Green’s functions, we will always view B as
the perturbation of the Dirac operator. This has the advantage that the unperturbed
objects are massless. Expanding in powers of B gives the mass expansion and the
perturbation expansion in one step. In order to simplify the notation, for the massless
objects we usually omit the index m. Thus we write the Green’s function of the
massless Dirac equation in the Minkowski vacuum as

s∨(x, y) = i /∂x S
∨
m2(x, y)

∣∣
m=0 , s∧(x, y) = i /∂x S

∧
m2(x, y)

∣∣
m=0 . (2.2.11)

Then the interacting Green’s functions are given by the perturbation series

s̃∨ =
∞∑

k=0

(−s∨B)ks∨ , s̃∧ =
∞∑

k=0

(−s∧B)ks∧ . (2.2.12)

The constructions of the following subsections are exactly the same for the advanced
and retarded Green’s functions. In order to treat both cases at once, in the remainder
of this section we will omit all superscripts ‘∨’, ‘∧’. The formulas for the advanced
and retarded Green’s functions are obtained by either adding ‘∨’ or ‘∧’ to all factors
s, S.

We now explain how the individual contributions to the perturbation expansion
(2.2.12) can be written similar to the right side of (2.2.9) as a sum of terms of
increasing order on the light cone. For the mass expansion of Sm2 , we set a = m2

and use the notation

S(l) =
(

d

da

)l

Sa
∣∣
a=0 . (2.2.13)

In preparation, we derive some computation rules for the S(l): Sa satisfies the defining
equation of a Klein-Gordon Green’s function

(−�x − a) Sa(x, y) = δ4(x − y) .

Differentiating with respect to a and setting a = 0 gives

− �x S
(l)(x, y) = δl,0 δ4(x − y) + l S(l−1)(x, y) , l ≥ 0. (2.2.14)



2.2 The Light-Cone Expansion 109

(For l = 0, this formula does not seem to make sense because S(−1) is undefined.
The expression is meaningful, however, if one keeps in mind that in this case the
factor l is zero, and thus the whole second summand vanishes. We will also use this
convention in the following calculations.) Next, we differentiate the formulas for Sa
in momentum space,

S∨
a (p) = 1

p2 − a − iν p0
, S∧

a (p) = 1

p2 − a + iν p0
(2.2.15)

with respect to both p and a. Comparing the results gives the relation

∂

∂ pk
Sa(p) = −2pk

d

da
Sa(p) ,

or, after expanding in the parameter a,

∂

∂ pk
S(l)(p) = −2pk S

(l+1)(p) , l ≥ 0. (2.2.16)

This formula also determines the derivatives of S(l) in position space; namely

∂

∂xk
S(l)(x, y) =

ˆ
d4 p

(2π)4
S(l)(p) (−i pk) e

−i p(x−y)

(2.2.16)= i

2

ˆ
d4 p

(2π)4

∂

∂ pk
S(l−1)(p) e−i p(x−y)

= − i

2

ˆ
d4 p

(2π)4
S(l−1)(p)

∂

∂ pk
e−i p(x−y)

= 1

2
(y − x)k S

(l−1)(x, y) , l ≥ 1. (2.2.17)

We iterate this relation to calculate the Laplacian,

−�x S
(l)(x, y) = −1

2

∂

∂xk
(
(y − x)k S(l−1)(x, y)

)

= 2 S(l−1)(x, y) + 1

4
(y − x)2 S(l−2)(x, y) , l ≥ 2.

After comparing with (2.2.14), we conclude that

(y − x)2 S(l)(x, y) = −4l S(l+1)(x, y) , l ≥ 0 . (2.2.18)

Finally, S(l)(x, y) is only a function of (y − x), which implies that

∂

∂xk
S(l)(x, y) = − ∂

∂yk
S(l)(x, y) , l ≥ 0 . (2.2.19)
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The following lemma gives the light-cone expansion of an operator product which
is linear in the external potential. We will later use it for the iterative light-cone
expansion of more complicated operator products; in this case, the potential will be
a composite expression in B and its partial derivatives. In order to avoid confusion
then, we denote the external potential by V .

Lemma 2.2.2 (light-cone expansion to first order) For any l, r ≥ 0, the operator
product S(l) V S(r) has the light-cone expansion

(S(l) V S(r))(x, y)

=
∞∑

n=0

1

n!
ˆ 1

0
αl (1 − α)r (α − α2)n (�nV )|αy+(1−α)x dα S(n+l+r+1)(x, y) .

(2.2.20)

Proof Themethod of proof is to first compute the Laplacian of both sides of (2.2.20).
The resulting formulas will have a similar structure, making it possible to proceed
inductively.

On the left side of (2.2.20), we calculate the Laplacian with the help of (2.2.14)
to

− �x (S
(l) V S(r))(x, y) = δl,0 V (x) S(r)(x, y) + l (S(l−1) V S(r))(x, y) .

(2.2.21)

The Laplacian of the integral on the right side of (2.2.20) can be computed with
(2.2.17) and (2.2.14),

−�x

ˆ 1

0
αl (1 − α)r (α − α2)n (�nV )|αy+(1−α)x dα S(n+l+r+1)(x, y) (2.2.22)

= −
ˆ 1

0
αl (1 − α)r+2 (α − α2)n (�n+1V )|αy+(1−α)x dα S(n+l+r+1)(x, y)

−
ˆ 1

0
αl (1 − α)r+1 (α − α2)n (∂k�nV )|αy+(1−α)x dα

× (y − x)k S(n+l+r)(x, y)

+ (n + l + r + 1)
ˆ 1

0
αl (1 − α)r (α − α2)n (�nV )|αy+(1−α)x dα

× S(n+l+r)(x, y) .

In the second summand, we rewrite the partial derivative as a derivative with respect
to α,

(y − x)k(∂k�nV )|αy+(1−α)x = d

dα
(�nV )|αy+(1−α)x

(as is verified immediately by computing the right side with the chain rule). This
makes it possible to integrate in α by parts. We thus obtain
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ˆ 1

0
αl (1 − α)r+1 (α − α2)n (∂k�nV )|αy+(1−α)x dα (y − x)k

=
ˆ 1

0
αl (1 − α)r+1 (α − α2)n

d

dα

(
(�nV )

∣∣
αy+(1−α)x

)
dα

= −δn,0 δl,0 V (x)

− (n + l)
ˆ 1

0
αl (1 − α)r+2 (α − α2)n−1 (�nV )|αy+(1−α)x dα

+ (n + r + 1)
ˆ 1

0
αl (1 − α)r (α − α2)n (�nV )|αy+(1−α)x dα

= −δn,0 δl,0 V (x)

− n
ˆ 1

0
αl (1 − α)r+2 (α − α2)n−1 (�nV )|αy+(1−α)x dα

+ (n + l + r + 1)
ˆ 1

0
αl (1 − α)r (α − α2)n (�nV )|αy+(1−α)x dα

− l
ˆ 1

0
αl−1 (1 − α)r (α − α2)n (�nV )|αy+(1−α)x dα .

We substitute back into the original equation to obtain

(2.2.22) = δn,0 δl,0 V (x) S(r)(x, y)

+ l
ˆ 1

0
αl−1 (1 − α)r (α − α2)n (�nV )|αy+(1−α)x dα S(n+l+r)(x, y)

−
ˆ 1

0
αl (1 − α)r+2 (α − α2)n (�n+1V )|αy+(1−α)x dα S(n+l+r+1)(x, y)

+ n
ˆ 1

0
αl (1 − α)r+2 (α − α2)n−1 (�nV )|αy+(1−α)x dα S(n+l+r)(x, y) .

After dividing by n! and summation over n, the last two summands are telescopic
and cancel each other. Thus one gets

− �
∞∑

n=0

1

n!
ˆ 1

0
αl (1 − α)r (α − α2)n (�nV )|αy+(1−α)x dα S(n+l+r+1)(x, y)

= δl,0 V (x) S(r)(x, y)

+ l
∞∑

n=0

1

n!
ˆ 1

0
αl−1 (1 − α)r (α − α2)n (�nV )|αy+(1−α)x dα S(n+l+r)(x, y) .

(2.2.23)

We now compare the formulas (2.2.21) and (2.2.23) for the Laplacian of both
sides of (2.2.20). In the special case l = 0, these formulas coincide, and we can use
a uniqueness argument for the solutions of the wave equation to prove (2.2.20): We
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assume that we consider the advanced Green’s function (for the retarded Green’s
function, the argument is analogous). For given y, we denote the difference of both
sides of (2.2.20) by F(x). Since the support of F(x) is in the past light cone x ∈
L∧
y , F vanishes in a neighborhood of the hypersurfaceH = {z ∈ R

4 | z0 = y0 + 1}.
Moreover, the Laplacian of F is identically zero according to (2.2.21) and (2.2.23).
We conclude that

�F = 0 and F|H = ∂k F|H = 0 .

Since the wave equation has a unique solution for given initial data on the Cauchy
surfaceH, F vanishes identically.

The general case follows by induction in l: Suppose that (2.2.20) holds for given l̂
(and arbitrary r ). Then, according to (2.2.21), (2.2.23), and the induction hypothesis,
the Laplacian of both sides of (2.2.20) coincides for l = l̂ + 1. The above uniqueness
argument for the solutions of the wave equation again gives (2.2.20). �

We recall for clarity that, according to (2.2.8), the higher a-derivatives of Sa(x, y)
are of higher order on the light cone. Thus the summands in (2.2.20) are of increasing
order on the light cone, and the infinite sum is mathematically well-defined in the
sense of Definition 2.2.1 via the approximation by the partial sums (2.2.2).

Lemma 2.2.2 can be used for the light-cone expansion of more complicated oper-
ator products. To explain the method, we look at the simplest example of three
factors S(0) and two potentials V and W ,

(S(0) V S(0) W S(0))(x, y) =
ˆ

d4z S(0)(x, z) V (z) (S(0) W S(0))(z, y) .

Having split up the operator product in this form, we can apply Lemma 2.2.2 to
the factor S(0)WS(0),

=
∞∑

n=0

1

n!
ˆ

d4z S(0)(x, z)

{
V (z)

ˆ 1

0
(α − α2)n (�nW )|αy+(1−α)z dα

}
S(n+1)(z, y) .

Now we rewrite the z-integral as the operator product (S(0)gy S(0))(x, y), where
gy(z) is the function in the curly brackets. The y-dependence of gy causes no problems
because we can view y as a fixed parameter throughout the expansion. Thus we can
simply apply Lemma 2.2.2 once again to obtain

=
∞∑

m,n=0

1

m! n!
ˆ 1

0
dβ (1 − β)n+1 (β − β2)m

ˆ 1

0
dα (α − α2)n

× �m
z

(
V (z) (�nW )|αy+(1−α)z

)
|z=βy+(1−β)x

S(m+n+2)(x, y) .

The Laplacian �m
z could be computed further with the Leibniz rule. Notice that

the manipulations of the infinite sums are unproblematic because to every order on
the light cone, the number of terms is actually finite (the situation would be more
difficult if we studied the convergence of the sum (2.2.1), but, as pointed out earlier,
the light-cone expansion is defined merely via the partial sums).
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We want to iteratively perform the light-cone expansion of the operator products
in (2.2.12). This is not possible directly with the method just described, because
(2.2.12) contains the Dirac Green’s function s (instead of S). We must think about
how to deal with this complication. Relation (2.2.11) allows us to replace the factors
s by S, but this gives additional partial derivatives in the operator product. These
derivatives can be carried out after each iteration step by applying the Leibniz rule
and using the differentiation rule (2.2.17). In the simplest example, we have

(s(0) V S(0))(x, y) = (i /∂x )(S
(0) V S(0))(x, y)

= i /∂x

∞∑

n=0

1

n!
ˆ 1

0
(α − α2)n (�nV )|αy+(1−α)x dα S(n+1)(x, y)

= i
∞∑

n=0

1

n!
ˆ 1

0
(1 − α) (α − α2)n (/∂ �nV )|αy+(1−α)x dα S(n+1)(x, y)

+ i

2

∞∑

n=0

1

n!
ˆ 1

0
(α − α2)n (�nV )|αy+(1−α)x dα (y − x) jγ

j S(n)(x, y) .

The only problem with this method is that the partial derivatives might hit a factor
S(0), inwhich case the rule (2.2.17) cannot be applied. In order to resolve this problem,
we extend our constructions in a way which allows us to use all previous formulas
also in this special case. To this end, we take (2.2.17) as the defining equation for
(y − x)k S(−1)(x, y),

(y − x)k S
(−1)(x, y) := 2

∂

∂xk
S(0)(x, y) (2.2.24)

(notice that S(−1) itself remains undefined, only the combination (y − x)k S(−1)(x, y)
makesmathematical sense as the partial derivative of the distribution S(0)). It turns out
that with this definition, all our computation rules as well as the light-cone expansion
of Lemma 2.2.2 remain valid for S(−1):

Lemma 2.2.3 (light-cone expansion to first order for r = −1) The operator product
(S(l) . S(−1)), l ≥ 0, has the light-cone expansion

ˆ
d4z S(l)(x, z) V (z) (y − z)k S

(−1)(z, y)

=
∞∑

n=0

1

n!
ˆ 1

0
αl (1 − α)−1 (α − α2)n

× �n
z

(
V (z) (y − z)k

)∣∣
z=αy+(1−α)x dα S(n+l)(x, y) .

Since the proof is straightforward, we omit it here but refer to Exercise 2.14
or [F6, proof of Lemma 2.2]. We note for clarity that the pole of the factor (1 − α)−1

at α = 1 in the formula of the above lemma does not cause any problems. Namely,
in the case n = 0 it disappears because (1 − α)−1(y − z) = y − x , whereas in the
case n > 0 it is compensated by the zero of the factor (α − α2)n .



114 2 Computational Tools

2.2.3 Structural Results for Chiral Potentials

In the previous section, we gave a constructive procedure for performing the light-
cone expansion of each summandof the perturbation expansion for the causalGreen’s
functions (2.2.12). In this and the next section,we shall explain how touse thismethod
to uncover the structure of the Green’s functions in position space. To this end, we
need to specify the form of the external potential B in the Dirac equation (2.1.5).
We are mostly interested in the situation that B is composed of left- or right-handed
potentials, i.e.

B = χL /AR + χR /AL . (2.2.25)

(here χL/R = 1
2 (11 ∓ �) are the chiral projectors, and � = iγ0γ1γ2γ3 is the usual

pseudoscalar matrix). Such so-called chiral potential are of central interest because
they allow for the description of gauge fields. For example, an electromagnetic field
is described by choosing AL = AR = A, where A is the electromagnetic potential. A
left-handed potential is needed for example for describing the weak interaction in the
standard model. In this context, it is important to describe non-abelian gauge fields.
In this case, the potentials AL and AR take values in a Lie algebra. For simplicity,
we here always represent the potentials by matrices acting on C

g with g ∈ N. In
order to describe the coupling of the gauge gauge fields to the fermions, the Dirac
wave functions must also carry an index a = 1, . . . , g. Moreover, we want to allow
for the situation that the system involves Dirac matrices of different rest masses,
which we label again by an index a. This leads to the following setup. We define the
fermionic projector of the vacuum and the Green’s functions as direct sums of the
corresponding operators with rest masses m1, . . . ,mg , i.e.

Pvac =
g⊕

a=1

Pvac
ma

and s =
g⊕

a=1

sma (2.2.26)

with Pvac
ma

and sm according to (2.1.2) and (2.1.9). We write the Dirac equation as

(i /∂ + B − mY )ψ(x) = 0 (2.2.27)

with B as in (2.2.25). Here Y is the mass matrix defined by

Y = 1

m
diag

(
m1, . . . ,ma)

(here m is introduced merely as an expansion parameter; the picture is that Y is
dimensionless, whereas m carries the dimension of inverse length). For later use, it
is also convenient to allow for scalar and pseudoscalar potentials. In order to built
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these potentials into the Dirac equation (2.2.27), it is most convenient to replace the
mass matrix by a space-time dependent matrix,1

Y = Y (x) := χLYL(x) + χRYR(x) , (2.2.28)

referred to as the dynamical mass matrix.
In analogy to (2.2.10), we combine the mass term with the potential by setting

B = χL /AR + χR /AL − mY . (2.2.29)

Then the perturbation expansion for the causal Green’s functions can again bewritten
in the form (2.2.12). The light-cone expansion can be carried out exactly as explained
in the previous section. The only point to keep in mind is that the chiral potentials
at different space-time points do not necessarily commute. Moreover, the chiral
potentials in general do not commute with the mass matrix. Therefore, in what
follows we need to be careful in keeping track of the order of multiplication.

Before going on, we explain our convention for the chiral indices of potentials
in (2.2.28) and (2.2.29). We follow the usual rule that a left-handed potential cou-
ples to the left-handed component of the Dirac wave function, whereas the right-
handedpotential couples to the right-handed component of thewave function. Indeed,
decomposing the Dirac wave function as

ψ = χL ψL + χR ψR , (2.2.30)

the Dirac equation (2.2.27) becomes

0 =
(
i /∂ + χL /AR + χR /AL − mχLYL(x) − mχRYR(x)

)(
χL ψL + χR ψR

)

= χL

((
i /∂ + /AR

)
ψR − mYLψL

)
+ χR

((
i /∂ + /AL

)
ψL − mYRψR

)
.

(here we use that the chirality is reversed at each Dirac matrix). This shows that our
conventions (2.2.28) and (2.2.29) indeed imply that left-handed potentials couple
to ψL and right-handed potentials to ψR .

The next theorem gives a structural result on the contributions to the light-cone
expansion of the Green’s functions. For the line integrals, we introduce the short
notation

ˆ y

x
[l, r | n] dz f (z) :=

ˆ 1

0
dα αl (1 − α)r (α − α2)n f (αy + (1 − α)x) .

(2.2.31)

1To avoid confusion, we point out that our convention differs from that used in [F6, F7], where the
dynamical mass matrix is defined instead by Y = χLYR + χRYL . Our convention fits to our general
rule that left- and right-handed potentials should couple to the left- and right-handed component of
the Dirac spinors, respectively (see also (2.2.30) and the explanation thereafter).
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Furthermore, we abbreviate the following products with multi-indices,

∂ J
z := ∂

∂z j1
· · · ∂

∂z jl
, (y − x)J := (y − x) j1 · · · (y − x) jl , γ J := γ j1 · · · γ jl ,

where J = ( j1, . . . , jl).

Theorem 2.2.4 In the presence of chiral potentials (2.2.29), the light-cone expan-
sion of the kth order contribution ((−sB)k s)(x, y) to the perturbation series (2.2.12)
can be written as an infinite sum of expressions, each of which has the form

χc0 C (y − x)I
ˆ y

x
[l1, r1 | n1] dz1 ∂ I1

z1 �p1
z1 V (1)

J1,c1
(z1)

ˆ y

z1
[l2, r2 | n2] dz2 ∂ I2

z2 �p2
z2 V (2)

J2,c2
(z2)

· · ·
ˆ y

zk−1

[lk , rk | nk ] dzk ∂ Ik
zk �pk

zk V (k)
Jk ,ck

(zk) γ J S(h)(x, y) . (2.2.32)

In this formula, C is a complex number and the parameters la, ra, na, and pa are non-
negative integers; the indices c and ca can take the two values L or R. The functions
V (a)
Ja ,ca

(where Ja is a multi-index and ca ∈ {L , R} is a chiral index) coincide with any
of the individual potentials in (2.2.29) and (2.2.28) with chirality ca, i.e.

V (a)
ca = Aca (in which case |Ja| = 1 ) or

V (a)
ca = mYca (in which case |Ja| = 0 ) . (2.2.33)

The chirality ca of the potentials is determined by the following rule:

(i) The chirality is reversed precisely at every mass matrix, i.e.

ca−1 and ca

{
coincide if V (a)

ca = Aca

are opposite if V (a)
ca = mYca

for all a = 1, . . . , k.

The tensor indices of the multi-indices in (2.2.32) are all contracted with each other,
according to the following rules:

(a) No two tensor indices of the same multi-index are contracted with each other.
(b) The tensor indices of the factor γ J are all contracted with different multi-indices,

in the order of their appearance in the product (2.2.32) (i.e., for J = ( j1, . . . , jl)
and 1 ≤ a < b ≤ l, the multi-index with which ja is contracted must stand to
the left of the multi-index corresponding to jb).

The parameter h is given by

2h = k − 1 − |I | +
k∑

a=1

(
|Ia| + 2pa

)
. (2.2.34)
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The number of factors (y − x) is bounded by

|I | ≤ k + 1 −
k∑

a=1

|Ia| . (2.2.35)

Basically, this theorem states that the light-cone expansion of the kth order Feyn-
man diagrams can be written with k nested line integrals. Notice that the potentials
V (a)(za) do in general not commute with each other, so that the order of multipli-
cation is important in (2.2.32). In order to avoid misunderstandings, we point out
that the derivatives ∂ Ia

za and �pa
za do not only act on V (a)(za), but also on all the fol-

lowing factors V (a+1)(za+1), V (a+2)(za+2), . . . (note that the variables za+1, za+2, . . .

implicitly depend on za via the inductive definition of the line integrals). Clearly,
these derivatives could be carried out further with the Leibniz rule, but it is easier
not to do this at the moment. The restrictions (a) and (b) on the possible contractions
of the tensor indices were imposed in order to avoid an abuse of our multi-index
notation. More precisely, (a) prevents factors (y − x)2 in (y − x)I , an unnecessary
large number of γ-matrices in γ J , and “hidden” Laplacians in the partial derivatives
∂ Ia
za . The rule (b), on the other hand, prevents factors (y − x)2 and hidden Laplacians

in combinations of the form (y − x)i (y − x) j γi γ j and ∂i j V
(a)
Ja

γi γ j , respectively.
Our ordering condition for the γ-matrices is just a matter of convenience. Relation
(2.2.34) is very useful because it immediately tells for any configuration of the line
integrals and potentials in (2.2.32) what the corresponding order on the light cone
is. Notice that (2.2.34) and (2.2.35) imply the inequality

h ≥ −1 +
k∑

a=1

(|Ia| + pa) . (2.2.36)

In particular, one sees that h ≥ −1. In the case h = −1, (2.2.34) yields that |I | > 0,
so that (2.2.32) must contain at least one factor (y − x). Therefore, the factor S(h) in
(2.2.32) is always well-defined by either (2.2.13) or (2.2.24).

We point out that, although the total number of summands (2.2.32) is infinite,
the number of summands for any given value of the parameter h is finite. This is
clear because, for fixed h, the relations (2.2.34) and (2.2.35) only allow for a finite
number of possibilities to choose the parameters |I |, |Ia|, and pa , giving rise to
only a finite number of expressions of the form (2.2.32). Since, according to (2.2.8),
the contributions for higher values of h are of higher order on the light cone, we
conclude that the number of summands (2.2.32) is finite to every order on the light
cone. Therefore, the light-cone expansion of Theorem 2.2.4 makes mathematical
sense in terms of Definition 2.2.1.

Proof of Theorem 2.2.4 We proceed inductively in k. For k = 0, the assumption is
true because in view of (2.2.11) and (2.2.24) we can write the free Dirac Green’s
function as

s(x, y) = (χL + χR)
i

2
(y − x) jγ j S

(−1)(x, y) , (2.2.37)
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which is of the desired form (2.2.32). The conditions (i), (a), (b), and the relations
(2.2.34), (2.2.35) are clearly satisfied.

Assume that the theorem holds for a given k. With the formula

(
(−sB)k+1 s

)
(x, y) = −i /∂x

ˆ
d4z S(0)(x, z) B(z)

(
(−sB)k s

)
(z, y) , (2.2.38)

we can express the (k + 1)st order contribution to the perturbation series (2.2.12) in
terms of the kth order contribution. We must show that (2.2.38) can again be written
as a sum of expressions of the form (2.2.32) (with k replaced by k + 1), and that
(i), (a), (b), and (2.2.34), (2.2.35) are satisfied. This is done in several construction
steps:

(1) Chiral decomposition:
We substitute the induction hypothesis (2.2.32) into (2.2.38). This gives a sum
of expressions of the form

C i /∂x

ˆ
d4z S(0)(x, z)

{
(y − z)I B(z) χc

ˆ y

z
[l1, r1 | n1] dz1 ∂ I1

z1 �p1 V (1)
J1,c1

(z1)

· · ·
ˆ y

zk−1

[lk , rk | nk ] dzk ∂
Ik
zk �pk V (k)

Jk ,ck
(zk) γ J

}
S(h)(z, y) . (2.2.39)

We insert the specific form of the potential B, (2.2.29), and expand. Using the
commutation rule γi χL/R = χR/L γi , we bring all chiral projectors to the very
left, where they can be combined with the formula χcχd = δcd χc to a single
chiral projector. Next, we bring the γ-matrices of B to the right and write them
together with the factor γ J in (2.2.39) (notice that the Dirac matrices commute
with the potentials V (a)

ca , which act non-trivially only on the Dirac sea index).

Denoting the individual potentials of the factor B in (2.2.39) by V (0)
J0,c0

, we thus
get for (2.2.39) a sum of expressions of the form

χc C i /∂x

ˆ
d4z S(0)(x, z)

{
(y − z)I V (0)

J0,c0
(z)

ˆ y

z
[l1, r1 | n1] dz1 ∂ I1

z1 �p1 V (1)
J1,c1

(z1)

· · ·
ˆ y

zk−1

[lk , rk | nk ] dzk ∂ Ik
zk �pk V (k)

Jk ,ck
(zk) γ J

}
S(h)(z, y) . (2.2.40)

The chiral decomposition in (2.2.29) and (2.2.28) imply that the chiralities
in (2.2.40) satisfy the rule (i) (after relabeling the indices in an obvious way). The
chirality of the potentials will not be affected in all the following construction
steps; to simplify the notation, we will omit the indices ca from now on.

(2) Light-cone expansion:
Since y can be considered as a fixed parameter, we can in (2.2.40) apply
Lemma 2.2.2 with V given by the expression in the curly brackets,
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(2.2.40) = χc C i /∂x

∞∑

n=0

1

n!
ˆ y

x
[0, h | n] dz

× �n
z

(
(y − z)I V (0)

J0
(z)

ˆ y

z
[l1, r1 | n1] dz1 ∂ I1

z1 �p1 V (1)
J1

(z1)

· · ·
ˆ y

zk−1

[lk, rk | nk] dzk ∂ Ik
zk �pk V (k)

Jk
(zk)

)
γ J S(n+h+1)(x, y) . (2.2.41)

(3) Computation of the Laplacian �n
z :

We carry out the z-derivatives in (2.2.41) inductively with the Leibniz rule. Each
derivative can act either on the factors (y − z)I or on the functions V (a). In the
first case, one of the factors (y − z) disappears. Thuswe get a sum of expressions
of the form

χc C i /∂x

ˆ y

x
[0, h | n] dz (y − z) Î ∂ I0

z �p0
z V (0)

J0
(z)

ˆ y

z
[l1, r1 | n1] dz1 ∂ I1

z1 �p1 V (1)
J1

(z1)

· · ·
ˆ y

zk−1

[lk , rk | nk ] dzk ∂ Ik
zk �pk V (k)

Jk
(zk) γ J S(n+h+1)(x, y) (2.2.42)

with | Î | ≤ |I | and
2n = |I | − | Î | + |I0| + 2p0 . (2.2.43)

We can assume that no tensor indices of ∂ I0
z are contractedwith each other (other-

wise we rewrite the corresponding partial derivatives as additional Laplacians).
Then all the partial derivatives ∂z in (2.2.42) were generated in the case when
one derivative of a Laplacian �z in (2.2.41) hit a factor (y − z) whereas the
other derivative acted on the V (a). Thus the number of factors (y − z) which
disappeared by carrying out the Laplacians in (2.2.41) is larger or equal than the
number of partial derivatives ∂z ,

|I | − | Î | ≥ |I0| . (2.2.44)

(4) Extraction of the factors (y − x):
In (2.2.42), we iteratively apply the identity

ˆ y

x
[0, r | n] dz (y − z) · · · = (y − x)

ˆ y

x
[0, r + 1 | n] dz · · · .

This gives (k + 1) nested line integrals of the form

(2.2.42) = χc C i /∂x (y − x) Î S(ĥ)(x, y)
ˆ y

x
[l0, r0 | n0] dz0 ∂ I0

z0 �p0 V (0)
J0

(z0)



120 2 Computational Tools

· · ·
ˆ y

zk−1

[lk, rk | nk] dzk ∂ Ik
zk �pk V (k)

Jk
(za) γ J (2.2.45)

with

l0 = 0 , r0 = h + | Î | , n0 = n (2.2.46)

0 ≤ 2ĥ = 2(n + h + 1)
(2.2.43)= 2h + 2 + |I | − | Î | + |I0| + 2p0 . (2.2.47)

We can arrange that the parameters l0, r0, and n0 are all positive: The only
parameter which might be negative is r0; in this case, h = −1, | Î | = 0, and thus
r0 = −1. The induction hypothesis (2.2.34) yields that |I | > 0. Thus |I | > | Î |,
and relation (2.2.43) gives that (n0 =)n > 0. Therefore,we can apply the identity

[l0, r0 | n0] = [l0 + 1, r0 + 1 | n0 − 1]

to make all the parameters in this bracket positive.
(5) Computation of the partial derivative /∂x :

The x-derivative in (2.2.45) can act on the factors S(ĥ), (y − x) Î , or V (a)(za).
The first case can be computed with the rules (2.2.17) or (2.2.24); it decreases
ĥ by one and gives one additional factor (y − x). In the second case, one factor
(y − x) disappears, and thus | Î | is decremented. The last case can be handled
with the rule

∂

∂xk

ˆ y

x
[l, r | n] dz f (z, y) =

ˆ y

x
[l, r + 1 | n] ∂

∂zk
f (z, y) , (2.2.48)

which increases |I0| by one. As is immediately verified in each of these cases,
equation (2.2.47) transforms into

2ĥ = 2h + 1 + |I | − | Î | + |I0| + 2p0 , (2.2.49)

whereas inequality (2.2.44) must be weakened to

| Î | ≤ 1 + |I | − |I0| . (2.2.50)

Finally, we combine the γ-matrix of the factor /∂x with γ J .

After these transformations, the (k + 1)st order Feynman diagram consists of a sum
of terms of the form

χc C (y − x) Î
ˆ y

x
[l0, r0 | n0] dz0 ∂ I0

z0 �p0
z0 V (0)

J0
(z0)

· · ·
ˆ y

zk−1

[lk, rk | nk] dzk ∂ Ik
zk �pk

zk V (k)
Jk

(zk) γ J S(ĥ)(x, y) . (2.2.51)
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Notice that the parameters Ia, pa , a = 1, . . . , k, were not changed by the above
construction steps; they are still the same as in the induction hypothesis (2.2.32).
After renaming the indices and the integration variables, (2.2.51) is of the required
form (2.2.32). The conditions (a) and (b) for the contractions of the tensor indices,
however, will in general be violated. Therefore we need two further computation
steps:

(6) Simplification of the Dirac matrices:
If any two of the tensor indices of the factor γ J are contracted with each other,
we reorder the γ-matrices with the anti-commutation relations

{γi , γ j } = 2 gi j 11 (2.2.52)

until the corresponding matrices are next to each other. Applying the identity
γiγi = 4 11, both Dirac matrices disappear. We iterate this procedure until no
tensor indices of γ J are contracted with each other (notice that the iteration
comes to an end because the number of γ-factors is decreased by two in each
step). Again using the anti-commutation rule (2.2.52), we reorder the Dirac
matrices until they are in the same order in which the factors to which their
tensor indices are contracted appear in the product (2.2.51). If any two of the
γ-matrices are contracted with the same multi-index, these γ-matrices are next
to each other, and we can use the symmetry in the tensor indices to eliminate
them both, more precisely

(y − x)i (y − x) j · · · γiγ j = (y − x)2 · · · 11 (2.2.53)

∂i j V
(a) · · · γiγ j = �V (a) · · · 11 . (2.2.54)

After all these transformations, condition (b) is satisfied.
Notice that the parameters |Ia| and pa are in general changed in this construc-
tion step. More precisely, each transformation (2.2.54) modifies the parameters
according to

|Ia| → |Ia| − 2 and pa → pa + 1 . (2.2.55)

(7) Handling of the new contractions:
If any two tensor indices of a factor ∂ Ia

za are contracted with each other, we
rewrite the corresponding partial derivatives as a Laplacian; this changes the
parameters |Ia| and pa according to (2.2.55). If two tensor indices of the factor
(y − x) Î are contracted with each other, this gives a factor (y − x)2. Using
the identity (2.2.18), we inductively absorb the factors (y − x)2 into S(ĥ)(x, y),
which transforms ĥ and | Î | as

ĥ → ĥ + 1 and | Î | → | Î | − 2 . (2.2.56)

After these transformations, condition (a) is also satisfied.
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After all these construction steps, the (k + 1)st order Feynman diagram is a sum of
terms of the form (2.2.51) satisfying the conditions (a) and (b). It remains to show
that the relations (2.2.34) and (2.2.35) remain valid in our inductive construction:
As mentioned earlier, the parameters Ia , pa , a = 1, . . . , k are not changed in the
construction steps (1) to (5). In the steps (6) and (7), the transformations (2.2.55) and
(2.2.56) preserve both the induction hypothesis (2.2.34), (2.2.35) and the relations
(2.2.49), (2.2.50), as is immediately verified. By substituting (2.2.49) and (2.2.50)
into (2.2.55), (2.2.56), we obtain

2ĥ = (k + 1) − 1 − | Î | +
k∑

a=0

|Ia| + 2pa , | Î | ≤ (k + 1) + 1 −
k∑

a=0

|Ia| .

This concludes the proof. �

2.2.4 Reduction to the Phase-Free Contribution

The shortcoming of the constructions of the previous section is that the resulting
formulas become more and more involved to higher order in perturbation theory.
Moreover, to any order on the light cone, one gets an infinite number of contri-
butions. In order to clarify the structure of the singularities on the light-cone, it is
therefore essential to collect and rearrange the different contribution to the light-cone
expansion. This procedure is called resummation of the light-cone expansion. After
the resummation, the light-cone expansion of s̃(x, y) will, to every order on the light
cone, consist of only a finite number of terms. Before beginning, we remark that
the resummation technique can also be understood from underlying gauge symme-
tries. In order no to mix mathematical constructions with physical considerations,
we postpone the explanation of gauge phases and gauge transformations to Sect.
3.6.2 (however, the idea of working with local transformations will be used in our
constructions; see (2.2.82) and the computations thereafter).

In order to give a first idea of how the resummationworks, we consider the leading
singularity on the light cone by neglecting all terms of the order O((y − x)−2).
According to (2.2.8), we need to take into account only the contributions (2.2.32)
with h = −1. The inequality (2.2.36) implies that no derivatives of the potentials
appear. Moreover, we obtain from (2.2.34) that |I | = k + 1. Using the rules (a)
and (b), we conclude that one tensor index of the multi-index I is contracted with
a Dirac matrix, whereas all the remaining k indices of I are contracted with chiral
potentials. Therefore, all k potentials are chiral, and no dynamical mass matrices
appear. A detailed calculation yields for the kth order Feynman diagram a term of
precisely this structure,

χc
(
(−sB)ks

)
(x, y) = χc (−i)k

ˆ y

x
dz1 (y − x) j1 A j1

c (z1)

×
ˆ y

z1
dz2 (y − z1) j2 A j2

c (z2) · · ·
ˆ y

zk−1

dzk (y − zk) jk A jk
c (zk) s(x, y) + O

(
(y − x)−2) .

http://dx.doi.org/10.1007/978-3-319-42067-7_3
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The obtained nested line integrals can be identifiedwith the summands of the familiar
Dyson series. This allows us to carry out the sum over all Feynman diagrams,

χc s̃(x, y) = χc Pexp

(
−i

ˆ y

x
(y − x) j A

j
c (z) dz

)
s(x, y) + O((y − x)−2) ,

(2.2.57)
where Pexp is defined as follows.

Definition 2.2.5 For a smooth one-parameter family of matrices F(α), α ∈ R, the
ordered exponential Pexp(

´
F(α) dα) is given by the Dyson series

Pexp

( ˆ b

a
F(α) dα

)
= 11 +

ˆ b

a
F(t0) dt0 +

ˆ b

a
dt0 F(t0)

ˆ b

t0

dt1 F(t1)

+
ˆ b

a
dt0 F(t0)

ˆ b

t0

dt1 F(t1)
ˆ b

t1

dt2 F(t2) + · · · .

For ordered exponentials over the chiral potentials, we use the short notations

Pexp

(
− i

ˆ y

x
(y − x) j A

j
c (z) dz

)
= Pexp

(
− i

ˆ y

x
A j
c (y − x) j

)
= Pe−i

´ y
x A j

c (y−x) j

:= Pexp

(
− i

ˆ 1

0
A j
c
∣∣
αy+(1−α)x (y − x) j dα

)
.

Sometimes, we shall find it more convenient to write Pexp(· · · ) as Pe(··· ). For ele-
mentary properties of the ordered exponentials we refer to Exercise 2.15. For the
general background on the ordered exponential we refer to [RS2, X.12] or to the
closely related time-ordered or path-ordered exponential in the physics literature
(see for example [PS, Sect. 4.2]). The connection to local gauge transformations is
explained in Exercise 2.16.

To lower order on the light cone, the situation clearly is more complicated. The
idea is to rearrange the contributions of the light-cone expansion in a such a way
that certain subseries can be summed up to again obtain ordered exponentials of the
chiral potentials. This idea is made precise in the following proposition and theorem,
which we state and explain before giving their proofs.

Note that the partial derivatives in (2.2.32) may be contracted with the factors y −
x . If this is the case, the corresponding combination

(y − x) j
∂

∂z jk
(2.2.58)

is a derivative in the direction of the vector y − x . Since the direction y − x is
tangential to the corresponding line integral, such so-called tangential derivatives
can be rewritten as derivatives with respect to the corresponding integration variable
(for details see Exercise 2.17 or the proof of Proposition 2.2.6). Integrating by parts,
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the tangential derivatives disappear. Proceeding in this way, one can in fact eliminate
all tangential derivatives, as is made precise in the following Proposition.

Proposition 2.2.6 (elimination of tangential derivatives)
Every contribution (2.2.32) to the light cone expansion of Theorem 2.2.4 can be
written as a finite sum of expressions of the form

χc C (y − x)K W (0)(x)
ˆ y

x
[l1, r1 | n1] dz1 W (1)(z1)

ˆ y

z1

[l2, r2 | n2] dz2 W (2)(z2)

· · ·
ˆ y

zα−1

[lα, rα | nα] dzα W (α)(zα) γ J S(h)(x, y) (2.2.59)

with α ≤ k, where the factors W (β) are composed of the potentials and their partial
derivatives,

W (β) = (∂Kaβ �paβ V
(aβ)

Jaβ ,caβ
) · · · (∂Kbβ �pbβ V

(bβ)

Jbβ ,cbβ
) (2.2.60)

with a1 = 1, aβ+1 = bβ + 1, bβ ≥ aβ − 1 (in the case bβ = aβ − 1, W (β) is identi-
cally one), and bα = k. The parameters la, ra, and na are non-negative integers, C
is a complex number, and c = L/R, ca = L/R are chiral indices. The potentials V (a)

are again given by (2.2.33); their chirality is determined by the rule (i) in Theorem
2.2.4. The tensor indices of the multi-indices J , K , Ja, and Ka are all contracted
with each other, according to the rules (a),(b) of Theorem 2.2.4 and

(c) The tensor indices of (y − x)K are all contracted with the tensor indices of the
factors V (a)

Ja
or γ J (but not with the factors ∂Ka ).

We have the relation

2h = k − 1 − |K | +
k∑

a=1

(|Ka| + 2pa
)
. (2.2.61)

Before coming to the proof, we make precise how this proposition can be used to
simplify the light-cone expansion.

Definition 2.2.7 A contribution of the form (2.2.32) to the light-cone expansion of
Theorem 2.2.6 is called phase-free if all the tangential potentials V (a)

Ja
are differen-

tiated, i.e.

|Ka| + 2pa > 0 whenever Ja is contracted with (y − x)K .

From every phase-free contribution the corresponding phase-inserted contribution
is obtained as follows: We insert ordered exponentials according to the replacement
rule
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W (β)(zβ) −→ W (β)(zβ) Pexp

(
−i

ˆ zβ+1

zβ

A
jβ
cβ (zβ+1 − zβ) jβ

)
, β = 0, . . . ,α ,

(2.2.62)

where we set z0 = x and zα+1 = y. The chiralities cβ are determined by the rela-
tions c0 = c and

cβ−1 and cβ

{
coincide
are opposite

}

if W (β−1) contains an

{
even
odd

}
number of factors Y.. (2.2.63)

Theorem 2.2.8 To every order on the light cone, the number of phase-free contri-
butions is finite. The light-cone expansion of the Green’s function s̃(x, y) is given by
the sum of the corresponding phase-inserted contributions.

This theorem gives a convenient procedure for performing the light-cone expan-
sion of theGreen’s function. The only task is to compute to any order on the light cone
the finite number of phase-free contributions. Then one inserts ordered exponentials
according to Definition 2.2.7. Note that this method is constructive in the sense that it
gives a procedurewithwhich the light-cone expansion of every Feynman diagramcan
be carried out explicitly. Indeed, this procedure is implemented in the C++-program
class_commute.2 These computations are illustrated in Exercise 2.18.

The remainder of this section is devoted to the proof of Proposition 2.2.6 and
Theorem 2.2.8. We begin with a preparatory lemma which controls the number of
tangential derivatives in the contributions (2.2.32) in Theorem 2.2.4.

Lemma 2.2.9 For any a ∈ {1, . . . , k}, we let ta be the number of tensor indices of
the multi-index Ia in (2.2.32) which are contracted with the factor (y − x)I . Then
the following inequalities hold for all a = 1, . . . , k:

la + na ≥ ta − 1 and ra + na ≥
k∑

b=a

tb . (2.2.64)

Proof As in the proof of Theorem 2.2.4, we proceed inductively in the order k of
the perturbation theory. For k = 0, the inequalities (2.2.64) are trivially satisfied
according to (2.2.37). Assume that (2.2.64) is true for a given k. We go through the
construction steps (1) to (7) of Theorem 2.2.4 and check that the inequalities (2.2.64)
then also hold in (2.2.51) for a = 0, . . . , k.

We first consider the case a > 0. The parameters la , ra , and na remain unchanged
in all the construction steps of Theorem 2.2.4. Furthermore, it is obvious that the
parameters ta are not affected in the steps (1), (2), (4) and (7). In the steps (3) and (5),

2TheC++program class_commute and its computational output aswell as the resultingMathemat-
ica worksheets were included as ancillary files to the arXiv submission arXiv:1211.3351 [math-ph].
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the computation of the derivatives �n
z and /∂x might annihilate some of the factors

(y − x) which were contracted with the factors ∂ Ia
za ; this may decrease the parame-

ters ta . For the analysis of step (6), note that all γ-matrices which are contracted
with factors (y − x) stand to the left of those γ-matrices which are contracted with
the ∂ Ia

za , a = 1, . . . , k (this follows from the ordering condition (b) in the induction
hypothesis and the fact that additional factors (y − x) j · · · γ j are only generated dur-

ing the construction if the partial derivative /∂x hits S(ĥ) in step (5); in this case, the
corresponding γ-matrix stands at the very left in γ J ). Therefore the commutations
of the Dirac matrices do not lead to additional contractions between factors (y − x)
and ∂ Ia

za , which implies that the parameters ta remain unchanged in step (6). We con-
clude that the la , ra , and na remain unchanged whereas the ta may only decrease,
and thus (2.2.64) holds for a = 1, . . . , k throughout all the construction steps.

It remains to show that the inequalities (2.2.64) hold in (2.2.51) for a = 0. We
first look at the situation after step (4) in (2.2.45): The values (2.2.46) for l0, r0, and
n0 give in combination with (2.2.43) the equations

l0 + n0 = 1

2

(
|I | − | Î | + |I0| + 2p0

)
(2.2.65)

r0 + n0 = h + 1

2

(
|I | + | Î | + |I0| + 2p0

)
. (2.2.66)

Moreover, the number of tangential derivatives t0 at the first potential is clearly
bounded by the total number of derivatives there,

|I0| ≥ t0 . (2.2.67)

Furthermore, the total number of tangential derivatives is smaller than the number
of factors (y − x),

| Î | ≥
k∑

a=0

ta . (2.2.68)

Substituting (2.2.44) and (2.2.67) into (2.2.65) yields the inequalities

l0 + n0 ≥ |I0| + p0 ≥ t0 . (2.2.69)

In order to get a bound for r0 + n0, we must distinguish two cases. If h ≥ 0, we
substitute (2.2.44) into (2.2.66) and get with (2.2.68) the inequality

r0 + n0 ≥ | Î | + |I0| + p0 ≥ | Î | ≥
k∑

a=0

ta . (2.2.70)

In the case h = −1, (2.2.36) shows that |Ia|, and consequently also ta , vanish for
1 ≤ a ≤ k. Furthermore, (2.2.34) yields that |I | �= 0. Thus (2.2.66) and (2.2.67),
(2.2.68) give the bound
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r0 + n0 ≥ h + |I |
2

+ 1

2

k∑

a=0

ta + 1

2
t0 ≥ 1

2

k∑

a=0

ta + 1

2
t0 ,

where we used in the last inequality that h + |I |/2 ≥ −1/2 and that all the other
terms are integers. Since t0 =∑k

a=0 ta , we conclude that inequality (2.2.70) also
holds in the case h = −1.

We finally consider how the bounds (2.2.69) and (2.2.70) for l0 + n0 and r0 + n0
must be modified in the subsequent construction steps. In step (5), the partial deriv-
ative /∂x may annihilate a factor (y − x), in which case the parameters ta might
decrease. On the other hand, the partial derivatives /∂x may produce an additional
factor ∂z0 ; in this case, r0 is incremented according to (2.2.48). In step (6), only this
additional factor ∂z0 may be contracted with (y − x) Î . Step (7) does not change l0,
r0, n0, and t0. Putting these transformations together, we conclude that the inequal-
ity (2.2.69) for l0 + n0 must be weakened by one, whereas the bound (2.2.70)
for r0 + n0 remains valid as it is. This gives precisely the inequalities (2.2.64)
for a = 0. �

Proof of Proposition 2.2.6 The basic method for the proof is to iteratively
eliminate those partial derivatives ∂ Ia

za in (2.2.32) which are contracted with a factor
(y − x). This is accomplished with the integration-by-parts formula

(y − x) j
ˆ y

x
[l, r | n] dz ∂ j f (z)

(2.2.31)=
ˆ 1

0
dα αl (1 − α)r (α − α2)n

d

dα
f (αy + (1 − α)x)

= δr+n,0 f (y) − δl+n,0 f (x)

− (l + n)

ˆ y

x
[l − 1, r | n] dz f (z) + (r + n)

ˆ y

x
[l, r − 1 | n] dz f (z) .

In order to see themain difficulty,we consider the example of twonested line integrals
with two tangential derivatives

(y − x) j (y − x)k
ˆ y

x
[0, 1 | 0] dz1 V (1)(z1)

ˆ y

z1

[0, 1 | 0] dz2 ∂ jkV
(2)(z2) (2.2.71)

= (y − x) j
ˆ y

x
[0, 0 | 0] dz1 V (1)(z1) (y − z1)

k
ˆ y

z1

[0, 1 | 0] dz2 ∂ jkV
(2)(z2)

= −(y − x) j
ˆ y

x
dz1 V

(1)(z1) ∂ j V
(2)(z1) (2.2.72)

+ (y − x) j
ˆ y

x
dz1 V

(1)(z1)
ˆ y

z1

dz2 ∂ j V
(2)(z2) . (2.2.73)

Although the line integrals in (2.2.71) satisfy the conditions of Theorem 2.2.4, the
expression cannot be transformed into the required form (2.2.59). Namely, in (2.2.72)
we cannot eliminate the remaining tangential derivative (because partial integration
would yield a term (y − x) j ∂ j V (1)(z1)). In (2.2.73), on the other hand, we can
successfully perform a second partial integration
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(2.2.73) =
ˆ y

x
[0,−1 | 0] dz1 V (1)(z1) (V (2)(y) − V (2)(z1)) ,

but then the second parameter in the bracket [., . | .] becomes negative. More gener-
ally, we must ensure that the boundary terms contain no tangential derivatives, and
that the parameters la, ra , and na stay positive in the construction.

Since the chirality of the potentials is not affected by the partial integrations, it is
obvious that the rule (i) in Theorem 2.2.4 will remain valid. For ease in notation, in
the remainder of the proof we usually omit the indices ca .

First of all, we split up the factor (y − x)I in (2.2.32) in the form (y − x)I =
(y − x)K (y − x)L , where L are those tensor indices which are contracted with the
partial derivatives ∂ Ia

za , a = 1, . . . , k. Setting b = 1 and z0 = x , the first line integral
in (2.2.32) can be written as

· · · (y − zb−1)
L
ˆ y

zb−1

[lb, rb | nb] dzb ∂ Ib
zb �pb

zb V (b)
Jb

(zb) · · · . (2.2.74)

We rewrite the tangential derivatives in this line integral as derivatives in the inte-
gration variable,

= · · · (y − zb−1)
N
ˆ 1

0
dα αl (1 − α)r

(
d

dα

)q

∂Kb
zb �pb

zb V (b)
Jb

(zb) · · · (2.2.75)

with |L| = |N | + q and l = lb + nb, r = rb + nb. Lemma 2.2.9 gives the bounds

l ≥ q − 1 and r ≥ q + |N | . (2.2.76)

More generally, we use (2.2.75) and (2.2.76) as our induction hypothesis, where the
left factor ‘· · · ’ stands for all previous line integrals (which contain no tangential
derivatives), and the right factor ‘· · · ’ stands for subsequent line integrals. The tensor
indices of the factor (y − za−1)

N must all be contracted with the partial derivatives
∂ Ia
za for a > b and thus give tangential derivatives in the subsequent line integrals. The

induction step is to show that all the α-derivatives in (2.2.75) can be eliminated, and
that we can write the resulting expressions again in the form (2.2.75) and (2.2.76)
with b replaced by b + 1. Under the assumption that this induction step holds, we
can eliminate all tangential derivatives in k steps. The resulting expressions are very
similar to (2.2.59) and (2.2.60). The only difference is that the derivatives ∂Ka and
�pa in the resulting expressions are differential operators acting on all the following
factors V (a), V (a+1), …; in (2.2.60), on the other hand, the partial derivatives act only
on the adjacent potential V (a). In order to bring the resulting expressions into the
required form, we finally carry out all the derivatives with the Leibniz rule and the
chain rule (2.2.48).

For the proof of the induction step, we integrate in (2.2.75) q times by parts (if q is
zero, we can skip the partial integrations; our expression is then of the form (2.2.78)).
Since the powers of the factors α and (1 − α) are decreased at most by one in each
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partial integration step, (2.2.76) implies that the boundary values vanish unless in
the last step for α = 0. We thus obtain a sum of terms of the form

· · · (y − zb−1)
N ∂Kb

zb �pb
zb V (b)

Jb
(zb) · · ·|zb≡zb−1 (2.2.77)

and

· · · (y − zb−1)
N
ˆ y

zb−1

[l, r | n = 0] dzb ∂Kb
zb �pb

zb V (b)
Jb

(zb)

with l ≥ 0, r ≥ |N | . (2.2.78)

In (2.2.78), we iteratively use the relation

(y − x) j
ˆ y

x
[l, r | n] dz · · · =

ˆ y

x
[l, r − 1 | n] dz (y − z) j · · ·

to bring all factors (y − zb−1) to the right. We thus obtain expressions of the form

(2.2.78) = · · ·
ˆ y

zb−1

[l, r | n = 0] dzb (y − zb)
N ∂

Kb
zb �pb

zb V (b)
Jb

(zb) · · · with l, r ≥ 0 .

(2.2.79)

In both cases (2.2.77) and (2.2.79), we have an expression of the form

· · · (y − zb)
N ∂Kb

zb �pb
zb V (b)

Jb
(zb) · · · , (2.2.80)

where the first factor ‘· · · ’ stands for line integrals without tangential derivatives, and
where none of the factors (y − zb) are contracted with ∂Kb

zb . Applying the “inverse
Leibniz rules”

(y − x) j
∂

∂xk
= ∂

∂xk
(y − x) j + δ

j
k

(y − x) j �x = �x (y − x) j + 2
∂

∂x j
,

we iteratively commute all factors (y − zb) in (2.2.80) to the right. This gives a sum
of expressions of the form

· · · ∂Kb
zb �pb

zb V (b)
Jb

(zb) (y − zb)
L · · · , (2.2.81)

where the factors (y − zb) are all contracted with the partial derivatives ∂ Ia
za , a =

b + 1, . . . , k. The Leibniz rules may have annihilated some factors (y − zb) (i.e.,
|L| might be smaller than |N |); in this case, the parameters ta , a = b + 1, . . . , k
have decreased. As a consequence, the inequalities of Lemma 2.2.9 are still valid for
all expressions (2.2.81). If we write (2.2.81) in the form (2.2.74) with b replaced by



130 2 Computational Tools

b + 1, we can thus split up the tangential derivatives in the form (2.2.75) and (2.2.76).
This concludes the proof of the induction step.

It remains to derive equation (2.2.61):Note that each integration by parts decreases
both the number of factors (y − za−1) and the total number of partial derivatives by
one. If we carry out the remaining derivatives with the Leibniz rule (in the last step of
the proof), this does not change the total order

∑k
a=1 |Ka| + 2pa of the derivatives.

Therefore, relation (2.2.34) in Theorem 2.2.4 transforms into (2.2.61). �
We come to the proof of Theorem 2.2.8. A possible method would be to rearrange

all the contributions to the light-cone expansion of Theorem 2.2.4 until recovering
the Dyson series of the ordered exponentials in (2.2.62). However, this method has
the disadvantage of being rather involved. It is more elegant to use a particular
form of local gauge invariance of the Green’s function for the proof (for basics see
Exercise 2.16). To this end, for given x and y we will transform the spinors locally.
The transformation will be such that the light-cone expansion for the transformed
Green’s function ŝ(x, y) consists precisely of all phase-free contributions. Using
the transformation law of the Green’s function, we then show that the light-cone
expansion of s̃(x, y) is obtained from that of ŝ(x, y) by inserting unitary matrices
into the line integrals. Finally, we prove that these unitary matrices coincide with the
ordered exponentials in Definition 2.2.7.

In preparation, we consider the transformation law of the Dirac operator and the
Green’s function under generalized local phase transformations of the spinors. We
let UL(x) and UR(x) be two unitary matrices acting on the Lie algebra index of the
gauge potential. We transform the wave functions according to

ψ(x) → ψ̂(x) = U (x) ψ(x) with U (x) = χL UL(x) + χR UR(x) .

(2.2.82)
ThusUL andUR transform the left and right handed component of thewave functions,
respectively. We point out that transformation U is not unitary with respect to the
spin scalar product because χ∗

L = χR and therefore

V := U−1 = χL U
−1
L + χR U−1

R but

U ∗ = γ0 U † γ0 = χR U−1
L + χL U

−1
R .

Therefore, in what follows we carefully distinguish between U , U ∗ and their
inverses V and V ∗. As an immediate consequence of the Dirac equation (i /∂ + B −
m)ψ = 0, the transformed wave functions ψ̂ satisfies the equation

V ∗(i /∂ + B)V ψ̂ = 0 .

A short computation yields for the transformed Dirac operator

V ∗(i /∂ + B)V = i /∂ + B̂
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with
B̂ = χL ( ÂR/ − m ŶL) + χR ( ÂL/ − m ŶR) ,

where ÂL/R and ŶL/R are the potentials

Â j
L/R = UL/R A j

L/R U−1
L/R + iUL/R(∂ jU−1

L/R) (2.2.83)

ŶL/R = UR/L Y U−1
L/R . (2.2.84)

We denote the advanced and retarded Green’s functions of the transformed Dirac
operator i /∂ + B̂ by ŝ. They satisfy the equation

(
i /∂x + B̂(x)

)
ŝ(x, y) = δ4(x − y) . (2.2.85)

Since we can view B̂ as the perturbation of the Dirac operator, the Green’s function ŝ
has, in analogy to (2.2.12), the perturbation expansion

ŝ =
∞∑

n=0

(−s B̂)n s . (2.2.86)

The important point for what follows is that the Green’s functions s̃ and ŝ are related
to each other by the local transformation

ŝ(x, y) = U (x) s̃(x, y) U (y)∗ . (2.2.87)

This is verified as follows: The right side of (2.2.87) also satisfies the defining equa-
tion (2.2.85) of the Green’s functions; namely

(i /∂x + B̂(x))U (x) s̃(x, y)U (y)∗ = V (x)∗ (i /∂x + B(x)) V (x) U (x) s̃(x, y)U (y)∗

= V (x)∗ (i /∂x + B(x)) s̃(x, y)U (y)∗ = V (x)∗ δ4(x − y)U (y)∗

= V (x)∗ U (x)∗ δ4(x − y) = δ4(x − y) .

Furthermore, the supports of both sides of (2.2.87) lie (depending on whether we
consider the advanced or retarded Green’s functions) either in the upper or in the
lower light cone. A uniqueness argument for the solutions of hyperbolic differential
equations yields that both sides of (2.2.87) coincide.

We next specify the unitary transformations UL and UR : We fix the points x and
y. For any point z on the line segment xy, we chose UL/R(z) as

UL/R(z) = Pexp

(
−i

ˆ z

x
A j
L/R (z − x) j

)
. (2.2.88)
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Using the differential equation for the ordered exponential (see Exercise 2.15)

(y − x)k
∂

∂xk
Pe−i

´ y
x A j

c (y−x) j = i(y − x)k Ak
c(x) Pe−i

´ y
x A j

c (y−x) j , (2.2.89)

we obtain

(y − x) j Uc(z) (∂ jUc(z)
−1) = Pe−i

´ z
x Ak

c (z−x)k (y − x) j
∂

∂z j
Pe−i

´ x
z Ak

c (x−z)k

= Pe−i
´ z
x Ak

c (z−x)k i(y − x) j A
j
c (z) Pe−i

´ x
z Ak

c (x−z)k

= i(y − x) j Uc(z) A
j
c (z)Uc(z)

−1 .

Using this formula in (2.2.83) gives

Â j
L/R(z) (y − x) j = 0 for z ∈ xy . (2.2.90)

Thus our choice of UL and UR makes the potentials ÂL(z) and ÂR(z) for z ∈ xy
orthogonal to the vector (y − x). Before going on,we point out thatwe did not specify
UL/R(z) away from the line segment z ∈ xy; the unitary transformationUL/R may be
arbitrary there. This also implies that also ÂL/R is undetermined outside the line
segment xy. In particular, all the non-tangential derivatives of ÂL/R(z) for z ∈ xy are
undetermined. However, (2.2.88) does give constraints for the tangential derivatives.
For example, differentiating (2.2.90) in the direction (y − x) yields

(y − x) j (y − x)k ∂ j Â
k
L/R(z) = 0 for z ∈ xy .

We now consider the perturbation expansion (2.2.86). The light-cone expansion
of all Feynman diagrams according to Theorem 2.2.4 gives a sum of terms of the
form

χc C (y − x)K Ŵ (0)(x)
ˆ y

x
[l1, r1 | n1] dz1 Ŵ (1)(z1)

ˆ y

z1

[l2, r2 | n2] dz2 Ŵ (2)(z2)

· · ·
ˆ y

zα−1

[lα, rα | nα] dzα Ŵ (α)(zα) γ J S(h)(x, y) , (2.2.91)

where the factors Ŵ (β) are of the form

Ŵ (β) = (∂Kaβ �paβ V̂
(aβ)

Jaβ ,caβ
) · · · (∂Kbβ �pbβ V̂

(bβ)

Jbβ ,cbβ
) . (2.2.92)

Because of (2.2.90), all the contributions which are not phase-free vanish. Further-
more, according to Theorem 2.2.4, the contributions (2.2.91) and (2.2.92) contain
no tangential derivatives. Clearly, the derivatives in these formulas may have a com-
ponent in direction of (y − x). But the contribution of the derivatives transversal
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to (y − x) uniquely determines the form of each derivative term. Therefore, all the
phase-free contributions of the form (2.2.91) and (2.2.92) are independent in the
sense that we have no algebraic relations between them. We conclude that, as long
as the potentials ÂL/R and ŶL/R are only specified by (2.2.83), (2.2.84) and (2.2.88),
the light-cone expansion (2.2.91) and (2.2.92) consists precisely of all phase-free
contributions.

Next, we exploit the local transformation law (2.2.87) of the Green’s functions:
We solve this equation for s̃,

s̃(x, y) = V (x) ŝ(x, y) V (y)∗ . (2.2.93)

The transformation UL/R does not enter on the left side of this equation. Thus the
right side of (2.2.93) is also independent of UL/R . In particular, we conclude that
the light-cone expansion of ŝ(x, y) must be independent of the derivatives of UL/R

along the line segment xy. At first sight, this might seem inconsistent because the
individual contributions (2.2.91) and (2.2.92) do depend on the derivatives of UL/R

(this is obvious if one substitutes (2.2.83) and (2.2.84) into (2.2.92) and carries out
the derivatives with the Leibniz rule). The right way to understand the independence
of ŝ(x, y) on the derivatives of UL/R is that all derivative terms of UL/R cancel each
other to every order on the light cone if the (finite) sum over all contributions (2.2.91)
to the light-cone expansion of ŝ(x, y) is carried out. Since we will form the sum over
all contributions to the light-cone expansion in the end, it suffices to consider only
those contributions to the light-cone expansion which contain no derivatives ofUL/R .
This means that we can substitute (2.2.83) and (2.2.84) into (2.2.92), forget about
the derivative term iUL/R(∂ jU−1

L/R) in (2.2.83), and pull the unitary transformations

UL/R,U−1
L/R out of the derivatives. In other words, we can replace Ŵ (β), (2.2.92), by

Ŵ (β) = Udaβ
(∂Kaβ �paβ V

(aβ)

Jaβ ,caβ
)U−1

caβ
· · ·Udbβ

(∂Kbβ �pbβ V
(bβ)

Jbβ ,cbβ
)U−1

cbβ
(2.2.94)

with chiral indices ca, da = L/R. The light-cone expansion for ŝ(x, y) consists pre-
cisely of the sum of all phase-free contributions of the form (2.2.91) and (2.2.94).

The chiralities ca , da of the unitary transformations UL/R , U
−1
L/R in (2.2.94) are

determined by the rule (i) in Theorem 2.2.4 and by (2.2.83) and (2.2.84). According
to this rule, the indices ca−1 and ca coincide iff V (a) is a chiral potential. Accord-
ing to (2.2.83) and (2.2.84), on the other hand, the indices da and ca coincide iff
V (a) = AL/R . We conclude that the indices ca−1 and da always coincide. Thus all the
intermediate factors U−1

ca−1
Uda give the identity, and (2.2.94) simplifies to

Ŵ (β) = Udβ
W (β) U−1

cβ
. (2.2.95)

Furthermore, the chiralities dβ and cβ coincide if and only if W (β) contains an even
number of dynamic mass matrices.
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Finally, we substitute the light-cone expansion (2.2.91) for ŝ(x, y) as well
as (2.2.95) into (2.2.93). This gives for the light-cone expansion of s̃(x, y) a sum of
expressions of the form

χc C (y − x)K U−1
c (x) (Ud0W

(0)U−1
c0 )(x)

ˆ y

x
[l1, r1 | n1] dz1 (Ud1W

(1)U−1
c1 )(z1)

· · ·
ˆ y

zα−1

[lα, rα | nα] dzα (Udα
W (0)U−1

cα
)(zα) Ucα+1(y) γ J S(h)(x, y) ,

(2.2.96)

where the sum runs over all phase-free contributions of this type. Similar to
the considerations before (2.2.95), one sees that adjacent unitary transformations
always have the same chirality. Therefore, renaming the chiral indices, the expres-
sions (2.2.96) can be written in the simpler form

χc C (y − x)K W (0)(x)
ˆ y

x
[l1, r1 | n1] dz1 Uc1(x)

−1 Uc1(z1) W
(1)

· · ·
ˆ y

zα−1

[lα, rα | nα] dzα Ucα
(zα−1)

−1 Ucα
(zα) W (0)(zα) Ucα+1(zα)−1

× Ucα+1(y) γ J S(h)(x, y) ,

where the chiral indices ca satisfy the rule (2.2.63). According to (2.2.88), the factors
U−1

c (.)Uc(.) coincide with the ordered exponentials in (2.2.62). This concludes the
proof of Theorem 2.2.8.

2.2.5 The Residual Argument

In the previous sections, the light-cone expansion was performed for the causal
Green’s functions. We now want to extend our methods and results to the fermionic
projector. We begin by describing how the light-cone expansion of the Green’s func-
tions can be understood in momentum space. Apart from giving a different point of
view, this will make it possible to get a connection to the light-cone expansion of the
fermionic projector. For notational simplicity, we restrict attention to the case g = 1
where in (2.2.26) there is only one direct summand (the generalization to several
direct summands is obtained in a straightforward way by replacing all vacuum oper-
ators as in (2.2.26) by corresponding direct sums). As in (2.2.10), we again combine
the rest mass and the external potential in a potential B. Furthermore, we only con-
sider the advancedGreen’s function; for the retardedGreen’s function, the calculation
is analogous.

Suppose that we want to perform the light-cone expansion of the kth order contri-
bution to the perturbation series (2.2.12). Using that the Green’s function is diagonal
in momentum space and that multiplying by B in position space corresponds to a
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convolution in momentum space, we can write the contribution as a multiple Fourier
integral,

(
( − s∨B)ks∨)(x, y)

=
ˆ

d4 p

(2π)4

ˆ
d4q1
(2π)4

· · ·
ˆ

d4qk
(2π)4

�s∨(p; q1, . . . , qk) e−i(p+q1+···+qk )x+i py ,

(2.2.97)

where the distribution �s∨(p; q1, . . . , qk) is the Feynman diagram in momentum
space,

�s∨(p; q1, . . . , qk) = (−1)k s∨(p + q1 + · · · + qk) B̂(qk) s
∨(p + q1 + · · · + qk−1) B̂(qk−1)

· · · B̂(q2) s
∨(p + q1) B̂(q1) s

∨(p) (2.2.98)

(here B̂ denotes the Fourier transform of the potential B, and s∨(p) is the multipli-
cation operator in momentum space). For the arguments of the Green’s functions,
we introduce the abbreviation

p0 := p and pl := p + q1 + · · · + ql , 1 ≤ l ≤ k . (2.2.99)

Substituting the explicit formulas (2.2.4) and (2.2.15) into (2.2.98), we obtain

�s∨(p; q1, . . . , qk) = (−1)k /pk B̂(qk) /pk−1 · · · /p1 B̂(q1) /p0

× lim
ν0,...,νk↘0

1

(pk)2 − iνk p0k

1

(pk−1)2 − iνk−1 p0k−1

· · · 1

(p0)2 − iν0 p00
.

We already know that the limits ν0, . . . , νk ↘ 0 exist in the distributional sense. This
can be understood directly from the fact that, fixing the momenta q1, . . . qk as well
as �p, the above expression for�s∨ is ameromorphic function in p0 having poles only
in the lower half plane. Computing the Fourier transform with residues, we obtain a
well-defined expression which remains finite as ν0, . . . , νk ↘ 0. This consideration
also shows that we may choose the ν0, . . . , νk to be equal, i.e.

�s∨(p; q1, . . . , qk) = (−1)k /pk B̂(qk) /pk−1 · · · /p1 B̂(q1) /p0

× lim
ν↘0

1

(pk)2 − iν p0k

1

(pk−1)2 − iν p0k−1

· · · 1

(p0)2 − iν p00
. (2.2.100)

We now expand the Klein-Gordon Green’s functions in (2.2.100) with respect to the
momenta pl − p. If we expand the terms iν p0l with a geometric series,

1

(pl)2 − iν p0l
=

∞∑

n=0

(iν (p0l − p0))n

((pl)2 − iν p0)1+n
,
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all contributions with n ≥ 1 contain factors ν and vanish in the limit ν ↘ 0. There-
fore, we must only expand with respect to the parameters ((pl)2 − p2). This gives,
again with geometric series,

�s∨(p; q1, . . . , qk) = (−1)k /pk B̂(qk) /pk−1 · · · /p1 B̂(q1) /p0

×
∞∑

n1,...,nk=0

(p2 − p2k )
nk · · · (p2 − p21)

n1 lim
ν↘0

1

(p2 − iν p0)1+k+n1+···+nk
.

Rewriting the negative power of (p2 − iν p0) as a mass-derivative,

1

(p2 − iν p0)1+k+n1+···+nk

= 1

(k + n1 + · · · + nk)!
(

d

da

)k+n1+···+nk 1

p2 − a − iν p0

∣∣∣∣
a=0

, (2.2.101)

we obtain a formula containing only one Green’s function. Namely, using the nota-
tion (2.2.13), we get

�s∨(p; q1, . . . , qk) = (−1)k /pk B̂(qk) /pk−1 · · · /p1 B̂(q1) /p0

×
∞∑

n1,...,nk=0

1

(k + n1 + · · · + nk)! (p2 − p2k )
nk · · · (p2 − p21)

n1 S∨(k+n1+···+nk )(p) .

(2.2.102)

This is the basic equation for the light-cone expansion of the Green’s functions
in momentum space. Similar to the light-cone expansion of the previous section,
(2.2.102) involves the mass derivatives of the Green’s functions S∨(.). In order to get
a connection to the nested line integrals of, say, Theorem2.2.4, it remains to transform
the polynomials in the momenta p0, . . . , pk as follows: Using (2.2.99), we rewrite
(2.2.102) in terms of the momenta p, q1, . . . , qk and multiply out. Furthermore, we
simplify the Dirac matrices with the anti-commutation rules (2.2.52). This gives for
(2.2.102) a sum of terms of the form

χc C γ I q Ik
k · · · q I1

1 Ṽ (k)
Jk ,ck

(qk) · · · Ṽ (1)
J1,c1

(q1) pL S∨(h)(p)
(
h ≥ [|L|/2]) ,

(2.2.103)

where the tensor indices of the multi-indices I , Il , Jl , and L are contracted with
each other (similar to the notation of Theorem 2.2.4, the factors Ṽ (l)

Jl ,cl
stand for the

individual potentials of B̂). If tensor indices of the power pL are contracted with
each other, we can eliminate the corresponding factors p2 iteratively with the rule
(2.2.14), more precisely

p2 S∨(h)(p) = h S∨(h−1)(p) (h ≥ 1) . (2.2.104)
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In this way, we can arrange that the tensor indices of pL in (2.2.103) are all con-
tracted with tensor indices of the factors γ I , q Il

l , or Ṽ
(l)
Jl ,cl

. By iteratively applying
the differentiation rule (2.2.16), we can now rewrite the power pL in (2.2.103) with
p-derivatives, e.g.

p j pk S
∨(2)(p) = −1

2
p j

∂

∂ pk
S∨(1)(p) = −1

2

∂

∂ pk
(p j S

∨(1)(p)) + 1

2
g jk S

∨(1)(p)

= 1

4

∂2

∂ p j ∂ pk
S(0)(p) + 1

2
g jk S

(1)(p) .

In this way, we obtain for �s∨(p; q1, . . . , qk) a sum of terms of the form

χc C γ I q Ik
k · · · q I1

1 Ṽ (k)
Jk ,ck

(qk) · · · Ṽ (1)
J1,c1

(q1) ∂K
p S∨(h)(p) , (2.2.105)

where no tensor indices of the derivatives ∂K
p are contracted with each other. We

substitute these terms into (2.2.97) and transform them to position space. Integrating
the derivatives ∂K

p by parts gives factors (y − x)K . The factors q Il
l , on the other hand,

can be written as partial derivatives ∂ Il acting on the potentials V (l). More precisely,
substituting into (2.2.97), the term (2.2.105) gives the contribution

χc C i |I1|+···+|Ik | (−i)|K | γ I (∂ Ik V (k)
Jk ,ck

(x)) · · · (∂ I1V (1)
J1,c1

(x)) (y − x)K S∨(h)(x, y) ,

(2.2.106)

where the tensor indices of the factor (y − x)K are all contracted with tensor indices
of the multi-indices I , Il , or Jl . The Feynman diagram ((−sB)ks)(x, y) coincides
with the sum of all these contributions.

This expansion has much similarity with the light-cone expansion of Theo-
rem 2.2.4. Namely, if one expands the nested line integrals in (2.2.32) in a Taylor
series around x , one gets precisely the expansion into terms of the form (2.2.106).
Clearly, the light-cone expansion of Theorem 2.2.4 goes far beyond the expansion
(2.2.106), because the dependence on the external potential is described by non-local
line integrals. Nevertheless, the expansion in momentum space (2.2.102) and sub-
sequent Fourier transformation give an easy way of understanding in principle how
the formulas of the light-cone expansion come about. We remark that, after going
through the details of the combinatorics and rearranging the contributions (2.2.106),
one can indeed recover the Taylor series of the line integrals in (2.2.32). This gives
an alternative method for proving Theorem 2.2.4. However, it is obvious that this
becomes complicated and does not yield the most elegant approach (the reader inter-
ested in the details of this method is referred to [F5], where a very similar technique
is used for the light-cone expansion to first order in the external potential).

Next, we want to generalize the previous construction to other types of Green’s
functions. Since, similar to (2.2.101), we must rewrite a product of Green’s functions
as the mass derivative of a single Green’s function, we can only expect the construc-
tion to work if all Green’s functions in the product (2.2.98) are of the same type
(e.g. the construction breaks down for a “mixed” operator product containing both
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advanced and retarded Green’s functions). But we need not necessarily work with the
advanced or retarded Green’s functions. Instead, we can use Green’s functions with
a different location of the poles in the complex p0-plane: We consider the Green’s
functions

s±(p) = /p S±
a | a=0(p) with S±

a (p) = lim
ν↘0

1

p2 − a ∓ iν
(2.2.107)

and again use the notation (2.2.13),

S± (l) =
(

d

da

)l

S±
a | a=0 .

The distribution s− is referred to as the Feynman propagator (see Exercise 2.3). The
perturbation expansion for these Dirac Green’s functions is, similar to (2.1.25) or
(2.2.12), given by the formal series

s̃+ :=
∞∑

n=0

(−s+ B)ns+ and s̃− :=
∞∑

n=0

(−s− B)ns− . (2.2.108)

The light-cone expansion in momentum space is performed exactly as for the
advanced and retarded Green’s functions. In analogy to (2.2.97) and (2.2.102), we
thus obtain the formula

((−s± B)k s±)(x, y)

=
ˆ

d4 p

(2π)4

ˆ
d4q1
(2π)4

· · ·
ˆ

d4qk
(2π)4

�s±(p; q1, . . . , qk) e−i(p+q1+···+qk )x+i py

with

�s±(p; q1, . . . , qk) = (−1)k /pk B̂(qk) /pk−1 · · · /p1 B̂(q1) /p0

×
∞∑

n1,...,nk=0

1

(k + n1 + · · · + nk)! (p2 − p2k )
nk · · · (p2 − p21)

n1 S± (k+n1+···+nk) .

Since S± areGreen’s functions of theKlein-Gordon equation, they clearly also satisfy
the identity (2.2.104). Furthermore, the differentiation rule (2.2.16) is also valid for
S±; namely

∂

∂ p j
S± (l)(p) =

(
d

da

)l

lim
ν↘0

∂

∂ p j

(
1

p2 − a ∓ iν

) ∣∣∣∣
a=0

=
(

d

da

)l

lim
ν↘0

−2p j

(p2 − a ∓ iν)2

∣∣∣∣
a=0

= −2p j S
± (l+1)(p) .
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Therefore we can, exactly as in (2.2.105), rewrite the power pL with p-derivatives.
Thus the expansion (2.2.106) is valid in the same way for the Green’s functions s± if
one only replaces the index “∨” in (2.2.106) by “±”. As explained before, the expan-
sion (2.2.106) can be obtained from the light-cone expansion of Theorem 2.2.4 by
expanding the potentials around the space-time point x . Since the formulas of the
light-cone expansion are uniquely determined by this Taylor expansion, we immedi-
ately conclude that the statement of Theorem 2.2.4 is also valid for the kth order con-
tribution to the perturbation expansion (2.2.108) if the factor S(h) in (2.2.32) stands
more generally for S+ (h) or S− (h), respectively. This simple analogy between the
formulas of the light-cone expansions of the Feynman diagrams ((−s∨/∧ B)k s∨/∧)

and ((−s± B)k s±), which are obtained by changing the location of the poles of the
vacuum Green’s functions in momentum space, is called the residual argument (the
name is motivated by the fact that the effect of changing the location of the poles
becomes apparent when taking the Fourier integral with residues).

Having other Green’s functions to our disposal, one can also form more general
solutions of the homogeneous equation. Namely, taking the difference of s+ and s−,
we obtain similar to (2.1.13),

s+(q) − s−(q) = /q lim
ν↘0

[
1

q2 − iν
− 1

q2 + iν

]
= 2πi /q δ(q2) = 2πi p(q)

(2.2.109)

with p according to (2.1.7). Replacing the Green’s functions by those in the exter-
nal potential, one gets a canonical perturbation series for p. As we shall see below
(see Sect. 2.2.7), this perturbation series does not agree with the causal perturbation
expansion (2.1.64). Therefore, we denote the obtained operator with an additional
index res. Similar to (2.1.26),we thus introduce the residual fundamental solution p̃res

by

p̃res := 1

2πi

(
s̃+ − s̃−) . (2.2.110)

We now introduce the residual fermionic projector by replacing the operators pm
and km in (2.1.6) by the corresponding perturbation series.

Definition 2.2.10 The residual fermionic projector P̃ res(x, y) is defined by

P̃ res(x, y) = 1

2

(
p̃res − k̃

)
(x, y) , (2.2.111)

where the operator p̃res is defined in (2.2.110), and k̃ is again given by (2.1.53).

Similar to (2.1.64), the residual fermionic projector also has a contour integral rep-
resentation (see Exercise 2.19).

Applying the residual argument, the light-cone expansion of theGreen’s functions
immediately carries over to P̃ res: As in (1.2.26) we denote the lower mass shell by
Ta , i.e. in momentum space

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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Ta(q) = �(−q0) δ(q2 − a) . (2.2.112)

In analogy to the mass expansion of the Green’s functions (2.2.13), we set

T (l)
formal =

(
d

da

)l

Ta
∣∣
a=0 . (2.2.113)

In order not to distract from the main idea, we postpone the analysis of whether these
derivatives exist to Sect. 2.2.6. This is why we added the index “formal.”

Proposition 2.2.11 The light-cone expansion for the causal Green’s functions also
holds for the residual fermionic projector P̃res(x, y) if one simply replaces S(l) →
T (l)
formal.

Proof The starting point is the light-cone expansion for the causal Green’s functions
(see Theorems 2.2.4, 2.2.6 and 2.2.8). By linearity, this light-cone expansion also
hold for k̃ defined by (2.1.26), after the replacements

S(l) → 1

2πi

(
S∨ (l) − S∧ (l)

)
.

Using the residual argument, the light-cone expansion of the Green’s functions s̃± is
obtained by the replacements S(l) → S± (l). It follows by linearity that p̃res as defined
by (2.2.110) also has a light-cone expansion obtained by the replacements

S(l) → 1

2πi

(
S+ (l) − S− (l)

)
.

Finally, again by linearity, we obtain the light-cone expansion of residual fermionic
projector (2.2.111) by the replacements

S(l) → 1

4πi

(
S+ (l) − S− (l) − S∨ (l) + S∧ (l)

)
.

A direct computation in analogy to (2.1.13) and (2.2.109) shows that

1

4πi

(
S+ − S− − S∨ + S∧

)
= Ta .

This concludes the proof. �

We point out that the result of Proposition 2.2.11 is only formal because we have not
yet analyzed whether the factors T (l)

formal are mathematically well-defined. This will
be done in the next section.
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2.2.6 The Non-causal Low Energy Contribution

We now want to put the residual argument and the formal light-cone expansion of
Proposition 2.2.11 on a satisfying mathematical basis. In order to explain what pre-
cisely we need to do, we first recall how the light-cone expansion of the Green’s
functions makes mathematical sense: Theorem 2.2.4 gives a representation of every
Feynman diagram of the perturbation series (2.2.12) as an infinite sum of contribu-
tions of the form (2.2.32). According to the bound (2.2.36), there are, for any given
h, only a finite number of possibilities to choose Ia and pa; as a consequence, we
get, for fixed h, only a finite number of contributions (2.2.32). Thus we can write the
light-cone expansion in the symbolic form

(
(−sB)k s

)
(x, y) =

∞∑

h=−1

∑

finite

· · · S(h)(x, y) , (2.2.114)

where ‘· · · ’ stands for a configuration of the γ-matrices and nested line integrals
in (2.2.59). According to the explicit formula (2.2.7), the higher a-derivatives of
Sa(x, y) contain more factors (y − x)2 and are thus of higher order on the light cone.
This makes it possible to make mathematical sense of the infinite series in (2.2.114)
as a light-cone expansion.

According to Proposition 2.2.11, all the results for the Green’s function are, on a
formal level, also valid for the residual fermionic projector. We begin by considering
the light-cone expansion of the individual Feynman diagrams in more detail. Similar
to (2.2.114), the kth order contribution �P res to the residual fermionic projector has
an expansion of the form

�P res(x, y) =
∞∑

h=−1

∑

finite

· · · T (h)
formal(x, y) , (2.2.115)

where T (h)
formal is the a-derivative (2.2.113) of the lower mass shell Ta , (2.2.112). In

position space, Ta is given explicitly in (2.2.3). The basic difference between the light-
cone expansions (2.2.114) and (2.2.115) is related to the logarithmic pole log |a| in
(2.2.3). Namely, as a consequence of this logarithm, the higher a-derivatives of Ta
are not of higher order on the light cone. To the order O((y − x)2), for example, one
has

(
d

da

)n

Ta(x, y) = 1

32π3

(
d

da

)n

(a log |a|) + O((y − x)2) (n ≥ 2) .

(2.2.116)

In our context of an expansion around a = 0, the situation is even worse, because the
a-derivatives ofTa are singular fora → 0 (as one sees e.g. in (2.2.116)). Thusnot even
the individual contributions to the light-cone expansion make mathematical sense.
These difficulties arising from the logarithm in (2.2.3) are called the logarithmic
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mass problem (see [F5] for a more detailed discussion in a slightly different setting).
Since we know from Lemma 2.1.2 that the Feynman diagrams are all well-defined,
the logarithmic mass problem is not a problem of the perturbation expansion, but
shows that something is wrong with the light-cone expansion of Proposition 2.2.11.

In order to resolve the logarithmic mass problem, we first “regularize” the formal
light-cone expansion by taking out the problematic log |a| term. By resumming the
formal light-cone expansion, we then show that the difference between the residual
Dirac sea and the “regularized” Dirac sea is a smooth function in position space. We
introduce the notation

T reg
a (x, y) = Ta(x, y) − a

32π3
log |a|

∞∑

j=0

(−1) j

j ! ( j + 1)!
(aξ2) j

4 j
(2.2.117)

T (l) =
(

d

da

)l

T reg
a | a=0 (2.2.118)

(where ξ2 ≡ ξ jξ j denotes again the Minkowski inner product).

Definition 2.2.12 The causal contribution P̃causal to the fermionic projector is
obtained from the residual Dirac sea P̃ res by replacing all factors T (h)

formal in the formal
light-cone expansion by T (h). The non-causal low energy contribution P̃ le to the
fermionic projector is given by

P̃ le(x, y) = P̃ res(x, y) − P̃causal(x, y) .

By the replacement T (h)
formal → T (h), the formal light-cone expansion of Propo-

sition 2.2.11 becomes mathematically meaningful in the sense of Definition 2.2.1.
Thus we can restate this result as a theorem, leaving out the word “formal.”

Theorem 2.2.13 The light-cone expansion for the causal Green’s functions also
holds for the causal contribution P̃causal to the fermionic projector if one simply
replaces S(l) → T (l) with T (l) according to (2.2.118).

Since Ta − T reg
a is a smooth function in x and y, it is natural to expect that the

non-causal low energy contribution should also be smooth. This is indeed the case,
in the following sense.

Theorem 2.2.14 To every order in the external potential B, the non-causal low
energy contribution P̃le(x, y) is a smooth function in x and y.

The subtle point in the proof is that, to every order in perturbation theory, the non-
causal low energy contribution involves an infinite number of summands. Although
each summand is smooth, it is not clear whether the infinite sum converges and gives
rise to a smooth function. This makes it necessary to use a resummation technique
for the smooth contributions to the light-cone expansion. For brevity, we do not
enter these constructions here but instead refer the interested reader to [F6, Proof of
Theorem 3.8]. The resummation technique will also be introduced and applied in
Appendix D.
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2.2.7 The Non-causal High Energy Contribution

In the previous sections (Sects. 2.2.5 and 2.2.6) we performed the light-cone expan-
sion for the residual fermionic projector P̃ res (see Definition 2.2.10). The remaining
task is to deduce the light-cone expansion of the fermionic projector Psea with spatial
normalization (as defined by (2.1.64)). We now prove that P sea and P̃ res have the
same light-cone expansion.

We begin by giving the difference between the fermionic projector and the residual
fermionic projector a name.

Definition 2.2.15 The non-causal high energy contribution P̃he(x, y) to the
fermionic projector is given by

P̃he(x, y) = P sea(x, y) − P̃ res(x, y) .

Theorem 2.2.16 To every order in the external potential B, the non-causal high
energy contribution P̃he(x, y) is a smooth function in x and y.

Proof Our first task is to rewrite the perturbation expansion for P̃ res in terms of
the potential B. To this end, one combines the rest masses of the Dirac particles
with the unperturbed Green’s functions. Thus for the advanced and retarded Green’s
functions,we return to the perturbation expansions (2.1.25). Similarly, for theGreen’s
functions s̃±, we rewrite (2.2.108) as

s̃+
m =

∞∑

n=0

(−s+
m B)ns+

m and s̃−
m =

∞∑

n=0

(−s−
m B)ns−

m .

Then k̃ and p̃res are defined again by (2.1.26) and (2.2.110), respectively. As a result,
the operators k̃ and p̃res are defined as sums of operator products of the form

Cn B Cn−1 B · · · B C0 , (2.2.119)

where the factors Cl coincide with either k, p or s.

Next, we need a few structural properties of the causal perturbation expansion.
These results are derived in Exercises 2.9–2.11. Alternatively, these results are obvi-
ous from the detailed formulas in the research papers [FG1, FT2]. First, the operator k̃
has the contour integral representation (see Exercise 2.9 (a))

k̃ = − 1

2πi

‰
�+∪�−

λ R̃λ dλ .

As a consequence, the fermionic projector Psea, (2.1.64), can be represented as

P sea = 1

2

(
p̃ − k̃

)
,
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where p̃ is defined by

p̃ := − 1

2πi

(‰
�+

−
‰

�−

)
λ R̃λ dλ

(see Exercise 2.9 (b)). Comparing with (2.2.111) and Definition 2.2.15, we conclude
that

P̃he = 1

2

(
p̃ − p̃res

)
.

Next, the operator p̃ has the following properties:

(i) Every contribution to the perturbation expansion of p̃ contains an even number
of factors k.

(ii) If in the perturbation series for p̃ one replaces all factors k by factors p, one gets
precisely the perturbation series for p̃res.

These properties can be read off from the explicit formulas for p̃ and p̃res given
in [FG1, FT2]. For abstract proofs, one can proceed as follows. Property (i) is shown
in Exercise 2.10. In order to prove (ii), we first bring the perturbation expansion for
the residual fundamental solution into a more explicit form. Comparing (2.2.110)
with (2.1.26) and noting that in view of (2.2.109), the Green’s functions s±

m satisfy
in analogy to (2.1.41) the relations

s = s+ − iπ p = s− + iπ p ,

we find that the perturbation expansion for p̃res is obtained from that for k̃, (2.1.46),
simply by replacing all factors k by factors p,

p̃res =
∞∑

β=0

(−iπ)2β b< p (b p)2β b> .

In Exercise 2.11 it is shown that exactly the same perturbation series is obtained if in
the perturbation series for p̃ one replaces all factors k by factors p. This proves (ii).

Using the above properties (i) and (ii), we can convert the perturbation series for
p̃ into that for p̃res by iteratively replacing pairs of factors k in the operator products
by pairs of factors p. Thus the difference p̃ − p̃res can, to every order in perturbation
theory, be written as a finite sum of expressions of the form

Cn B · · ·Cb+1 B
(
p B Cb−1 · · ·Ca+1 B p

− k B Cb−1 · · ·Ca+1 B k
)
B Ca−1 · · ·B C0 , (2.2.120)

where the factors Cl again stand for k, p or s. Therefore, it remains to show
that (2.2.120) is a smooth function in position space.
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We first simplify our problem: Once we have shown that the bracket in (2.2.120)
is smooth and bounded in position space, the additional multiplications to the very
left and right can be carried out by iteratively multiplying with B and forming the
convolution with Cl , which again gives a smooth and bounded function in each step
(notice that, according to the assumptions of Lemma 2.1.2, B decays sufficiently
fast at infinity). Thus we must only consider the bracket in (2.2.120). We rewrite
this bracket with the projectors 1

2 (p − k) and 1
2 (p + k) on the lower and upper mass

shells,

p B Cn−1 · · ·C1 B p − k B Cn−1 · · ·C1 B k

= 1

2
(p + k) B Cn−1 · · ·C1 B (p − k) + 1

2
(p − k) B Cn−1 · · ·C1 B (p + k) .

For symmetry reasons, it suffices to consider the first summandof this decomposition,

((p + k) B Cn−1 · · ·C1 B (p − k))(x, y) , (2.2.121)

where the factors Cl again stand for k, p, or s. Our task is to show that (2.2.121) is
a smooth function in position space.

We proceed in momentum space. We say that a function f (q) has rapid decay
for positive frequency if it is C1, bounded together with its first derivatives (i.e.
sup | f |, sup |∂l f | < ∞), and satisfies for every α > 0 the bounds

sup
ω>0, �k∈R3

|ωα f (ω, �k)|, sup
ω>0, �k∈R3

|ωα ∂l f (ω, �k)| < ∞ . (2.2.122)

After setting C0 = p − k and Cn = p + k, the operator product (2.2.121) is of the
form (2.1.27). We choose a function g with rapid decay for positive frequency and
decompose the operator product in the form (2.1.31), (2.1.32). It follows by induction
that the functions Fj all have rapid decay for positive frequency: The induction
hypothesis is obvious by setting F0 = g. The induction step is to show that for a
function Fj−1 with rapid decay for positive frequency, the convolution

Fj (ω, �k) =
ˆ

dω′

2π

ˆ
d�k ′

(2π)3
B̂(ω − ω′, �k − �k ′) C j−1(ω

′, �k ′) Fj−1(ω
′, �k ′)

(2.2.123)

also has rapid decay for positive frequency. In Lemma 2.1.2, it was shown that Fj is
C1 and bounded together with its first derivatives. As a consequence, we must only
establish the bounds (2.2.122) for ω > 1. Moreover, because of the monotonicity
ωα < ωβ for α < β (and ω > 1), it suffices to show that there are arbitrarily large
numbers α satisfying the bounds (2.2.122); we only consider α = 2n with n ∈ N.
For ω > 1 and ω′ ∈ R, we have the inequality

ω2n ≤ (2ω′)2n �(ω′) + (2(ω − ω′))2n ,
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as is immediately verified by checking the three regions ω′ ≤ 0, 0 < ω′ ≤ ω/2,
and ω′ > ω/2. We combine this inequality with (2.2.123) and obtain for ω > 1 the
estimate

|ω2n Fj (ω, �k)| ≤
∣∣∣∣
ˆ

dω′

(2π)

ˆ
d�k ′

(2π)3

(
E1 + E2

)∣∣∣∣ , (2.2.124)

where E1 and E2 are given by

E1 = B̂(ω − ω′, �k − �k ′) C j−1(ω
′, �k ′)

[
(2ω′)2n �(ω′) Fj−1(ω

′, �k)
]

(2.2.125)

E2 =
[
(2(ω − ω′))2n B̂(ω − ω′, �k − �k ′)

]
C j−1(ω

′, �k ′) Fj−1(ω
′, �k) . (2.2.126)

According to the induction hypothesis, the square bracket in (2.2.125) is bounded
together with its first derivatives. Since B̂ has rapid decay at infinity, the square
bracket in (2.2.126) also has rapid decay at infinity. As a consequence, the integral
in (2.2.124) satisfies the hypothesis considered in Lemma 2.1.2 for (2.1.29) and is
therefore bounded. In order to estimate the expression |ω2n∂l Fj |, we differentiate
(2.2.123) and obtain similar to (2.2.125) and (2.2.126) the inequality

|ω2n ∂l Fj (ω, �k)|

≤
∣∣∣∣
ˆ

dω′
2π

ˆ
d�k′

(2π)3
∂l B̂(ω − ω′, �k − �k′) C j−1(ω

′, �k′)
[
(2ω′)2n �(ω′) Fj−1(ω

′, �k)
] ∣∣∣∣

+
∣∣∣∣
ˆ

dω′
dω

ˆ
d�k′

(2π)3

[
(2(ω − ω′))2n ∂l B̂(ω − ω′, �k − �k′)

]
C j−1(ω

′, �k′) Fj−1(ω
′, �k)

∣∣∣∣ .

This concludes the proof of the induction step.
We just showed that for a function g with rapid decay for positive frequency, the

function

Fn(q) =
ˆ

d4q1
(2π)4

(B Cn−1 B · · ·B C1 B C0) (q, q1) g(q1) (2.2.127)

has rapid decay for positive frequency. We now consider what this means for our
operator product (2.2.121) in position space. For a given four-vector y = (y0, �y), we
choose

g(ω, �k) = η(ω) e−i(ωy0−�k �y) ,

where η is a smooth function with η(ω) = 1 for ω ≤ 0 and η(ω) = 0 for ω > 1 (this
choice of g clearly has rapid decay for positive frequency). Since the support of the
factor C0 = (p − k) is the lower mass cone {q2 ≥ 0, q0 ≤ 0}, g(ω, �k) enters into
the integral (2.2.127) only for negative ω. But for ω ≤ 0, the cutoff function η is
identically one. Thus the integral (2.2.127) is simply a Fourier integral; i.e., with a
mixed notation in momentum and position space,
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Fn(q) = (B Cn−1 B · · ·B C1 B (p − k)) (q, y) .

Next, we multiply from the left with the operator (p + k),

((p + k) B Cn−1 B · · ·B C1 B (p − k)) (q, y) = (p + k)(q) Fn(q) . (2.2.128)

Since Fn has rapid decay for positive frequency and (p + k) has its support in the
upper mass cone {q2 ≥ 0, q0 > 0}, their product decays fast at infinity. More pre-
cisely, ∣∣q I (p + k)(q) Fn(q)

∣∣ ≤ const(I ) (p + k)(q)

for any multi-index I . As a consequence, the Fourier transform of (2.2.128) is even
finite after multiplying with an arbitrary number of factors q, i.e.

∣∣∣∣
ˆ

d4q

(2π)4
q I (p + k)(q) Fn(q) e−iqx

∣∣∣∣ ≤ const(I ) < ∞

for all x and I . This shows that our operator product in position space (2.2.121)
is bounded and, for fixed y, a smooth function in x (with derivative bounds which
are uniform in y). Similarly, one obtains that (2.2.121) is, for fixed x , a smooth
function in y. We conclude that the distribution (2.2.121) is a smooth and bounded
function. �

2.2.8 The Unregularized Fermionic Projector
in Position Space

The previous constructions give a representation of the fermionic projector in
the presence of chiral and scalar/pseudoscalar potentials (see (2.2.27), (2.2.25)
and (2.2.28)) of the form

P sea(x, y) =
∞∑

n=−1

(phase-inserted line integrals) × T (n)(x, y)

+ P̃ le(x, y) + P̃he(x, y) .

(2.2.129)

Here the series is a light-cone expansion which describes the singular behavior of
the fermionic projector on the light cone non-perturbatively. It is obtained from the
light-cone expansion of the Green’s functions by the simple replacement rule

S(n) −→ T (n)

(with T (n) as defined in (2.2.118)). In particular, the phase-inserted line integrals
are exactly the same as those for the Green’s functions (see Definition 2.2.7). The
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contributions P̃ le and P̃he, on the other hand, are both given perturbatively by a series
of terms which are all smooth on the light cone. The “causality” of the causal pertur-
bation expansion can be understood from the fact that the phase-inserted line integrals
in (2.2.129) are all bounded integrals along the line segment joining the points x and y
(whereas the light-cone expansion of general operator products involves unbounded
line integrals). In particular, when y lies in the causal future or past of x , the light-cone
expansion in (2.2.129) depends on the external potential only inside the causal dia-
mond (J∨

x ∩ J∧
y ) ∪ (J∧

x ∩ J∨
y ). Nevertheless, the light-cone expansion is not causal

in this strict sense because there are contributions for y /∈ Jx . Furthermore, the low
and high energy contributions cannot be described with line integrals and violate
locality as well as causality. This non-locality can be understood from the fact that
the fermionic projector is a global object in space-time.We conclude that the singular
behavior of the fermionic projector on the light-cone can be described explicitly by
causal line integrals, whereas the smooth contributions to the fermionic projector are
governed by non-local effects.

We finally remark that the decomposition (2.2.129) is also a suitable starting point
for analyzing the smooth contributions to the fermionic projector. Indeed, the low
energy contribution P̃ le can be computed effectively by resumming the perturbation
expansion, as is explained in Appendix D. The high energy contribution P̃he, on
the other hand, is given in terms of operator products, which can be analyzed with
Fourier methods.

2.3 Description of Linearized Gravity

We now outline how our computational tools apply in the presence of a gravita-
tional field. Note that so far, the external potential B in the Dirac equation (2.1.5)
was assumed to be a multiplication operator. When describing a gravitational field,
however, the derivative terms in the Dirac equation are modified. The gravitational
field can still be described by the Dirac equation (2.1.5) if we allow for B to be a
first order differential operator. This means that the causal perturbation expansion
of Sect. 2.1.6 still applies. An analysis similar to that in Lemma 2.1.2 shows that the
contributions to the perturbation series are again all well-defined and finite, provided
that the gravitational field is smooth and decays sufficiently fast at infinity. In order
to perform the light-cone expansion of the Green’s functions, it is convenient to
commute the differential operators contained in B to the very left to obtain operator
products of the form

∂

∂x I

[
s Z1 · · · Zn s

]
(x, y) ,

where the Z1, . . . , Zn are again multiplication operators (which contain tensor
indices contracted with the multi-index I ). This makes it possible to perform the
light-cone expansion of the square brackets with the inductive procedure described
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in Sect. 2.2.2. Carrying out the derivatives ∂ I
x gives the desired light-cone expansion

of the Green’s function.
The basic difficulty with this construction is that, due to the additional derivatives,

the contributions to higher order in perturbation theory become more and more
singular on the light cone. In particular, the structural results of Sect. 2.2.3 no longer
hold, and the resummation method of Sect. 2.2.4 no longer applies. These difficulties
are closely related to the fact that in the presence of a gravitational field, the light
cone is no longer the light cone of Minkowski space, but it is generated by the
null geodesics of the Lorentzian metric. This “deformation of the light cone” by
the gravitational field is an effect which cannot be properly described by a light-
cone expansion in Minkowski space. A possible way out is to use to use the non-
perturbative construction in [FR3, FMR]. The structure of the singularities on the
light-cone can then be analyzed with the so-called Hadamard expansion (for explicit
computations for the fermionic projector we refer to [FG2, Appendix A]). Since we
do not want to enter these techniques here, we simply describe how linearized gravity
can be described with our methods. We refer to more details to [F5, Appendix B].

For the metric, we consider a first order perturbation h jk of the Minkowski met-
ric η jk = diag(1,−1,−1,−1),

g jk(x) = η jk + h jk(x) .

As in the usual formalism (see for example [LL, Sects. 105 and 107]), we raise and
lower tensor indices with the Minkowski metric. Using the transformation of h jk

under infinitesimal coordinate transformations, we can assume [LL, Sect. 105] that

∂kh jk = 1

2
∂ j h with h := hkk .

A straightforward computation (using for example the formalism introduced in [F4])
shows that in the so-called symmetric gauge, the Dirac operator takes the form

i /∂x − i

2
γ j h jk ηkl ∂

∂xl
+ i

8
(/∂h) .

In contrast to (2.1.5), now the perturbation itself is a differential operator.
One complication arises from the fact that the integration measure in curved

space is
√|g| d4x = (1 + h

2 ) d
4x , whereas the formula (2.1.70) for the perturbation

of the fermionic projector is valid only if one has the integration measure d4x of
Minkowski space. Therefore we first transform the system such that the integration
measure becomes d4x , then apply (2.1.70), and finally transform back to the original
integration measure

√|g| d4x . Rewriting the space-time inner product (1.5.2) as

ˆ
M

≺ψ|φ� dμ(x) =
ˆ
R4

≺ψ|φ�√|g| d4x =
ˆ
R4

≺(|g| 1
4 ψ) | (|g| 1

4 φ�) d4x ,

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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the transformation to the measure d4x is accomplished by

ψ(x) → ψ̂(x) = |g| 1
4 (x) ψ(x)

i /∂x − i

2
γ j hkj ∂k + i

8
(/∂h) → |g| 1

4

(
i /∂x − i

2
γ j hkj ∂k + i

8
(/∂h)

)
|g|− 1

4

= i /∂x − i

2
γ j hkj ∂k − i

8
(/∂h) .

The perturbation �P (d4x) of the transformed system is given by (2.1.70),

�P (d4x)(x, y) = −
ˆ

d4z

{
s(x, z)

(
− i

2
γ j hkj

∂

∂zk
− i

8
(/∂h)(z)

)
P(z, y)

+ P(x, z)
(

− i

2
γ j hkj

∂

∂zk
− i

8
(/∂h)(z)

)
s(z, y)

}
. (2.3.1)

The formula for the transformation of theDirac sea to the original integrationmeasure√|g| d4x is

P(x, y) + �P(x, y) = |g|− 1
4 (x) |g|− 1

4 (y)
(
P(x, y) + �P (d4x)(x, y)

)
.

Thus

�P(x, y) = �P (d4x)(x, y) − 1

4
(h(x) + h(y)) P(x, y) .

Since the factors P(z, y) and s(z, y) in (2.3.1) only depend on the difference vec-
tor z − y, we can rewrite the z-derivatives as y-derivatives,

∂

∂zk
P(z, y) = − ∂

∂yk
P(z, y) ,

∂

∂zk
s(z, y) = − ∂

∂yk
s(z, y) ,

which can be pulled out of the integral. Furthermore, the relations

ˆ
d4z P(x, z)

(
i /∂zh(z)

)
s(z, y) =

ˆ
d4z P(x, z)

[
(i /∂z − m), h(z)

]
s(z, y)

= −P(x, y) h(y)ˆ
d4z s(x, z)

(
i /∂zh(z)

)
P(z, y) = h(x) P(x, y)

make it possible to simplify the factors (/∂h) in the integral. In the resulting formula
for �P(x, y), one recovers the perturbation by an electromagnetic potential. More
precisely,
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�P(x, y) =
(

− 1

8
h(x) − 3

8
h(y)

)
P(x, y) − i

2

∂

∂yk
�P[γ j hkj ](x, y) ,

(2.3.2)

where �P[γ j hkj ](x, y) is the perturbation (2.1.70) of the Dirac sea corresponding
to the electromagnetic potential B = γ j hkj . The light-cone expansion of �P(x, y)
is obtained by substituting the light-cone expansion of �P[γ j hkj ](x, y) into (2.3.2)
and computing the y-derivative.

2.4 The Formalism of the Continuum Limit

In Sect. 2.2 we developed a method for analyzing the unregularized kernel of the
fermionic projector in position space (see the summary in Sect. 2.2.8). Our next
goal is to extend these methods in order to include an ultraviolet regularization.
Following the method of variable regularization (see Remark 1.2.1), the allowed
class of regularizations should be as large as possible. Moreover, we need to analyze
in detail how the causal action and the corresponding EL equations depend on the
regularization. As we shall see, these issues can be treated conveniently in the so-
called formalism of the continuum limit, which is also most suitable for explicit
computations.

The formalism of the continuum limit was first introduced in [F7, Chap.4], based
on earlier considerations in the unpublished preprint [F1]. In particular, the analysis
in [F7, Sects. 4.3–4.5] puts the formalism on a rigorous basis. For better readability,
we here follow the original ideas in [F1] and develop the formalism from a more
computational perspective. This makes it possible to explain the main points of
the formalism in a non-technical way. Generalizing the concepts, we then obtain
the formalism of the continuum limit. In order avoid repetitions, we only outline the
general derivation and refer the reader interested in the details to [F7, Sects. 4.3–4.5]
and Appendix F.

2.4.1 Example: The iε-Regularization

In Sect. 1.2 we introduced the UV regularization in Minkowski space using general
regularization operators (see Definition 1.2.3 and the resulting regularized kernel in
Proposition 1.2.7). In order to get a better idea of what the effect of the regularization
is, we now consider an explicit example. To this end, we assume that the regularized
kernel of the fermionic projector, denoted again by Pε(x, y), is homogeneous in the
sense that it depends only on the difference vector ξ := y − x . Then the kernel can
be written as a Fourier integral

Pε(x, y) =
ˆ

d4k

(2π)4
P̂ε(k) e−ik(x−y) (2.4.1)

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
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with a distribution P̂ε(k). From the computational point of view, the simplest possible
regularization method is to modify the unregularized kernel (1.2.23) by inserting a
convergence-generating exponential factor. This leads us to choosing

P̂ε(k) = (/k + m) δ(k2 − m2)�(−k0) exp
(
εk0
)
, (2.4.2)

where ε > 0 is the regularization length. The convergence-generating factor ensures
that the Fourier integral (2.4.1) converges pointwise for any vector ξ ∈ M .Moreover,
differentiating (2.4.1) with respect to x or y gives rise to powers of k. Since these
polynomial factors are dominated by the convergence-generating exponential factor,
the Fourier integral again converges pointwise. We thus conclude that Pε(x, y) is a
smooth function,

Pε(., .) ∈ C∞(M × M ) .

Therefore, all composite expressions in the fermionic arewell-defined (like the closed
chain (1.1.14), its eigenvalues λ

xy
1 , . . . λ

xy
2n , the Lagrangian (1.1.9), the integrands

in (1.1.4) and (1.1.5) as well as the kernel Q(x, y) in (1.4.16)). But clearly, the sin-
gularities on the light-cone reappear in the limit ε ↘ 0, and the composite expressions
will diverge. In other words, the limit ε ↘ 0 is a singular limit. Our goal is to analyze
this singular limit in detail.

The effect of the convergence-generating factor in (2.4.2) can be described con-
veniently in position space. Namely, introducing the short notations

ω = k0 and ξ = (t, �x) ,

one can combine the exponential with the phase factor of the Fourier transform,

exp(εk0) eikξ = eiω(t−iε)−i �k �x .

This shows that the regularization amounts to the replacement

t → t − iε . (2.4.3)

This simple replacement rule motivates the name iε-regularization.
In order to illustrate how to work with this regularization, we next derive explicit

formulas for the fermionic projector of the vacuum with this regularization. Our
starting point is the light-cone expansion of the unregularized fermionic projec-
tor (2.2.129). More specifically, pulling the Dirac matrices out of the Fourier inte-
gral (1.2.25) and expanding in a Taylor series in the mass parameter using (2.2.118)
and (2.2.117), we obtain

Pvac(x, y) = (i /∂ + m) Tm2 = (i /∂ + m)

( ∞∑

n=0

m2n

n! T (n) + (smooth contributions)

)
.

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1


2.4 The Formalism of the Continuum Limit 153

Sincewe are again interestedmainly in the behavior of the singularities, for simplicity
we shall disregard the smooth contributions. Clearly, such smooth contributions are
important, and they also affect the singularities of composite expressions on the light
cone (for example if multiplied by a singular contribution when forming the closed
chain). But of course, smooth contributions can be treated in composite expressions
in a straightforward way. Therefore, we now focus on the singularities and do all
computations modulo smooth contributions. Then the residual argument shows that
the T (n) satisfy the same computation rules as the Green’s functions in (2.2.17)
and (2.2.19),

∂

∂xk
T (l)(x, y) = − ∂

∂yk
T (l)(x, y) = 1

2
ξk T

(l−1)(x, y) (2.4.4)

(again valid up to smooth contributions; for an explicit derivation see Exercise 2.21).
We thus obtain the light-cone expansion

Pvac(x, y) = i/ξ

2

∞∑

n=0

m2n

n! T (−1+n) +
∞∑

n=0

m2n+1

n! T (n) (2.4.5)

(where in analogy to (2.2.24) we use (2.4.4) to define T (−1)).
The next step is to apply the replacement rule (2.4.3). The factor /ξ becomes

/ξ → /ξε := (t − iε)γ0 − �ξ�γ . (2.4.6)

In order to regularize the factors T (l), we first note that, applying the replacement
rule (2.4.3) to the distribution Ta computed in Lemma 1.2.9, one really obtains a
smooth function. Moreover, using the series expansion (2.2.3), one can compute the
factors T (n) as defined by (2.2.118) and (2.2.117). When doing so, it is most conve-
nient to combine the principal part with the δ-contribution as well as the logarithm
with the Heaviside function by using the identities

PP

ξ2
+ iπδ

(
ξ2
)
ε
(
ξ0
) = lim

ν↘0

1

ξ2 − iνξ0

log
∣∣(y − x)2

∣∣+ iπ �
(
ξ2
)
ε
(
ξ0
) = lim

ν↘0

(
log
(
ξ2 − iνξ0

)− iπ
)
,

where the logarithm is understood in the complex planewhich is cut along the positive
real axis such that limν↘0 log(x + iν) is real for x > 0. This gives

T (0) → − 1

8π3

1

(t − iε)2 − ∣∣�ξ∣∣2
(2.4.7)

T (1) → 1

32π3
log
(
(t − iε)2 − ∣∣�ξ∣∣2

)
, (2.4.8)

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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and similar for the other distributions T (n). These replacement rules are compati-
ble with our earlier computation rules like (2.4.4). These rules can also be used to
compute T (−1) via (2.2.24) to obtain

T (−1) → − 1

2π3

1
(
(t − iε)2 − r2

)2 , (2.4.9)

where we set r = |�ξ|.
Next, in (2.4.5) we apply the replacement rule (2.4.6) and replace the factors T (l)

according to rules like (2.4.7)–(2.4.9). We thus obtain the regularized fermionic
projector of the vacuum Pε(x, y). The kernel Pε(y, x) is obtained by taking the
conjugate with respect to the spin scalar product (see (1.1.15) or (2.1.68)). Then one
can form the closed chain Axy by (1.1.14) and compute all other quantities of interest.
In order to give a concrete example, let us consider the massless case. Then

P(x, y) = i

2
/ξ T (−1) and thus

Pε(x, y) = − i

4π3

(t − iε)γ0 − �ξ�γ
(
(t − iε)2 − r2

)2

Pε(y, x) = Pε(x, y)∗ = i

4π3

(t + iε)γ0 − �ξ�γ
(
(t + iε)2 − r2

)2

Aε
xy = Pε(x, y) Pε(y, x)

= 1

16π6

1
∣∣(t − iε)2 − r2

∣∣4
(
(t − iε)γ0 − �ξ�γ

)(
(t + iε)γ0 − �ξ�γ

)
.

Simplifying the Dirac matrices according to

(
/ξ − iεγ0

)(
/ξ + iεγ0

) = ξ2 − iε[γ0, /ξ] + ε2 , (2.4.10)

we obtain

Aε
xy = 1

16π6

(t2 − r2) − iε[γ0, /ξ] + ε2
∣∣(t − iε)2 − r2

∣∣4
. (2.4.11)

In order to compute the eigenvalues of this matrix, the task is to diagonalize the
bilinear contribution iε[γ0, /ξ]. The calculation

(
iε[γ0, /ξ])2 = −4ε2 γ0(�ξ�γ)γ0(�ξ�γ) = 4ε2 γ0γ0(�ξ�γ)(�ξ�γ) = −4ε2 | �ξ|2 < 0

shows that this bilinear contributionhas complex eigenvalues.Thus the regularization
makes the spacelike region larger. As we shall see below, this happens in a much
more general setting. It is a desirable effect because it decreases the causal action.

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
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Clearly, the singular behavior of the resulting expressions in the limit ε ↘ 0 is
rather complicated. However, one limiting case, which will be important later on,
is relatively easy to handle. This limiting case is to consider the region close to the
light cone and away from the origin. For simplicity, we restrict attention to the upper
light cone t ≈ r (but clearly, the lower light cone can be treated similarly). Then
“close to the light cone” means that t − r is much smaller than r , whereas “away
from the origin” means that ε is much smaller that r . Under these assumptions, we
have approximately

(t − iε)2 − r2 = (t + r − iε)(t − r − iε) ≈ 2r (t − r − iε) .

In order to make the approximation precise, we write the error term as

(t − iε)2 − r2 = 2r (t − r − iε)

(
1 + O

( t − r

r

)
+ O

(ε

r

))
. (2.4.12)

Computing up to error terms of this type, the above formulas (2.4.7)–(2.4.9) can be
simplified to

T (0) → − 1

8π3

1

2r (t − r − iε)
(2.4.13)

T (1) → 1

32π3
log
(
2r (t − r − iε)

)
(2.4.14)

T (−1) → − 1

8π3 r2
1

(t − r − iε)2
. (2.4.15)

Using this approximation, the closed chain (2.4.11) simplifies to

Aε
xy = 1

256π6 r4
(t2 − r2) − iε[γ0, /ξ] + ε2

|t − r − iε|4 .

Moreover, the numerator can be further simplified. We first note that, since ξ is close
to the light cone, the factor ξ2 can be arbitrarily small. Therefore, despite the factor ε,
the summand ε[γ0, /ξ] cannot be left out. But the summand ε2 is of higher order in ε/r
and can be omitted. We conclude that

Aε
xy = 1

256π6 r4
(t2 − r2) − iε[γ0, /ξ]

|t − r − iε|4
(
1 + O

( t − r

r

)
+ O

(ε

r

))
. (2.4.16)

Clearly, composite expressions diverge in the limit ε ↘ 0. In order to analyze this
singular behavior, the proper method is to evaluate weakly in t for fixed r . Thus one
considers integrals of the form

ˆ ∞

−∞
η(t)

( · · · ) dt (2.4.17)
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for a smooth test function η, where “· · · ” stands for a composite expression in the T (n)

and T (n). Then “· · · ” is a meromorphic function in t with poles at t = ±r ± iε. This
makes it possible to compute the integral with the help of residues. The reader
interested in an explicit example is referred to Exercise 2.20. Here we proceed by
compiling and explaining a few general conclusions which will be important later
on.

(a) The integrand in (2.4.17) has poles at t = ±r ± iε. Again restricting attention
to the upper light cone, we only need to consider the poles at t = r ± iε. When
computing the residues at these points, the variable t − r is of the order ε.
Therefore, the two error terms in (2.4.12) become the same. For convenience,
we usually write the error terms as

· · · + (higher orders in ε/| �ξ|) . (2.4.18)

Moreover, the theorem of residues gives rise to contributions where the test
function η is differentiated. Every such derivative gives rise to an additional
factor of ε. In order to keep the dimensions of length, we write the resulting
error terms in the form

+ (higher orders in ε/�macro) , (2.4.19)

where �macro denotes the “macroscopic” length scale on which η varies.
(b) The scaling of the integral (2.4.17) in ε and r can be described by

T (n) ∼ (ε | �ξ|)n−1
and dt ∼ ε . (2.4.20)

The resulting scaling of a composite expression in powers of 1/(ε | �ξ|) is referred
to as the degree of the expression. One should carefully distinguish the powers
of 1/(ε | �ξ|) defining the degree from the factors ε/| �ξ| appearing in the error terms
in (2.4.18). Tomake this distinction, it is important that we have two independent
variables ε and | �ξ|, and that we consider the scaling behavior in both variables. In
this way, when evaluating a sum of expressions of different degrees, our methods
make it possible to evaluate each degree separately, each with error terms of the
form (2.4.18) and (2.4.19).

(c) The scaling behavior of the factors ξε is more subtle, as we now explain. If a
factor ξε is contracted to Dirac matrices or to a macroscopic function (like a
gauge potential or the Dirac current), we may simply disregard the regulariza-
tion (2.4.6), i.e.

/ξε = /ξ + (higher orders in ε/| �ξ|)
ξε
j f

j = ξ j f
j + (higher orders in ε/| �ξ|)

(where f j is a macroscopic vector field). We refer to such factors ξε as outer
factors.
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(d) Two factors ξε which are contracted to each other are called inner factors. Since
the resulting function ξ2 is very small on the light cone, the factor ε in (2.4.6)
must be taken into account, i.e.

(
ξε
)2 = (t − iε)2 − |�ξ|2 = t2 − |�ξ|2 − 2iεt − ε2 . (2.4.21)

But similar as in (2.4.12), the quadratic term in ε may be dropped, i.e.

(
ξε
)2 = t2 − |�ξ|2 − 2iεt + (higher orders in ε/| �ξ|) . (2.4.22)

The general rule is that in every contraction, the factors iε must be taken into
account linearly. This means in particular that the regularized factors ξε are no
longer real, but must be treated as complex-valued vectors. Taking their complex
conjugate corresponds to flipping the sign of ε, i.e.

ξ
ε = (t + iε, �ξ) .

Taking the adjoint of /ξε (with respect to the spin scalar product), we need to take
the complex conjugate of ξε, i.e.

(
ξ

ε)∗ = /ξε .

One must carefully distinguish ξε and ξε in all computations.
(e) Clearly, a factor ξε may also be contracted to a factor ξ

ε
, or two factors ξ

ε
may

be contracted to each other. In these cases, we again refer to the factors ξε and ξ
ε

as inner factors. Since we only take into account ε linearly, we get

(
ξ

ε)2 = t2 − |�ξ|2 + 2iεt + (higher orders in ε/| �ξ|)
(ξε) j (ξ

ε
) j = t2 − |�ξ|2 + (higher orders in ε/| �ξ|) .

Comparing these formulas with (2.4.22), one sees that

(ξε) j (ξ
ε
) j = 1

2

((
ξε
)2 + (ξε)2)+ (higher orders in ε/| �ξ|) . (2.4.23)

This identity will appear later in a much more general context as the so-called
contraction rule.

After applying this contraction rule, one gets products of the form (ξε)2 T (l). We
remark that such products can be further simplified. Namely, according to the
residual argument, the rule (2.2.18) also holds for S(l) replaced by T (l), up to
smooth contributions. In fact, this rule even holds with regularization, i.e. for
all l ≥ 0



158 2 Computational Tools

(
ξ(p))2 T (l) = −4p T (l−1) + (smooth contributions) (2.4.24)

(the smooth contributions are of course important, but they canbe treated together
with the other smooth contributions to the fermionic projector as outlined in Sect.
2.2.8). The reader interested in the details of the derivation of the identity (2.4.24)
is referred to Exercise 2.21.

(f) We mention one more structure which in the present example is easy to under-
stand, and which will come up in a more general context later on. Namely,
suppose that the composite expression “· · · ” in (2.4.17) can be written as a time
derivative. Then we can integrate by parts,

ˆ ∞

−∞
η(t)

∂F

∂t
dt = −

ˆ ∞

−∞

(
∂tη(t)

)
F(t) dt .

Since derivatives of the test function scale like factors 1/�macro, this contribution
is much smaller than expected from the scalings (2.4.20). We write

ˆ ∞

−∞
η(t)

∂F

∂t
dt = 0 + (higher orders in ε/�macro) . (2.4.25)

This relation shows that certain composite expressions in the factors T (n) and T (n)

vanish when evaluated weakly on the light cone. In other words, there are rela-
tions between composite expressions.

These relations are expressedmost conveniently in termsof so-called integration-
by-parts rules. The starting point for deriving these rules is the identity (2.4.4)
which holds up to smooth contributions, i.e. for all l ≥ 0

∂

∂xk
T (l)(x, y) = 1

2
(y − x)k T

(l−1)(x, y) + (smooth contributions) (2.4.26)

(recall that in the case l = 0, this relation serves as the definition of T (−1)). For
an explicit derivation of the identity (2.4.26) we again refer to Exercise 2.21.
Considering a derivative in time direction (and noting that ∂t = −∂x0 ), we obtain

∂

∂t
T (l)(x, y) = −1

2
t T (l−1)(x, y) + (smooth contributions) .

Near the upper light cone, we can write this identity as

1

r

∂

∂t
T (l)(x, y) = −1

2
T (l−1)(x, y)

+ (smooth contributions) + (higher orders in ε/| �ξ|) .
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Introducing the abbreviation

∇ := 1

t

∂

∂t
, (2.4.27)

we thus obtain the relations

∇T (l) = −1

2
T (l−1) . (2.4.28)

Moreover, the identity (2.4.25) can be written in the short symbolic form

∇( · · · ) = 0 + (smooth contributions) + (higher orders in ε/| �ξ|) , (2.4.29)

where “· · · ” again stands for a composite expression in the T (n) and T (n).

We finally remark that, at this stage, neglecting all terms of the order (2.4.18) merely
is a matter of convenience. In fact, one can also take into account the higher orders
in ε/| �ξ|| by performing an expansion in powers of ε/| �ξ|. Such an expansion is called
regularization expansion. We will come back to the regularization expansion in Sect.
2.4.5. But before, we analyze the situation for more general regularizations.

2.4.2 Example: Linear Combinations of iε-Regularizations

Clearly, the iε-regularization is very special and ad-hoc. In order to get a first idea
on what happens for more general regularizations, it is instructive to consider lin-
ear combinations of iε-regularizations. To this end, we choose an integer N and
generalize (2.4.2) to

P̂ε(k) = (/k + m) δ(k2 − m2)�(−k0)

( N∑

a=1

ca exp
(
ε da k

0
))

(2.4.30)

with positive parameters d1, . . . , dN and real numbers c1, . . . , cN which add up to
one,

c1 + · · · + cN = 1 .

In fact, by choosing N sufficiently large, with this ansatz one can approximate any
regularization of the form

P̂ε(k) = (/k + m) δ(k2 − m2)�(−k0) ĥ
(
k0
)
, (2.4.31)

corresponding to a regularization by convolutionwith a function h(t) (being a special
case of the regularizations in Example 1.2.4).

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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For regularizations of the form (2.4.30), we can again evaluate weakly on the
light cone (2.4.17). It turns out that the scalings in ε and | �ξ| are exactly the same as
for the iε-regularization. In order to see this in a simple setting, one can consider a
polynomial in T (n) and T (n),

T (l1) · · · T (lα) T (n1) · · · T (nβ) .

When evaluating weakly on the light cone, one can pull the sums of the linear
combinations in (2.4.30) out of the integral, i.e.

ˆ ∞

−∞
η(t) T (l1) · · · T (lα) T (n1) · · · T (nβ) dt

=
N∑

a1,...,aα,b1,...,bβ=1

ca1 · · · caα
cb1 · · · cbβ

ˆ ∞

−∞
η(t) T (l1)

da1
· · · T (lα)

daα
T (n1)
db1

· · · T (nβ)

dbβ
dt ,

(2.4.32)

where T (n)
d denotes the iε-regularization with ε replaced by εd. Again computing

up to the error terms (2.4.18) and (2.4.19), one can again use the explicit formulas
for T (n) like (2.4.13)–(2.4.15) and analyze the integral with residues. The only dif-
ference compared to the analysis of the iε-regularization is that one has many poles
at positions t = r ± iεda , and the residue theorem gives sums over these poles. But
obviously, this has no effect on all scalings.

The contraction of the inner factors must be handled with care, as we now explain.
Using (2.4.6) and forming linear combinations, one sees that the factor /ξT (n) is to
be regularized according to

/ξ T (n) →
N∑

a=1

ca
((
t − iεda

)
γ0 − �ξ�γ

)
T (n)
da

(2.4.33)

(with T (n)
d again as in (2.4.32)). When forming composite expressions, one must take

into account that the regularized factors ξ and T (n) both carry the same summation
index. Therefore, one should regard the factors T (n) and /ξ as belonging together. It is
useful to make this connection explicit in the notation. Therefore, we discard (2.4.6)
and introduce instead the more general rule

/ξ T (n) → /ξ(n) T (n) ,

where the right side is a short notation for the sum in (2.4.33).



2.4 The Formalism of the Continuum Limit 161

Contracting two inner factors ξ in this formalism gives

(
ξ(l)
)
j T

(l)
(
ξ(n)
) j

T (n) =
N∑

a,b=1

cacb
((
t − iεda

)
, �ξ
)

j
T (l)
da

((
t − iεdb

)
, �ξ
) j

T (n)
db

=
N∑

a,b=1

cacb T
(l)
da

T (n)
db

(
t2 − iεtda − iεtdb − ε2dadb − |�ξ|2

)
. (2.4.34)

This is considerably more complicated than (2.4.21). However, if as in (2.4.22) we
drop the term quadratic in ε, the formula can be simplified to

(
ξ(p)
)
j T

(l)
(
ξ(q)
) j

T (n)

=
N∑

a,b=1

cacb T
(l)
da

T (n)
db

(
t2 − iεtda − iεtdb − |�ξ|2

)
(2.4.35)

+ (higher orders in ε/| �ξ|)

= 1

2

N∑

a,b=1

cacb T
(l)
da

T (n)
db

(((
t − iεda

)
, �ξ
)2 +

((
t − iεdb

)
, �ξ
)2)

(2.4.36)

+ (higher orders in ε/| �ξ|)
= 1

2

((
ξ(l))2 + (ξ(n))2

)
T (l) T (n) + (higher orders in ε/| �ξ|) , (2.4.37)

where the squares in (2.4.36) denote the Minkowski inner product, and where in the
last step we introduced the notation

(
ξ(l))2 T (l) =

N∑

a=1

ca
((
t − iεda

)2 − ∣∣�ξ∣∣2
)
T (l)
da

. (2.4.38)

In this way, the contraction rules (2.4.22) can be generalized to

(ξ(l)) j (ξ(n)) j = 1

2

(
(ξ(l))2 + (ξ(n))2

)
(2.4.39)

Similarly the contraction rule (2.4.23) becomes

(ξ(l)) j (ξ(n)) j = 1

2

(
(ξ(l))2 + (ξ(n))2

)
. (2.4.40)

We remark that this product can again be simplified using (2.4.24), giving rise to the
computation rule

(
ξ(p))2 T (l) = −4p T (l−1) + (smooth contributions) .
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We also remark that the integration-by-parts rules (2.4.28) and (2.4.29) with ∇
according to (2.4.27) remain valid, as one sees immediately by applying (2.4.28)
to each summand in (2.4.30) and by noting that (2.4.25) holds for any regularization.

Working with linear combinations of iε-regularization gives a first hint why one
should disregard error terms of the form (2.4.18) and (2.4.19), as we now explain.
Using the method of variable regularization (see Remark 1.2.1), we must show that
the structure of the effective equations in the continuum limit does not depend on
the details of the regularization. Evaluating weakly on the light cone and neglecting
error terms of the form (2.4.18) and (2.4.19), one gets relatively simple computation
rules (like (2.4.39), (2.4.40) or (2.4.24)), giving rise to a formalism which captures
the structure of the EL equation independent of regularization details. However, for
example the quadratic term in ε in (2.4.34)

− ε2
N∑

a,b=1

cacb dadb T
(l)
da

T (n)
db

(2.4.41)

has a different structure. Namely, even after prescribing linear moments as they
appear in (2.4.33), there is a lot of freedom to give the quadratic term in (2.4.41) an
arbitrary value. More generally, if we computed the terms (2.4.18) or (2.4.19), these
contributions would depend on the regularization in a complicated way, so much so
that without knowing the regularization in detail, it would be impossible to evaluate
these contributions. This is the reason why we shall disregard these contributions.
Clearly, at this stage, the above argument is not quite satisfying because notions like
“complicated” and “knowing the regularization in detail” are somewhat vague. The
argument will be made more precise in Sect. 2.4.5 using Fourier methods.

2.4.3 Further Regularization Effects

Working with linear combinations of iε-regularizations, one is still in the restrictive
class of regularizations of the form (2.4.31) where the unregularized distribution is
multiplied in momentum space by a convergence-generating function ĥ(k0). Consid-
ering more general regularizations gives rise to additional effects. We now list those
regularization effects will be important later on:

� The support of the distribution in (2.4.31) can be slightly deformed from the
hyperboloid to another hypersurface. It turns out that in this case, one can still
perform a mass expansion of the form (2.4.5). But the regularization of the fac-
tors T (n) also depends on the power of themass in the corresponding contribution
to the fermionic projector. In order to implement this effect into our formalism,
one adds a subscript [.] to the factors T (n) which counts the power in m. Thus
we regularize the contributions to the light-cone expansion according to the rule

mp T (n) → mp T (n)
[p] .

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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For example, the regularization of the light-cone expansion of the vacuum (2.4.5)
now takes the form

Pε(x, y) =
∞∑

n=0

m2n

n!
i/ξ(−1+n)

2
T (−1+n)

[2n] +
∞∑

n=0

m2n+1

n! T (n)
[2n+1] .

Regularizing the fermionic projector in the presence of an external potential, one
gets contributions involving factors T (n)

[p] with the same n but different values of p.
These factors must be treated as being different (although they clearly coincide
without regularization).

� The direction of the vector k which appears in the factor /k in (2.4.31) can be
slightly changed by the regularization. This leads to the notion of the shear of
surface states.This effect is of importance when inner factors are contracted.
More precisely, one needs to modify the calculation rule (2.4.24) to

(
ξ(p))2 T (n)

[p] = −4
(
n T (n+1)

[p] + T (n+2)
{p}

)
+ (smooth contributions) ,

where the factors T (l)
{p} with curly brackets have the same scaling behavior as the

corresponding factors with square brackets but are regularized differently.
� There may be additional contributions to P̂(k)which lie outside the hyperboloid

in (2.4.31) or the deformation thereof. It turns out that the resulting contributions
can be absorbed into the error terms (2.4.18) and (2.4.19) (for details see Sect.
2.4.5).

We also remark that the regularization of neutrinos is more involved because the
regularization must break the chiral symmetry and because the corresponding Dirac
sea can “mimic” a Dirac sea of a different mass. In order not to distract from the main
points of our construction, these extensions of the formalism will be introduced later
when we need them (see Sect. 4.2).

2.4.4 The Formalism of the Continuum Limit

After the above motivation and preparations, we now present the formalism of the
continuum limit. In Sect. 2.4.5 we shall outline the derivation of this formalism as
first given in [F7, Chap.4].

Before beginning, we point out that we work modulo smooth contributions
throughout. The reason for this procedure is that the smooth contributions can be
computed in a straightforward manner by first evaluating composite expressions
away from the light cone (where they are smooth) and taking the limit when y − x
approaches the light cone. Clearly, computing the smooth contributions is important
and not always easy (for details see Appendix D). But these computations are not
related to the problem of the singularities on the light cone to be considered here.

http://dx.doi.org/10.1007/978-3-319-42067-7_4
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Our starting point is the light-cone expansion of the unregularized fermionic
projector P(x, y) (as given in Sect. 2.2.8). In order to regularize the light-cone
expansion on the length scale ε, we proceed as follows. The smooth contributions
are all left unchanged. For the regularization of the factors T (n), we employ the
replacement rule

mp T (n) → mp T (n)
[p] , (2.4.42)

where the factors T (n)
[p] are smooth functions of ξ. Fortunately, the rather complicated

detailed form of the factors T (n)
[p] will not be needed here, because these functions can

be treated symbolically using the following simple calculation rules. In computations
one may treat the T (n)

[p] like complex functions. However, one must be careful when
tensor indices of factors /ξ are contractedwith each other.Naively, this gives a factor ξ2

which vanishes on the light cone and thus changes the singular behavior on the light
cone. In order to describe this effect correctly, we first write every summand of the
light cone expansion (2.2.129) such that it involves at most one factor /ξ (this can
always be arranged using the anti-commutation relations of the Dirac matrices). We
now associate every factor /ξ to the corresponding factor T (n)

[p] . In short calculations,
this can be indicated by putting brackets around the two factors, whereas in the
general situation we add corresponding indices to the factor /ξ, giving rise to the
replacement rule

mp /ξT (n) → mp /ξ(n)
[p] T

(n)
[p] . (2.4.43)

For example, we write the regularized fermionic projector of the vacuum as

Pε = i

2

∞∑

n=0

m2n

n! /ξ(−1+n)
[2n] T (−1+n)

[2n] +
∞∑

n=0

m2n+1

n! T (n)
[2n+1] .

The kernel P(y, x) is obtained by taking the conjugate (see (2.1.68)). The conju-
gates of the factors T (n)

[p] and ξ(n)
[p] are the complex conjugates,

T (n)
[p] := (T (n)

[p]
)∗

and ξ(n)
[p] := (ξ(n)

[p]
)∗

.

One must carefully distinguish between these factors with and without complex
conjugation. In particular, the factors /ξ(n)

[p] need not be symmetric,

(
/ξ(n)
[p]
)∗ �= /ξ(n)

[p] in general .

When forming composite expressions, the tensor indices of the factors ξ are
contracted to other tensor indices. The factors ξwhich are contracted to other factors ξ
are called inner factors. The contractions of the inner factors are handled with the
so-called contraction rules
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(ξ(n)
[p])

j (ξ(n′)
[p′]) j = 1

2

(
z(n)
[p] + z(n′)

[p′]
)

(2.4.44)

(ξ(n)
[p])

j (ξ(n′)
[p′]) j = 1

2

(
z(n)
[p] + z(n′)

[p′]
)

(2.4.45)

z(n)
[p] T

(n)
[p] = −4

(
n T (n+1)

[p] + T (n+2)
{p}

)
, (2.4.46)

which are to be complemented by the complex conjugates of these equations. Here
the factors z(n)

[p] can be regarded simply as a book-keeping device to ensure the correct

application of the rule (2.4.46). The factors T (n)
{p} have the same scaling behavior as

the T (n)
[p] , but their detailed form is somewhat different; we simply treat them as a new

class of symbols. In cases where the lower index does not need to be specified we
write T (n)◦ . After applying the contraction rules, all inner factors ξ have disappeared.
The remaining so-called outer factors ξ need no special attention and are treated like
smooth functions.

Next, to any factor T (n)◦ we associate the degree deg T (n)◦ by

deg T (n)
◦ = 1 − n .

The degree is additive in products, whereas the degree of a quotient is defined as the
difference of the degrees of numerator and denominator. The degree of an expression
can be thought of as describing the order of its singularity on the light cone, in the
sense that a larger degree corresponds to a stronger singularity (for example, the
contraction rule (2.4.46) increments n and thus decrements the degree, in agreement
with the naive observation that the function z = ξ2 vanishes on the light cone). Using
formal Taylor series, we can expand in the degree. In all our applications, this will
give rise to terms of the form

η(x, y)
T (a1)◦ · · · T (aα)◦ T (b1)◦ · · · T (bβ)

◦

T (c1)◦ · · · T (cγ)
◦ T (d1)◦ · · · T (dδ)◦

with η(x, y) smooth . (2.4.47)

The quotient of the twomonomials in this equation is referred to as a simple fraction.
A simple fraction can be given a quantitative meaning by considering one-

dimensional integrals along curves which cross the light cone transversely away from
the origin ξ = 0. This procedure is called weak evaluation on the light cone. For our
purpose, it suffices to integrate over the time coordinate t = ξ0 for fixed �ξ �= 0.More-
over, using the symmetry under reflections ξ → −ξ, it suffices to consider the upper
light cone t ≈ |�ξ|. The resulting integrals diverge if the regularization is removed.
The leading contribution for small ε can be written as

ˆ |�ξ|+ε

|�ξ|−ε

dt η(t, �ξ) T (a1)◦ · · · T (aα)◦ T (b1)◦ · · · T (bβ)
◦

T (c1)◦ · · · T (cγ)
◦ T (d1)◦ · · · T (dδ)◦

≈ η(| �ξ|, �ξ) creg

(i | �ξ|)L
logr (ε| �ξ|)

εL−1
,

(2.4.48)
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where L is the degree of the simple fraction and creg, the so-called regularization
parameter, is a real-valued function of the spatial direction �ξ/| �ξ|which also depends
on the simple fraction and on the regularization details (the error of the approximation
will be specified below). The integer r describes a possible logarithmic divergence.
Apart from this logarithmic divergence, the scalings in both ξ and ε are described by
the degree.

When analyzing a sum of expressions of the form (2.4.47), one must know if the
corresponding regularization parameters are related to each other. In this respect,
the integration-by-parts rules are important, which are described symbolically as
follows. On the factors T (n)◦ we introduce a derivation ∇ by

∇T (n)
◦ = T (n−1)

◦ .

Extending this derivation with the Leibniz and quotient rules to simple fractions, the
integration-by-parts rules state that

∇
⎛

⎝T (a1)◦ · · · T (aα)◦ T (b1)◦ · · · T (bβ)
◦

T (c1)◦ · · · T (cγ)
◦ T (d1)◦ · · · T (dδ)◦

⎞

⎠ = 0 . (2.4.49)

These rules give relations between simple fractions. The name is motivated by the
integration-by-partsmethod as explained for the iε-regularization in (2.4.25). Simple
fractions which are not related to each other by the integration-by-parts rules are
called basic fractions. As shown in [F7, Appendix E], there are no further relations
between the basic fractions. Thus the corresponding basic regularization parameters
are linearly independent.

The above symbolic computation rules give a convenient procedure to evaluate
composite expressions in the fermionic projector, referred to as the analysis in the
continuum limit: After applying the contraction rules and expanding in the degree,
the EL equations can be rewritten as equations involving a finite number of terms of
the form (2.4.47). By applying the integration-by-parts rules, we can arrange that all
simple fractions are basic fractions. We evaluate weakly on the light cone (2.4.48)
and collect the terms according to their scaling in ξ. Taking for every given scaling
in ξ only the leading pole in ε, we obtain equationswhich involve linear combinations
of smooth functions and basic regularization parameters. We consider the basic reg-
ularization parameters as empirical parameters describing the unknown microscopic
structure of space-time. We thus end up with equations involving smooth functions
and a finite number of free parameters. We point out that these free parameters
cannot be chosen arbitrarily because they might be constrained by inequalities (see
the discussion after [F7, Theorem E.1]). Also, the values of the basic regularization
parameters should ultimately be justified by an analysis of vacuum minimizers of
the causal action principle.
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We finally specify the error of the above expansions. By not regularizing the
bosonic potentials and fermionic wave functions, we clearly disregard the

higher orders in ε/�macro . (2.4.50)

Furthermore, in (2.4.48) wemust stay away from the origin, meaning that we neglect
the

higher orders in ε/| �ξ| . (2.4.51)

The higher order corrections in ε/| �ξ| depend on the fine structure of the regulariza-
tion and thus seem unknown for principal reasons. Neglecting the terms in (2.4.50)
and (2.4.51) also justifies the formal Taylor expansion in the degree. Clearly, leaving
out the terms (2.4.51) is justified only if | �ξ| � ε. Therefore, whenever using the
above formalism, we must always ensure that | �ξ| is much larger than ε (we will come
back to this point in Sects. 2.6.5, 3.5.2 and Appendix A).

2.4.5 Outline of the Derivation

We now outline the derivation of the formalism of the continuum limit (for more
details see [F7, Chap.4]). The method relies on an asymptotic analysis of the Fourier
integral (2.4.1),

Pε(x, y) =
ˆ

d4k

(2π)4
P̂ε(k) eikξ . (2.4.52)

For simplicity, we begin the analysis for the scalar component, i.e. we consider the
case

P̂ε(p) = φ(p) f (p) (2.4.53)

(the vector component will be treated after (2.4.82) below). We may assume that
the spatial component of the vector ξ points in the direction of the x-axis of our
Cartesian coordinate system, i.e. y − x = (t, r, 0, 0) with r > 0. Choosing cylin-
drical coordinates ω, k, ρ and ϕ in momentum space, defined by p = (ω, �p) and
�p = (k, ρ cosϕ, ρ sinϕ), the Fourier integral becomes

P(x, y) = 1

(2π)4

ˆ ∞

−∞
dω

ˆ ∞

−∞
dk

ˆ ∞

0
ρ dρ

ˆ 2π

0
dϕ P̂ε(ω, k, ρ,ϕ) eiωt−ikr .

(2.4.54)

Since the exponential factor in this formula is independent of ρ and ϕ, we can write
the fermionic projector as the two-dimensional Fourier transform

P(x, y) = 2
ˆ ∞

−∞
dω

ˆ ∞

−∞
dk h(ω, k) eiωt−ikr (2.4.55)

http://dx.doi.org/10.1007/978-3-319-42067-7_3
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of a function h defined by

h(ω, k) = 1

2 (2π)4

ˆ ∞

0
ρ dρ

ˆ 2π

0
dϕ (φ f )(ω, k, ρ,ϕ) . (2.4.56)

We want to analyze P(x, y) close to the light cone (y − x)2 = 0 away from
the origin y = x . Without loss of generality, we may restrict attention to the upper
light cone t = r . Thus we are interested in the region t ≈ r > 0. The “light-cone
coordinates”

s = 1

2
(t − r) , l = 1

2
(t + r) (2.4.57)

are well-suited to this region, because the “small” variable s vanishes for t = r ,
whereas the “large” variable l is positive andnon-zero. Introducing also the associated
momenta

u = −k − ω , v = k − ω , (2.4.58)

we can write the fermionic projector as

P(s, l) =
ˆ ∞

−∞
du

ˆ ∞

−∞
dv h(u, v) e−i(us+vl) . (2.4.59)

Let us briefly discuss the qualitative form of the function h, (2.4.56). Without
regularization, the scalar component is given by the δ-distribution on the lower mass
shell P̂ = m δ(p2 − m2) �(−p0). In this case, the integral (2.4.56) can be evaluated
to be

h = m

2 (2π)4

ˆ ∞

0
ρ dρ

ˆ 2π

0
dϕ δ(ω2 − k2 − ρ2 − m2) �(−ω)

= m

4 (2π)3
�(ω2 − k2 − m2) �(−ω) = m

32π3
�(uv − m2) �(u) . (2.4.60)

Thus integrating over ρ and ϕ yields a constant function in the interior of the two-di-
mensional “lower mass shell” ω2 − k2 = m2, ω < 0. From this we conclude that for
small momenta, where the regularization should play no role, the function h should
have a discontinuity along the hyperbola {uv = m2, u > 0}, be zero below (i.e. for
uv < m2) and be nearly constant above. The precise form of h for large energy or
momentum can be arbitrary. We only know that h decays at infinity.

It is instructive to discuss the energy scales. Clearly, one scale is given by the
regularization length ε. In momentum space, this corresponds to the high energy
scale ε−1. We sometimes refer to the region |ω| + |k| � ε−1 as the high energy
region. The relevant low energy scale, on the other hand, is εm2 (it is zero for
massless fermions). This is because the hyperbola uv = m2 comes as close to the
v-axis as as v ∼ εm2 before entering the high energy region. Finally, the Compton
scale m lies between the low- and high energy scales,
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εm2 � m � ε−1 .

Since we want to analyze the situation close to the light cone, we choose the “small”
light-cone parameter s on the regularization scale, i.e.

s � ε . (2.4.61)

The “large” light-cone parameter l, on the other hand, is non-zero. We shall always
choose this scale between the regularization scale and the Compton scale,

ε � l � 1

m
. (2.4.62)

Since εm � 1, the inequalities in (2.4.62) still leave us the freedom to vary l on
many orders of magnitude.

Our task is to evaluate the Fourier integral (2.4.59) using the scales (2.4.61)
and (2.4.62). In preparation, we discuss and specify the function h(u, v) for fixed
u, also denoted by hu(v). Without regularization (2.4.60), the function hu has a
discontinuous “jump” from zero to a finite value on the hyperbola. Therefore, we
cannot expect that hu is continuous when a regularization is present. On the contrary,
the decay for large v suggests that hu might have another discontinuity for large v,
where it might “jump” to zero. In order to keep the presentation reasonably simple,
we assume that hu is always of this general form, i.e.

hu(v) =
{

0 for v < αu or v > βu

smooth for αu ≤ v ≤ βu
(2.4.63)

with parameters αu < βu . The case of less than two discontinuities can be obtained
from (2.4.63) by setting hu(αu) or hu(βu) equal to zero, or alternatively bymoving the
position of the discontinuitiesαu or βu to infinity.We remark that the discontinuity at
v = βu will become irrelevant later; it is taken into account only in order to explain
why the behavior of the fermionic projector on the light cone is independent of many
regularization details.

Without regularization (2.4.60), the function hu(v) is constant for v ≥ αu . Thus
the v-dependence of hu(v) for αu ≤ v ≤ βu merely is a consequence of the regular-
ization, and it is therefore reasonable to assume that the v-derivatives of hu(v) scale
in powers of the regularization length ε. More precisely, we assume that there is a
constant c1 � l/ε such that

|h(n)
u (v)| ≤ (c1 ε

)n
max |hu | for αu ≤ v ≤ βu , (2.4.64)

where the derivatives at v = αu and βu are understood as the right- and left-sided
limits, respectively. This regularity condition is typically satisfied for polynomial,
exponential and trigonometric functions, but it excludes the case that the function hu
has small-scale fluctuations. Clearly, we could also consider a more general ansatz
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for hu with more than two discontinuities or weaker regularity assumptions. But this
does not seem to be the point because all interesting effects, namely the influence
of discontinuities for small and large v as well as of smooth regions, can already be
studied in the setting (2.4.63), (2.4.64).

Let us analyze the v-integral of the Fourier transform (2.4.59),

Pu(l) :=
ˆ ∞

−∞
hu(v) e−ivl dv . (2.4.65)

According to the left inequality in (2.4.62), the exponential factor in (2.4.65) is highly
oscillatory on the scale v ∼ 1/ε. Thus we can expect that the smooth component of
hu only gives a small contribution to the integral (2.4.65), so that the discontinuities at
αu andβu should play the dominant role. In order tomake this picturemathematically
precise, in (2.4.65) we iteratively integrate K times by parts,

Pu(l) =
ˆ βu

αu

hu(v) e−ivl dv = − 1

il

ˆ βu

αu

dv hu(v)
d

dv
e−ivl

= − 1

il
hu(v) e−ivl

∣∣βu

αu
+ 1

il

ˆ βu

αu

h′
u(v) e−ivl dl = · · · =

= − 1

il

K−1∑

n=0

(
1

il

)n

h(n)
u (v) e−ivl

∣∣βu

αu
+
(
1

il

)K ˆ βu

αu

h(K )
u (v) e−ivl dl .

(2.4.66)

If we bound all summands in (2.4.66) using the first inequality in (2.4.62) and the
regularity condition (2.4.64), each v-derivative appears in combination with a power
of l−1, and giving a factor c1ε/ l � 1. Thus in the limit K → ∞, we may drop the
integral in (2.4.66) to obtain

Pu(l) = − 1

il

∞∑

n=0

(
1

il

)n

h(n)
u (v) e−ivl

∣∣βu

αu
. (2.4.67)

This expansion converges, and its summands decay like (c1ε/ l)n .
Using (2.4.65), we can write the Fourier transform (2.4.59) as

P(s, l) =
ˆ ∞

−∞
Pu(l) e

−ius du . (2.4.68)

Notice that, apart from the constraints (2.4.62), the “large” variable l can be freely
chosen. We want to study the functional dependence of (2.4.68) on the parameter l.
In preparation, we consider an integral of the general form

ˆ b

a
f (u) e−iγ(u) l du , (2.4.69)
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where we assume that (u, γ(u)) is a curve in the high energy region in the sense
that γ ∼ 1/ε. Furthermore, we assume that γ is monotone with |γ′| ∼ 1 and that
(b − a) ∼ 1/ε. By transforming the integration variable, we can then write (2.4.69)
as the Fourier integral ˆ γ(b)

γ(a)

f |γ′|−1 e−iγl dγ . (2.4.70)

If the function f |γ′|−1 is smooth, its Fourier transform (2.4.70) has rapid decay in
the variable l. Under the stronger assumption that f |γ′|−1 varies on the scale 1/ε,
we conclude that the length scale for this rapid decay is of the order l ∼ ε. As a
consequence, the rapid decay can be detected even under the constraint l < lmax

imposed by (2.4.62), and we say that (2.4.70) has rapid decay in l. The reader
who feels uncomfortable with this informal definition can immediately make this
notion mathematically precise by an integration by parts argument similar to (2.4.66)
imposing for f |γ′|−1 a condition of type (2.4.64). The precisemathematicalmeaning
of rapid decay in l for the integral (2.4.69) is that for every integer k there should be
constants c ∼ 1 and parameters lmin, lmax in the range ε � lmin � lmax � 1/m such
that for all l ∈ (lmin, lmax),

ˆ b

a
f (u) e−iγ(u) l du ≤ c

(ε

l

)k ˆ b

a
| f (u)| du .

We return to the analysis of the integral (2.4.68). The boundary terms in (2.4.67)
at βu yield contributions to P(s, l) of the form

−
(
1

il

)n+1 ˆ ∞

−∞
h(n)
u

(
βu
)
e−iβul−ius du . (2.4.71)

According to (2.4.61), the length scale for the oscillations of the factor exp(−ius)
is u ∼ 1/ε. Under the reasonable assumption that βu is monotone and that the func-
tions |β′(u)|−1 and h(n)

u (βu) vary on the scale 1/ε, the integral (2.4.71) is of the
form (2.4.70), and the above consideration yields that (2.4.71) has rapid decay in l.
We conclude that it suffices to consider the boundary terms in (2.4.67) at αu . Using
this result in (2.4.68), we obtain

P(s, l) =
∞∑

n=0

(
1

il

)n+1 ˆ ∞

−∞
h(n)
u (αu) e

−iαul−ius du + (rapid decay in l) .

(2.4.72)

The integral (2.4.72) cannot be estimated again using the “oscillation argument”
after (2.4.69), because, according to (2.4.60), the function αu tends asymptotically
to zero for large u, so that the factor exp(−iαul) is non-oscillating in this region.
Instead, we expand this factor in a Taylor series,
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P(s, l) =
∞∑

n,k=0

1

k! (il)k−n−1
ˆ ∞

−∞
h(n)
u (αu) (−αu)

k e−ius du . (2.4.73)

Let us discuss this expansion. Without regularization (2.4.60), the function αu =
m2/u involves themass. Therefore, expanding in powers ofαu corresponds precisely
to the expansion in themass expansion as considered earlier (see (2.2.8) and (2.2.113)
and the explanations thereafter). With this in mind, we can regard (2.4.73) as a gen-
eralization of the mass expansion to the setting with regularization. This expansion
is clearly justified if αul � 1. However, as the function m2/u has a pole at u = 0,
the function αu becomes large for small u, so that it is not clear whether the mass
expansion is sensible. Indeed, this issue is closely related to the logarithmic mass
problem which was mentioned in Sect. 2.2.6 and was resolved by working with the
“regularized” distribution T reg

a , (2.2.117). In the present setting, this “regularization
procedure” can be understood as follows: For small momenta u � 1/ε, our oscilla-
tion argument after (2.4.69) again applies and shows that the resulting contribution
to P(s, l) decays rapidly in l. Therefore, disregarding contributions with rapid decay
in l, we may restrict attention to the region u � ε where

αu < αmax � l−1
max . (2.4.74)

Then αul � 1, justifying the mass expansion (2.4.73).
For a fixed value of k − n, all summands in (2.4.73) have the same l-dependence.

Let us compare the relative size of these terms. According to our regularity assump-
tion (2.4.64), the derivatives of h scale like h(n)

u ∼ εn . Using the bound (2.4.74), we
conclude that, for a fixed power of l, the summands in (2.4.73) decrease like (εαmax)

n .
Thus it is a very good approximation to drop the summands for large n. At first sight,
it might seem admissible to take into account only the first summand n = 0. But the
situation is not quite so simple. For example, it may happen that, when restricted to
the curve (u,αu), the function h(u, v) is so small that the summands for n = 0 in
(2.4.73) are indeed not dominant. More generally, we need to know that for some
n0 ≥ 0, the function h(n0)

u (αu) is really of the order given in (2.4.64), i.e.

|h(n0)
u (αu)| ≥ c

(
c1 ε
)n0 max |hu | (2.4.75)

with a positive constant c which is of the order one. If this condition is satisfied, we
may neglect all summands for n > n0, and collecting the terms in powers of l, we
conclude that

P(s, l)

= 1

(il)n0+1

∞∑

k=0

(−il)k
n0∑

n=max(n0−k,0)

(−1)n0−n

(k − n0 + n)!
ˆ ∞

−∞
h(n)
u (αu) αk−n0+n

u e−ius du
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+
∞∑

n=n0+1

1

(il)n+1

ˆ ∞

−∞
h(n)
u (αu) e

−ius du + (rapid decay in l)

+ (higher orders in εαmax) . (2.4.76)

We point out that, according to (2.4.74),

εαmax � ε/ lmax ,

and this explains why we disregard the higher orders in εαmax. In our case, the
function hu has in the low energy region according to (2.4.60) the form hu(αu) =
m/(32π3) �(u). Hence it is natural to assume that (2.4.75) is satisfied for n0 = 0.
Introducing the shorter notation

h(u) := hu(α(u)) , h[n](u) := h(n)
u (αu) , α(u) := αu , (2.4.77)

we have thus derived the following result.

Expansion of the scalar component: Close to the light cone (2.4.61), (2.4.62), the
scalar component (2.4.53) of the fermionic projector of the vacuumhas the expansion

P(s, l) = 1

il

∞∑

k=0

(−il)k

k!
ˆ ∞

−∞
h αk e−ius du (2.4.78)

+
∞∑

n=1

1

(il)n+1

ˆ ∞

−∞
h[n] e−ius du (2.4.79)

+ (rapid decay in l ) + (higher orders in εαmax) (2.4.80)

with suitable regularization functions h, h[n] andα. In the low energy region u � 1/ε,
the regularization functions are

h(u) = m

32π3
�(u) , h[n](u) = 0 , α(u) = αu = m2

u
. (2.4.81)

In this expansion, the l-dependence is written out similar to a Laurent expansion.
The main simplification compared to our earlier Fourier representation is that the
dependence on the regularization is now described by functions of only one variable,
denoted by h, h[n] and α. In composite expressions in P(s, l), we will typically get
convolutions of these functions; such one-dimensional convolutions can be easily
analyzed. The simplification to one-dimensional regularization functions became
possible because many details of the regularization affect only the contribution with
rapid decay in l, which we do not consider here. Notice that the summands in (2.4.78)
and (2.4.79) decay like (l αmax)

k/k! � (l/ lmax)
k/k! and (ε/ l)n , respectively. In the

low energy limit (2.4.81), the expansion (2.4.78) goes over to a power series in m2,
and we thus refer to (2.4.78) as the mass expansion. In the mass expansion, the
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regularization is described by only two functions h and α. The series (2.4.79), on the
other hand, is a pure regularization effect and is thus called the regularization expan-
sion. It involves an infinite number of regularization functions h[n]. Accordingly, we
will use the notions of mass and regularization expansions also for other expansions
of type (2.4.76).

We now outline how to extend the previous analysis to the vector component.
More precisely, we will analyze the Fourier integral (2.4.52) for

P̂ε(p) = v j (p) γ j f (p) (2.4.82)

close to the light cone. We again choose light-cone coordinates (s, l, x2, x3) with
y − x = (s, l, 0, 0) (s and l are given by (2.4.57), while x2 and x3 are Cartesian
coordinates in the orthogonal complement of the sl-plane). The associated momenta
are denoted by p = (u, v, p2, p3) with u and v according to (2.4.58). As in (2.4.55),
we integrate out the coordinates perpendicular to u and v,

h j (u, v) := 1

2 (2π)4

ˆ ∞

−∞
dp2

ˆ ∞

−∞
dp3 (v j f )(u, v, p2, p3) . (2.4.83)

We thus obtain a representation of the fermionic projector involving two-dimensional
Fourier integrals

P(s, l) = γ j Pj (s, l)

with

Pj (s, l) :=
ˆ ∞

−∞
du

ˆ ∞

−∞
dv h j (u, v) e−i(us+vl) . (2.4.84)

The tensor indices in (2.4.83) and (2.4.84) refer to the coordinate system (s, l, x2, x3).
For clarity, we denote the range of the indices by j = s, l, 2, 3; thus

γs = 1

2
(γ0 − γ1) , γl = 1

2
(γ0 + γ1) , (2.4.85)

where γ0, . . . , γ3 are the usual Dirac matrices of Minkowski space. Since without
regularization, P̂ = /p δ(p2 − m2) �(−p0), the functions h j can be computed sim-
ilar to (2.4.60) to be

γ j h j (u, v) = 1

32π3
(−uγs − vγl) �(uv − m2) �(u) . (2.4.86)

This limiting case specifies the regularized h j (u, v) for small energy-momentum
u, v � 1/ε. In order to keep the form of the functions h j in the high energy region
sufficiently general, we merely assume in what follows that the functions h j have all
the properties which se assumed for the function h above. This gives the following
result.
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Expansion of the vector component: Close to the light cone (2.4.61), (2.4.62), the
vector component (2.4.82) of the fermionic projector of the vacuumhas the expansion
P = γ j Pj with

Ps(s, l) = 1

il

∞∑

k=0

(−il)k

k!
ˆ ∞

−∞
−u gs αk e−ius du

+
∞∑

n=1

1

(il)n+1

ˆ ∞

−∞
−u g[n]

s e−ius du

+ (rapid decay in l) + (higher orders in εαmax) (2.4.87)

Pl(s, l) = 1

(il)2

∞∑

k=0

(−il)k

k!
ˆ ∞

−∞

[
(k − 1) αk + k

b

u
αk−1

]
gl e

−ius du

+
∞∑

n=1

1

(il)n+2

ˆ ∞

−∞
−(n + 1) g[n]

l e−ius du

+ (rapid decay in l) + (higher orders in εαmax) (2.4.88)

P2/3(s, l) = 1

(il)2

∞∑

k=0

(−il)k

k!
ˆ ∞

−∞

[
αk + k

b2/3
u

αk−1

]
g2/3 e

−ius du

+
∞∑

n=1

1

(il)n+2

ˆ ∞

−∞
g[n]
2/3 e

−ius du

+ (rapid decay in l) + (higher orders in εαmax) (2.4.89)

and suitable regularization functions g j , g[n]
j , b, b2/3 and the mass regularization

function α as in (2.4.78) and (2.4.81). In the low energy region u � 1/ε, the regu-
larization functions have the form

gs(u) = 1

32π3
�(u) , g[n]

s (u) = 0 (2.4.90)

gl(u) = 1

32π3
�(u) , g[n]

l (u) = b(u) = 0 (2.4.91)

g2/3(u) = g2/3(u) = b2/3(u) = 0 . (2.4.92)

In order to explain these formulas, we consider the situation where, like in the
case without regularization, the vector v(p) in (2.4.82) points into the direction p.
In this case, we can write the vector component as

P̂ε(p) = p jγ
j (φ f )(p) , (2.4.93)
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where (φ f ) has the form of the scalar component as considered above. Since mul-
tiplication in momentum space corresponds to differentiation in position space, we
obtain for (2.4.84)

P(s, l) = −i

(
γs ∂

∂s
+ γl ∂

∂l
+ γ2 ∂

∂x2
+ γ3 ∂

∂x3

)
Pscalar(s, l) ,

where Pscalar is the scalar component (2.4.59) with h as in (2.4.56).We now substitute
for Pscalar the expansion on the light cone (2.4.78)–(2.4.80) and carry out the partial
derivatives. For the s- and l-components, this gives exactly the expansions (2.4.87),
(2.4.88) with

gs = gl = h , g[n]
s = g[n]

l = h[n] , b = 0 . (2.4.94)

For the components j = 2, 3, the calculation of the partial derivatives is not quite
so straightforward because the expansion of the scalar component (2.4.78)–(2.4.80)
was carried out for fixed x2 and x3. Nevertheless, one can deduce also the expan-
sion (2.4.89) from (2.4.78)–(2.4.80) if one considers x2 and x3 as parameters of the
regularization functions h, h[n] and α, and differentiates through, keeping in mind
that differentiation yields a factor 1/ l (to get the scaling dimensions right). In this
way, the simple example (2.4.93) explains the general structure of the expansions
(2.4.87)–(2.4.89).We point out that the regularization function b vanishes identically
in (2.4.94). This means that b is non-zero only when the direction of the vector field
v is modified by the regularization. Thinking in terms of the decomposition into the
one-particle states, we refer to this regularization effect as the shear of the surface
states.

The derivation of these formulas uses the same methods as for the scalar com-
ponents. The analysis is a bit more subtle because one must carefully analyze the
scaling of the different components. We refer the interested reader to [F7, Sect. 4.4].

Computing composite expressions using the above Fourier representations, one
readily verifies the calculations rules stated in Sect. 2.4.4. The details can be found
in [F7, Sect. 4.5].

2.5 Computation of the Local Trace

When deriving the EL equations in Sect. 1.4.1, we showed in Proposition 1.4.1 that
for every minimizer of the causal action principle, the local trace is constant in space-
time. We also argued that this condition should be satisfied by the rescaling (1.4.11).
In the Minkowski vacuum, the local trace is obviously constant because the kernel
of the fermionic projector is translation invariant (see our ansatz (2.4.52)). But in
the presence of an external potential, the local trace will in general no longer be
constant, making it necessary to perform the rescaling (1.4.11). We now explain how
to compute the local trace and discuss the effect of the rescaling (1.4.11).

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
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We begin by noting that, using the abstract definition of the kernel of the fermionic
projector (1.1.13), we know that the local trace can be computed by

tr(x) = TrSx
(
Pε(x, x)

)
.

In what follows, we usually omit the subscript Sx and regard Tr as the trace of a
4 × 4-matrix. In the vacuum, one can compute this trace from (2.4.52) to conclude
the scaling

TrSx
(
Pε(x, x)

) = c
m

ε2

(
1 + O

(
mε
))

, (2.5.1)

where the constant c depends on the regularization method (for an explicit compu-
tation in the iε-regularization see Exercise 2.22).

In the next proposition we specify how the local trace is affected by the external
potential.

Proposition 2.5.1 In the presence of a smooth external chiral potential (2.2.25) with
the properties as in Lemma 2.1.2, the contribution �P to the fermionic projector to
order n in perturbation theory influences the local trace only by an error term of the
form ∣∣∣∣TrSx

(
�Pε(x, x)

)∣∣∣∣ ≤
C

ε
, (2.5.2)

where the constant C depends on m, n as well as on the potential B and its partial
derivatives. Moreover, the function TrSx (�Pε(x, x)) is smooth in x.

This result implies that, when rescaling the causal fermion system according
to (1.4.11), we only pick up smooth error terms of the order ε/�macro. Since such
error terms are neglected in the continuum limit (see (2.4.50)), we may disregard the
rescaling (1.4.11). This is the reasonwhy the rescaling (1.4.11)will not be considered
further in this book.

Before coming to the proof of the above proposition, we note that for a gravita-
tional field, the situation is more involved. Namely, for linear gravity as considered
in Sect. 2.3, the change of the local trace is typically of the order

TrSx
(
�Pε(x, x)

) ∼ m

ε2
O(h) . (2.5.3)

Clearly, this is sufficient in order to treat a weak gravitational field. However, when
constructing causal fermion systems non-perturbatively in curved space-time (as is
done in [FR2, Sect. 4]), the macroscopic space-time dependence of the local trace
must be taken into account, meaning that the rescaling procedure (1.4.11)will change
the causal fermion system substantially. The same is true if a scalar potential is
considered, because in this case the local trace takes the form

TrSx
(
Pε(x, x)

) = c

ε2
TrSx

(
B(x)

)

dim(Sx )
+ O

(1
ε

)
, (2.5.4)

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
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where the potential B again includes the mass (2.2.10) (for the derivation see Exer-
cise 2.23).

Proof of Proposition 2.5.1As shown inTheorem2.2.16, to every order in perturbation
theory, the non-causal high energy contribution p̃ − p̃res is a smooth function in x
and y. Therefore, it is even bounded for x = y, and we do not need to consider it
here. Hence it suffices to consider the perturbation expansions for k̃ and p̃res. These
perturbation expansions must be regularized on the scale ε. The procedure for this
is explained in the appendix (see Appendix F). In order to keep the presentation as
simple as possible, here we shall not enter the regularized causal perturbation theory.
Instead, we consider the unregularized perturbation expansion and make use of the
fact that the regularization gives rise to a decay in momentum space on the scale ε−1.
This simplified procedure will be justified by a short remark at the end of the proof.

In view of (2.1.26) and (2.2.110), instead of k̃ and p̃res we can just as well con-
sider the causal Green’s functions s∧ and s∨ (see (2.1.25)) as well as the Green’s
functions s+ and s− (see (2.2.108)). For the causal Green’s function, we can apply
the structural results on the light-cone expansion stated in Theorem 2.2.4. Using the
residual argument, this theorem holds just as well for the Green’s functions s±. With
this in mind, we may restrict attention to the causal Green’s functions, which we
again simply denote by s.

The formula (2.5.3) can also be expressed by saying that S(0) ∼ ε−2. Since increas-
ing the upper index gives a scaling factor ξ2, which for x = y is translated to a scaling
factor ε2, we have

S(h) ∼ ε−2+2h . (2.5.5)

Moreover, every factor ξ in the light-cone expansion gives rise to a scaling factor

ξ ∼ ε . (2.5.6)

Applying these scalings to a contribution of the light-cone expansion in Theo-
rem 2.2.4, we find that

(2.2.5) ∼ ε−2+2h+|I | .

Therefore, our task is to show that all expressions of the form (2.2.5)which contribute
to the local trace satisfy the inequality

2h + |I | > 0 . (2.5.7)

Using the identity (2.2.34), the inequality (2.5.7) is equivalent to

k − 1 +
k∑

a=1

(
|Ia| + 2pa

)
> 0 .
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Obviously, it suffices to consider the cases k = 0 and k = 1. If k = 0, the fermi-
onic projector is odd (i.e. it contains an odd number of Dirac matrices), so that the
local trace vanishes. In the case k = 1, on the other hand, the contribution involving
the chiral potential is again odd and vanishes. The contribution involving the mass
matrix mY , on the other hand, is precisely the term mY S(0) whose local trace was
computed in (2.5.1). This concludes the proof, provided that the scalings (2.5.5)
and (2.5.6) hold.

The scalings (2.5.5) and (2.5.6) are justified by the regularized causal perturbation
theory developed in Appendix F. We here explain the reason for the scalings: In the
regularized causal perturbation calculation, the “causality” is built in by demanding
that the resulting regularized light-cone expansion again only involves integrals along
the line segment xy (and not integrals along the whole straight line through x and y).
In more technical terms, this is achieved by demanding that the contributions to
the perturbation expansion remain bounded in the limit when the momentum of the
external potential tends to zero (this method was first used in [F7, Appendix D]).
This procedure ensures that a factor ξ in the unregularized light-cone expansion
really gives a scaling factor ε, (2.5.6). The scaling (2.5.5), on the other hand, follows
immediately from the fact that the local trace is obtained by integrating over the
momentum variables (similar as in Exercise 2.22), and that the regularization gives
decay in momentum space on the scale ε−1. �

2.6 Spectral Analysis of the Closed Chain

In this section we explain how to analyze the EL equations corresponding to the
causal action in the continuum limit. Since the Lagrangian involves the eigenvalues
of the closed chain, the main task is to compute the spectral decomposition of Aε

xy =
Pε(x, y) Pε(y, x).We first compute this spectral decomposition in the vacuum (Sect.
2.6.1). This spectral decomposition has the special properties that the eigenvalues are
non-real and form complex conjugate pairs, and that the corresponding eigenvectors
are null (with respect to the spin scalar product). In order to simplify the subsequent
computations, it is very convenient to choose a spinor basis which reflects these
special properties of the closed chain of the vacuum. This so-called double null
spinor frame is introduced in Sect. 2.6.2. In Sect. 2.6.3 we proceed by describing the
interaction perturbatively using contour integral methods. In Sect. 2.6.4 we derive
a few general properties of the spectral representation of the closed chain. Finally,
in Sect. 2.6.5we use the obtained spectral representation of the closed chain to rewrite
the EL equations in a form suitable for an explicit analysis.
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2.6.1 Spectral Decomposition of the Regularized Vacuum

In order to analyze the causal action principle, we clearly need to know the eigen-
values λ

xy
i of the closed chain. Moreover, in order to bring the EL equations into a

tractable form, we also need to know the corresponding eigenspaces. We now com-
pute the spectral decomposition of the closed chain for the regularized fermionic
projector of the vacuum. We first do the computation in general, and then rewrite it
using the formalism of the continuum limit.

As in Sect. 1.2.5 we assume that the regularized fermionic projector of the vacuum
is homogeneous and has a vector-scalar structure (1.2.44). These assumptions are
reasonable and sufficiently general for our purposes. Thus we assume that Pε(x, y)
can again be written again as the Fourier integral (2.4.1), where P̂ε now is a distrib-
ution of the form

P̂ε(k) = ĝ j (k) γ j + ĥ(k) (2.6.1)

with real-valued distributions ĝ j and ĥ. Here the parameter ε > 0 denotes the length
scale of the regularization. Thus, expressed in momentum space, the distributions ĝ j

and ĥ should decay at infinity on the scale k ∼ ε−1. This means in position space
that the kernel of the fermionic projector has the form

Pε(x, y) = g j (x, y) γ j + h(x, y) (2.6.2)

with smooth functions g j and h whose derivatives scale at most in powers of ε−1. As ε
tends to zero, the regularized fermionic projectors should go over to the unregularized
fermionic projector,

lim
ε↘0

Pε(x, y) = P(x, y) as a distribution. (2.6.3)

According to (1.1.14), we introduce the corresponding closed chain by

Aε
xy = Pε(x, y) Pε(y, x) . (2.6.4)

In the next lemma we compute the roots of the characteristic polynomial of this
matrix. For ease in notation we shall often omit the subscripts “xy.”

Lemma 2.6.1 The characteristic polynomial of the closed chain Aε
xy has two

roots λ±. Either the λ± form a complex conjugate pair, λ+ = λ−, or else they are
both real and have the same sign. The roots are given explicitly by

λ± = gg + hh ±
√

(gg)2 − g2 g2 + (gh + hg)2 . (2.6.5)

Proof We write the fermionic projector in position space as

Pε(x, y) = g j (x, y) γ j + h(x, y) , Pε(y, x) = g j (x, y) γ j + h(x, y) .

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
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Thus, omitting the arguments x and y,

Aε
xy = (/g + h)(/g + h) .

Omitting the superscript ε and the subscript xy, we obtain

A = /g /g + h /g + /g h + hh . (2.6.6)

It is useful to decompose A in the form

A = A1 + A2 + μ

with

A1 = 1

2
[/g, /g] , A2 = h /g + /g h , μ = gg + hh

and gg ≡ g j g j . Then the matrices A1 and A2 anti-commute, and thus

(A − μ)2 = A2
1 + A2

2 = (gg)2 − g2 g2 + (gh + hg)2 . (2.6.7)

The right side of (2.6.7) is a multiple of the identity matrix, and so (2.6.7) is a
quadratic equation for A. The roots λ± of this equation as given by (2.6.5) are the
zeros of the characteristic polynomial of A. If the discriminant is negative, the λ±
form a complex conjugate pair. If conversely the discriminant is positive, the λ± are
both real. In order to show that they have the same sign, we compute their product,

λ+λ− = (gg + hh)2 − [(gg)2 − g2 g2 + (gh + hg)2
]

= 2 (gg) |h|2 + |h|4 + g2 g2 − (gh + hg)2

= |h|4 + g2 g2 − g2 h
2 − h2 g2

= (g2 − h2)(g2 − h
2
) ≥ 0 .

This concludes the proof. �

In the degenerate case that the two eigenvalues λ+ and λ− coincide, the rela-
tion (2.6.7) shows that the matrix A − μ is nilpotent. However, in this case the
matrix A − μ need not vanish (as one sees from (2.6.6)), giving examples where
the matrix A is not diagonalizable. Except for this degenerate case, the matrix A is
indeed diagonalizable and has two-dimensional eigenspaces:

Lemma 2.6.2 In the case λ+ �= λ−, the matrix Axy is diagonalizable and has two-
dimensional eigenspaces. It has the spectral representation

Axy =
∑

s=±
λxy
s Fxy

s , (2.6.8)
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where the spectral projections are given by

Fxy
± = 11

2
±

1
2 [/g, /g] + h/g + /gh

2
√

(gg)2 − g2 g2 + (gh + hg)2
. (2.6.9)

Proof If we assume that A is diagonalizable, then λ± are the two eigenvalues of A,
and the corresponding spectral projectors F± are given by

F± = 11

2
± 1

λ+ − λ−

(
A − 1

2
(λ+ + λ−) 11

)
. (2.6.10)

Applying (2.6.5) gives (2.6.9). Taking their trace, one sees that the matrices F+
and F− both have rank two.

In order to prove that A is diagonalizable, one takes formulas (2.6.9) and shows
by direct computation that (see Exercise 2.24)

A F± = λ± F± and F+ + F− = 11 . (2.6.11)

This shows that the images of F+ and F− are indeed eigenspaces of A which span
C

4. �

Our next step is to rewrite the spectral representation using the formalism of the
continuum limit. Let us compute the leading singularity on the light cone. Then

P(x, y) = i

2
/ξ T (−1)

[0] + (deg < 2) , (2.6.12)

where for notational convenience we omitted the indices −1
[0] of the factor ξ, and where

the bracket (deg < 2) stands for terms of degree at most one. Using this formula for
the fermionic projector, the closed chain becomes

Axy = 1

4
(/ξT (−1)

[0] )(/ξT (−1)
[0] ) + /ξ(deg ≤ 3) + (deg < 3) , (2.6.13)

where /ξ := ξ jγ
j . Its trace can be computed with the help of the contraction

rules (2.4.45),

Tr(Axy) = (ξ jξ j ) T (−1)
[0] T (−1)

[0] = 1

2
(z + z) T (−1)

[0] T (−1)
[0] + (deg < 3) .

We next compute the square of the trace-free part of the closed chain,

(
Axy − 1

4
Tr(Axy) 11

)2 = 1

16

(
/ξ/ξ − z + z

2

)2 (
T (−1)

[0] T (−1)
[0]

)2
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= 1

16

(
/ξ/ξ/ξ/ξ − (z + z) /ξ/ξ + 1

4
(z + z)2

)(
T (−1)

[0] T (−1)
[0]

)2

= 1

64
(z − z)2

(
T (−1)

[0] T (−1)
[0]

)2
.

Combining these formulas,we see that to leading degree, the closed chain is a solution
of the polynomial equation

(
Axy − 1

8
(z + z) T (−1)

[0] T (−1)
[0]

)2

=
(
1

8
(z − z) T (−1)

[0] T (−1)
[0]

)2

. (2.6.14)

We point out that the calculations so far are only formal, but they have a well-defined
meaning in the formalism of the continuum, because to all our end formulas we will
be able to apply the weak evaluation formula (2.4.48). Having this in mind, we can
interpret the roots of the polynomial in (2.6.14)

λ+ = 1

4

(
z T (−1)

[0]
)
T (−1)

[0] and λ− = 1

4
T (−1)

[0]
(
z T (−1)

[0]
)

as the eigenvalues of the closed chain. Using the contraction rule (2.4.46), these
eigenvalues simplify to (see also [F7, Eq. (5.3.20)])

λ+ = T (0)
[0] T (−1)

[0] + (deg < 3) , λ− = T (−1)
[0] T (0)

[0] + (deg < 3) . (2.6.15)

The corresponding spectral projectors become (see also [F7, Eq. (5.3.21)])

F± = 1

2

(
11 ± [/ξ, /ξ]

z − z

)
+ /ξ(deg ≤ 0) + (deg < 0) . (2.6.16)

Since in the formalism of the continuum limit, the factors z and z are treated as two
different functions, we do not need to worry about the possibility that the eigen-
values λ+ and λ− might coincide or that the denominator in (2.6.16) might vanish.
Similarly, we can treat ξ and ξ simply as two different vectors. Then the methods and
results of Lemma 2.6.2 apply and show that thematrices F+ and F− have rank two, so
that the eigenvalues λ+ and λ− are both two-fold degenerate. By direct computation,
one finds that (see Exercise 2.25)

F± P(x, y) =
{

0 for “+′′
i
2 /ξ T (−1)

[0] for “−′′ + (deg < 2) . (2.6.17)

From (2.6.15) and (2.6.16) one sees that the eigenvalues of the closed chain form a
complex conjugate pair and are both two-fold degenerate. Using this result in (1.1.9),
one comes to the important conclusion that the Lagrangian vanishes identically,
implying that, using the formalism of the continuum limit, the fermionic projector

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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of the vacuum is a minimizer of the causal action. We will return to this point in a
more general context in Sect. 2.6.5.

The lower degrees on the light cone can be computed in a straightforward way by
expanding the formulas (2.6.9). To give an impression, we here list a few formulas:

λ± = 1

4
×
{

(z T (−1)
[0] ) T (−1)

[0] + (z T (0)
[2] ) T (−1)

[0] + (z T (−1)
[0] ) T (0)

[2] for “+′′

T (−1)
[0] (z T (−1)

[0] ) + T (−1)
[0] (z T (0)

[2] ) + T (0)
[2] (z T (−1)

[0] ) for “−′′

+ T (0)
[1] T (0)

[1] ∓ T (0)
[1] T (−1)

[0] − T (−1)
[0] T (0)

[1]

T (0)
[0] T (−1)

[0] − T (−1)
[0] T (0)

[0]
(T (0)

[1] T (0)
[0] − T (0)

[0] T (0)
[1] )

+ (deg < 2) .

F± P(x, y) = i

4
(/ξ T (−1)

[0] ) + (deg < 2)

± i

4

(/ξ T (−1)
[0] )(T (0)

[0] T (−1)
[0] + T (−1)

[0] T (0)
[0] ) − 2 (/ξ T (−1)

[0] ) T (−1)
[0] T (0)

[0]

T (0)
[0] T (−1)

[0] − T (−1)
[0] T (0)

[0]
.

These formulas can be obtained more systematically with the perturbation expansion
for the spectral decomposition which we now describe.

2.6.2 The Double Null Spinor Frame

Before entering the perturbation calculation, it is convenient to choose a specific
eigenvector basis of the closed chain of the vacuum. This basis is referred to as the
double null spinor frame and is denoted by (f

L/R
± ). Performing computations in the

double null spinor frame is an improvement of the method of “factorizing matrix
traces” as introduced in [F7, Appendix G.2]. Following (2.6.13), we introduce the
matrix

A0
xy = 1

4
(/ξT (−1)

[0] )(/ξT (−1)
[0] ) .

According to (2.6.15) and (2.6.16), in the formalism of the continuum limit the
corresponding eigenvalues and spectral projectors are given by

λ+ = T (0)
[0] T (−1)

[0] , λ− = T (−1)
[0] T (0)

[0] (2.6.18)

F± = 1

2

(
11 ± [/ξ, /ξ]

z − z

)
, (2.6.19)

and they satisfy the relations

F+ /ξ/ξ = z F+ , and F− /ξ/ξ = z F− .
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Furthermore, the matrix A0
xy is invariant on the left- and right-handed components,

and thus we may choose joint eigenvectors of the matrices A0 and �. This leads us
to introduce the four eigenvectors fL/R± by the relations

χc Fs f
c
s = fcs (2.6.20)

with c ∈ {L , R} and s ∈ {+,−}, which define each of these vectors up to a complex
factor. For clarity in notation, we againwrite the inner product onDirac spinorsψφ ≡
ψ†γ0φ as ≺ψ|φ�, and refer to it as the spin scalar product. Then the calculation

≺fL+ | fL+� = ≺χL f
L
+ |χL f

L
+� = ≺fL+ |χR χL f

L
+� = 0

(and similarly for the other eigenvectors) shows that these vectors are indeed all null
with respect to the spin scalar product. Moreover, taking the adjoint of (2.6.19) with
respect to the spin scalar product, one sees that

(F+)∗ = F− . (2.6.21)

As a consequence, the inner products vanish unless the lower indices are different,
for example

≺fL+ | fR+� = ≺F+fL+ | F+fR+� = ≺fL+ | F− F+ fR+� = 0 .

We conclude that all inner products between the basis vectors vanish except for
the inner products ≺fL+|fR−�, ≺fR+|fL−� as well as their complex conjugates ≺fR−|fL+�
and ≺fL−|fR+�. We assume that all the non-vanishing inner products are equal to one,

| ≺fL+ | fR−�| = 1 = | ≺fR+ | fL−�| . (2.6.22)

In order to specify the phases and relative scalings of the basis vectors, we introduce
a space-like unit vector u which is orthogonal to both ξ and ξ. Then the imaginary
vector v = iu satisfies the relations

〈v, ξ〉 = 0 = 〈v, ξ〉 , 〈v, v〉 = 1 and v = −v . (2.6.23)

As a consequence, the operator /v commutes with F+ and F−, and since it flips parity,
we may set fR+ = /v fL+. Next, a straightforward computation using (2.6.19) gives the
identities

F− /ξ = /ξ F+ and F− /ξ = /ξ F+ . (2.6.24)

These identities can be used as follows. The first identity implies that

(
χRF− /ξ

)
fL+ = /ξ χL F+ fL+ ∼ /ξ fL+ ,
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showing that the vectors /ξ fL+ and fR− are linearly dependent. The calculation

≺fL+ | /ξfL+� = ≺fL+ | /ξ /ξ/ξ

z
fL+� = ≺fL+ | /ξ/ξ

z
/ξ fL+� = ≺fL+ | /ξfL+�

(where we used (2.6.20) and (2.6.19)) shows that the vector /ξ fL+ is in fact a real
multiple of fR−. Hence by normalizing fL+ appropriately, we can arrange3 that fR− =
/ξ fL+. Using the second identity in (2.6.24), we also find that fR− = /ξ fL+. Similarly, we
may also set fL− = /ξ fR+ = /ξ fR+. The resulting relations between our basis vectors are
summarized in the following diagram:

fL+
/v−−−−→ fR+

/ξ
⏐⏐�/ξ /ξ

⏐⏐�/ξ

fR−
−/v−−−−→ fL−

(2.6.25)

With (2.6.20), (2.6.22) and (2.6.25) we have introduced the double null spinor
frame (f

L/R
± ). The construction involves the freedom in choosing the operator /v

according to (2.6.23); for given /v, the basis vectors are unique up to an irrelevant
common phase. The construction of the double null spinor frame is illustrated in
Exercise 2.26.

We next explain how we can represent a given linear operator B on the spinors in
the double null frame (f

L/R
± ). Following the notation in [F7, Appendix G], we denote

the matrix element in the column (c, s) and row (c′, s ′) by Fcc′
ss ′ (B). These matrix

entries are obtained by acting with B on the vector fc
′
s ′ and taking the inner product

with the basis vector which is conjugate to fcs , i.e.

Fcc′
ss ′ (B) = ≺fcs | B fc

′
s ′� , (2.6.26)

where the conjugation flips the indices according to L ↔ R and + ↔ −. Similarly,
we can also express the projectors χcFs in terms of the basis vectors, for example

χL F+ = |fL+� ≺fR−| . (2.6.27)

For computing (2.6.26), we use the relations in (2.6.25) to express the vector fc
′
s ′ in

terms of fL+, choosing the relations which do not involve factors of /ξ. Similarly, we

3Let us explainwhywe do not consider the opposite sign fR− = −/ξ fL+. To this end,wemust show that
≺fL+|/ξfL+� > 0. Since for anygivenpositive or definite spinor ζ, the vectorχL F+ζ is amultiple of fL+,
it suffices to compute instead the sign of the combination ≺χL F+ζ|/ξχL F+ζ�. Applying (2.6.21)
and (2.6.24), this inner product simplifies to ≺ζ|χR F−/ξζ�. With the help of (2.6.17) and (2.6.12),
we can treat the factor /ξ as an outer factor. Then our inner product simplifies to the expectation value
≺ζ|χR/ξζ�. This expectation value is positive if we follow the convention introduced before (2.4.48)
that ξ0 > 0.
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express the vector fcs in terms of fR−, avoiding factors of /ξ. Applying (2.6.27), we can
then rewrite the inner product as a trace involving the operator F+. More precisely,
a straightforward calculation yields

FLL++(B) = Tr(F+ χL B) , FLR
++(B) = Tr(F+ /v χL B)

FLL+−(B) = Tr(/ξ F+ /v χL B) , FLR+−(B) = Tr(/ξ F+ χL B)

FLL−+(B) = 1

z
Tr(F+ /v /ξχL B) , FLR−+(B) = 1

z
Tr(F+ /ξ χL B)

FLL−−(B) = 1

z
Tr(/ξ F+ /ξ χL B), FLR−−(B) = 1

z
Tr(/ξ F+ /v /ξ χL B)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.6.28)

(see also [F7, Eq. (G.19)], where these relations are derived with a different method).
Indeed, it suffices to compute the given eight matrix elements, because the other eight
matrix elements are obtained by the replacements L ↔ R. Moreover, the matrix
elements of the adjoint (with respect to the spin scalar product) are obtained by

Fcc′
ss ′ (B

∗) = ≺fcs | B∗ fc
′
s ′� = ≺fc′

s ′ | B fcs� = Fc′c
s ′s (B) .

A simple example for how to compute the matrix elements in the double null spinor
frame is given in Exercise 2.27.

2.6.3 Perturbing the Spectral Decomposition

Omitting the arguments (x, y), we decompose the fermionic projector as

P = P0 + �P ,

where P0 is the vacuum fermionic projector (possibly modified by gauge phases).
This gives rise to the decomposition of A

A = A0 + �A (2.6.29)

with

A0 = P0(x, y) P0(y, x) (2.6.30)

�A = �P(x, y) P0(y, x) + P0(x, y) �P(y, x) + �P(x, y) �P(y, x) . (2.6.31)

The eigenvalues and spectral projectors of A0 were computed explicitly in Sect.
2.6.1. In view of later generalizations, we write the obtained spectral decomposition
as

A0 =
K∑

k=1

λk Fk
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with K = 2, where λk are distinct eigenvalues with corresponding spectral projec-
tions Fk . Since the perturbation �A will in general remove the degeneracies, we
cannot expect that by perturbing Fk we again obtain spectral projection operators.
But we can form projectors Gk on the space spanned by all eigenvectors of A whose
eigenvalues are sufficiently close to λk . The Gk are most conveniently introduced
using contour integrals. We choose ε > 0 such that

|λi − λ j | < 2ε for all i, j = 1, . . . , K and i �= j.

Then we set

Gk = 1

2πi

˛
|z−λk |=ε

(z − A)−1 dz , (2.6.32)

Combining the resolvent identitywith theCauchy integral formula, one sees thatGk is
indeed an idempotent operator whose image is the invariant subspace corresponding
to the eigenvalues near λk (for details see Exercise 2.6).

The integral formula (2.6.32) is very useful for a perturbation expansion. To this
end, we substitute (2.6.29) into (2.6.32) and compute the inverse with the Neumann
series,

Gk = 1

2πi

˛
|z−λk |=ε

(
z − A0 − �A

)−1
dz

= 1

2πi

˛
|z−λk |=ε

(
11 − (z − A0)

−1 �A
)−1

(z − A0)
−1 dz

= 1

2πi

˛
|z−λk |=ε

∞∑

n=0

(
(z − A0)

−1 �A
)n

(z − A0)
−1 dz .

Interchanging the integral with the infinite sum gives the perturbation expansion,

Gk =
∞∑

n=0

1

2πi

˛
|z−λk |=ε

(
(z − A0)

−1 �A
)n

(z − A0)
−1 dz , (2.6.33)

where n is the order in perturbation theory. After substituting in the spectral repre-
sentation for (z − A0)

−1,

(z − A0)
−1 =

K∑

l=1

Fl
z − λl

, (2.6.34)

the contour integral in (2.6.33) can be carried out with residues. For example, we
obtain to second order,
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Gk = Fk +
∑

l �=k

1

λk − λl
(Fk �A Fl + Fl �A Fk) + O((�A)3)

+
∑

l,m �=k

1

(λk − λl)(λk − λm)

× (Fk �A Fl �A Fm + Fl �A Fk �A Fm + Fl �A Fm �A Fk)

−
∑

l �=k

1

(λk − λl)2

× (Fk �A Fk �A Fl + Fk �A Fl �A Fk + Fl �A Fk �A Fk) .

(2.6.35)

To order n > 2, the corresponding formulas are clearly more complicated, but even
then they involve matrix products which are all of the form

Fk1 �A Fk2 �A · · · Fkn �A Fkn+1 . (2.6.36)

An example of a first order perturbation computation is given in Exercise 2.28.

2.6.4 General Properties of the Spectral Decomposition

We now derive a few general properties of the spectral decomposition of the closed
chain.

Lemma 2.6.3 Assume that for a one-parameter family of fermionic projectors P(τ )

and fixed x, y ∈ M, the matrices Axy and Ayx are diagonalizable for all τ in a
neighborhood of τ = 0, and that the eigenvalues of the matrix Axy |τ=0 are all non-
real. Then the unperturbed closed chain Axy has a spectral representation

Axy

∣∣
τ=0 =

4∑

k=1

λ
xy
k Fxy

k (2.6.37)

with the following properties. The last two eigenvalues and spectral projectors are
related to the first two by

λ
xy
3 = λ

xy
1 , Fxy

3 = (Fxy
1 )∗ and λ

xy
4 = λ

xy
2 , Fxy

4 = (Fxy
2 )∗ . (2.6.38)

The first order perturbation δAxy = ∂τ Axy |τ=0 of the closed chain is diagonal in the
bases of the non-trivial degenerate subspaces, i.e.

Fxy
k (δAxy)F

xy
l = 0 if k �= l and λ

xy
k = λ

xy
l . (2.6.39)
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The closed chain Ayx has a corresponding spectral representation satisfying (2.6.37)–
(2.6.39)with all indices ‘xy’ are replacedby ‘yx’. The spectral representations of Axy

and Ayx are related to each other by

λ
xy
k = λ

yx
k and Fxy

k P(x, y) = P(x, y) Fyx
k . (2.6.40)

Proof By continuity, the eigenvalues of the matrix Axy are non-real in a neighbor-
hood of τ = 0. Moreover, by direct computation one sees that the matrix Axy is
symmetric in the sense that Axy = A∗

xy = γ0A†
xyγ

0. Hence, using the idempotence
of the matrix γ0 together with the multiplicity of the determinant, we find that

det(Axy − λ) = det(γ0(A†
xy − λ)γ0) = det(A†

xy − λ) = det(Axy − λ) .

Hence if λ is an eigenvalue of the matrix Axy , so is λ. Thus the eigenvalues must
form complex conjugate pairs.

We first complete the proof in the case that there are no degeneracies. For any
eigenvalue λ of Axy we choose a polynomial pλ(z) with pλ(λ) = 1 and pλ(μ) = 0
for all other spectral points μ. Then the spectral projector on the eigenspace corre-
sponding to λ, denoted by Fxy

λ , is given by

Fxy
λ = pλ(Axy) . (2.6.41)

Taking the adjoint and possibly after reordering the indices k, we obtain the rela-
tions (2.6.37) and (2.6.38). The generalmatrix relation det(BC − λ) = det(CB − λ)

(see for example [F10, Sect. 3]) shows that the closed chains Axy and Ayx have the
same spectrum. Multiplying (2.6.41) by P(x, y) and iteratively applying the relation

Axy P(x, y) = P(x, y) P(y, x) P(x, y) = P(x, y) Ayx ,

we find that Fxy
λ P(x, y) = P(x, y) Fyx

λ . Thus we can label the eigenvalues of the
matrix Ayx such that (2.6.40) holds.

In the casewith degeneracies, the assumption that Axy is diagonalizable in a neigh-
borhood of τ = 0 allows us to diagonalize δAxy on the degenerate subspaces (see for
example [Ba] or the similar method for self-adjoint operators in [S2, Sect. 11.1.2]).
This yields (2.6.39), whereas (2.6.38) can be arranged by a suitable ordering of the
spectral projectors Fxy

k . In the degenerate subspaces of Ayx we can choose the bases
such that (2.6.37) and (2.6.38) hold (with ‘xy’ replaced by ‘yx’) and that (2.6.40)
is satisfied. It remains to prove that (2.6.39) also holds for Ayx : From (2.6.39) we
know that for any pair l, k with λ

xy
l = λ

xy
k ,

0 = Fxy
k (δAxy)F

xy
l = Fxy

k

(
δP(x, y) P(y, x) + P(x, y) δP(y, x)

)
Fxy
l

= Fxy
k (δP(x, y))Fyx

l P(y, x) + P(x, y)Fyx
k (δP(y, x))Fxy

l ,
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where in the last line we applied the second equation in (2.6.40). Multiplying by
P(y, x) from the left and by P(x, y) on the right, we find

0 = P(y, x)Fxy
k (δP(x, y))Fyx

l λ
yx
l + λ

yx
k F yx

k (δP(y, x))Fxy
l P(x, y) .

After dividing by λ
yx
l = λ

yx
k (note that the eigenvalues are non-zero because they are

assumed to form complex conjugate pairs), we can again use the second equation
in (2.6.40) to obtain

0 = P(y, x)Fxy
k (δP(x, y))Fyx

l + Fyx
k (δP(y, x))Fxy

l P(x, y)

= Fyx
k

(
P(y, x) δP(x, y) + δP(y, x) P(x, y)

)
Fyx
l = Fyx

k (δAyx )F
yx
l ,

concluding the proof. �

2.6.5 Spectral Analysis of the Euler-Lagrange Equations

We now explain how the spectral decomposition of the closed chain can be used to
analyze the causal action principle introduced in Sect. 1.1.1 as well as the corre-
sponding EL equations as worked out in Sect. 1.4.1. For the regularized Dirac sea
vacuum as considered in Sect. 2.6.1, the situation is quite simple. Namely, according
to Lemma 2.6.1 (or more explicitly in (2.6.18)), the closed chain has two eigenvalues
which form a complex conjugate pair. As a consequence, the eigenvalues all have
the same absolute value. Writing the Lagrangian in the form (1.1.9), one sees that
the Lagrangian vanishes identically. We come to the following conclusion:

In the formalism of the continuum limit, the regularized Dirac
sea vacuum is a minimizer of the causal action.

(2.6.42)

If the fermionic projector of the vacuum is perturbed (for example by an external
potential or by additional particle or antiparticle states), the degeneracy of the eigen-
values will in general disappear, so that the spectrum will consist of two complex
conjugate pairs. As a consequence, the causal action will no longer vanish. In order
to analyze whether we still have a critical point of the causal action, one needs to
analyze the corresponding EL equations in Proposition 1.4.3. To this end, it is very
convenient to rewrite these EL equations using the spectral decomposition of the
closed chain, as we now explain.

For simplicity, we again restrict attention to Dirac spinors and spin dimension
two. Moreover, we only consider the case that the Lagrange multipliers κ and λ in
Proposition 1.4.3 are both equal to zero. The generalization to higher spin dimension
and to non-trivial κ and λ are straightforward and will be carried out later on (see
Lemmas 3.6.2, 3.7.1 and the similar results in Sect. 4.4.1). Writing the Lagrangian
in the form (1.1.9), we have

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_3
http://dx.doi.org/10.1007/978-3-319-42067-7_3
http://dx.doi.org/10.1007/978-3-319-42067-7_4
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L(x, y) = 1

8

4∑

i, j=1

(
|λxy

i | − |λxy
j |
)2

. (2.6.43)

The relation (2.6.39) allows us to compute the variation of the eigenvalues by a
standard first order perturbation calculation without degeneracies,

δλ
xy
k = Tr(Fxy

k δAxy) . (2.6.44)

Using that that δ|λ| = Re(λ δλ/|λ|), we can compute the first variation of (2.6.43)
by

δL(x, y) = 1

2
Re

4∑

j,k=1

(
|λxy

k | − |λxy
j |
) λ

xy
k

|λxy
k | Tr(Fxy

k δAxy) . (2.6.45)

We now insert the identity

δAxy = δP(x, y) P(y, x) + P(x, y) δP(y, x) .

Cyclically commuting the arguments of the trace, we obtain

δL(x, y) = 1

2

4∑

j,k=1

(
|λxy

k | − |λxy
j |
)

× Re Tr

[
λ
xy
k

|λxy
k | P(y, x) Fxy

k δP(x, y) + λ
xy
k

|λxy
k | F

xy
k P(x, y) δP(y, x)

]
.

Using (2.6.38) and (2.6.40), one sees that the first summand in the square bracket
is the adjoint of the second summand. Therefore, the trace of the square bracket is
real-valued, so that it is unnecessary take the real part. Comparing with (1.4.16), we
conclude that

Q(x, y) = 1

2

4∑

j,k=1

(
|λxy

k | − |λxy
j |
) λ

xy
k

|λxy
k | F

xy
k P(x, y) (2.6.46)

(where we again used (2.6.40)). In the vacuum, when the eigenvalues of the closed
chain form a complex conjugate pair (2.6.18), the kernel Q(x, y) vanishes identically
in the formalism of the continuum limit. If the fermionic projector of the vacuum is
perturbed, the first order perturbation of Q(x, y) can be computed easilywith the help
of (2.6.44). The higher orders in perturbation theory can be treated systematically by
using the contour method in Sect. 2.6.3 and by evaluating the resulting expressions
in the formalism of the continuum limit.

The above methods give a mathematical meaning to Q(x, y) in the formalism of
the continuum limit. The remaining difficulty is that in the EL equations worked out

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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in Proposition 1.4.3, the kernel Q(x, y) appears inside an integral (1.4.18), and one
must control the error terms (2.4.50) and (2.4.51) inside this integral. The method is
to choose a vector u ∈ H such that its physical wave function ψu is supported away
from x , up to a small error. This method is referred to as testing on null lines. In a
more physical picture, one chooses ψu as an ultrarelativistic wave packet localized
near a null curve which does not meet the space-time point x . Applying this method
to (1.4.18), the left side is evaluated weakly on the light cone, whereas the right side
vanishes. In this way, the EL equations in the continuum limit reduce to

Q(x, y) = 0 evaluated weakly on the light cone .

We refer for details to Sect. 3.5.2. The estimates of all the error terms are worked out
in Appendix A.

Exercises

Exercise 2.1 (external field problem) In physics textbooks, the notions of a “par-
ticle” and “anti-particle” are often associated to the frequency (or equivalently the
energy) of the solutions: solutions of positive frequency are called particles, whereas
the negative-frequency solutions are reinterpreted as describing anti-particle states.
The aim of this exercise is to explain why these notions are ill-defined in the presence
of a time-dependent potential. To this end, we consider the Dirac equation

(i /∂ + B − m)ψ = 0 , (2.6.47)

where B is a “step potential in time” i.e.

B(t, �x) = Vγ0 �(t) �(1 − t)

with a real parameter V .

(a) Separate out the spatial dependence for any given �k ∈ R
3 with the plane-wave

ansatz
ψ(t, �x) = ei

�k �x φ(t)

(where φ is a spinor-valued function). Derive the resulting ordinary differential
equation for φ(t).

(b) Clearly, the potential has discontinuities at t = 0 and t = 1. Show that there are
two fundamental solutions φ1,φ2 ∈ C0(R,C4) which are smooth solutions of
theODE except at the points t = 0 and t = 1.Remark:This procedure is familiar
to physics students from quantum mechanics textbooks where wave functions
are “glued together” at discontinuities of step potentials. From the mathematical
point of view, the “glueing” of the solutions can be justified by saying that φ1

andφ2 are a fundamental systemofweak solutions of theODE. To the readerwho
is not familiar with these concepts, it might be instructive to verify that the notion
of “weak solution” really gives rise to a continuity condition for φ. (Likewise,

http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_1
http://dx.doi.org/10.1007/978-3-319-42067-7_3
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for a second order equation like the Schrödinger equation, the notion of “weak
solution” gives rise toC1-solutions whose second derivatives are discontinuous.)

(c) Consider a “scattering process” where for negative times the solution is of the
form

φ(t) = e−iωt χ ,

where χ is a constant spinor and ω :=
√�k2 − m2. Show that for time t > 1, this

solution can be written as

φ(t) = e−iωt χ+ + e+iωt χ−

with constant spinors χ+ and χ−. Compute χ+ and χ− explicitly as functions
of χ and V . Verify in particular that χ− in general does not vanish.

(d) What does this mean for the interpretation of the solution in terms of “par-
ticles” and “anti-particles”? Why can the frequency of the solutions not be
used for a global concept of particles and anti-particles? How can a pair cre-
ation/annihilation process be understood in our example? Remark: In order to
avoid misunderstandings, we point out that the above arguments only show that
the frequency cannot be used to obtain a global particle interpretation. They do
not rule out the possibility that there may be a well-defined global particle inter-
pretation using other properties of the solutions. In fact, such a global particle
interpretation is provided by the causal perturbation expansion (or the corre-
sponding functional analytic constructions in [FR2, FR3, FMR]). However, this
global particle interpretation in general does not coincide with the “particles”
and “anti-particles” as experienced by a local observer.

Exercise 2.2 This exercise is devoted to the advanced Green’s function s∨
m (for a

more computational exercise on the advanced Green’s function see Exercise 2.12).

(a) Assume thatm > 0. Show that the limitν ↘ 0 in (2.1.9) exist in the distributional
sense.

(b) Show that the limit ν ↘ 0 in (2.1.9) also exists in the massless case m = 0 and
that

lim
m↘0

s∨
m(k) = s∨

0 (k) as a distribution .

Hint: Proceed similar as in Exercise 1.21.
(c) Consider the Fourier integral in the q0-variable

ˆ ∞

−∞
1

q2 − m2 − iνq0
eiq

0t dq0 .

Show with residues that this integral vanishes for sufficiently small ν if t < 0.
(d) Argue with Lorentz invariance to prove the left side of (2.1.12).

Exercise 2.3 Modifying the location of the poles in (2.1.9) gives rise to the distrib-
ution

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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sFm (k) := lim
ν↘0

/k + m

k2 − m2 + iν
.

This is the well-known Feynman propagator, which is often described intuitively
by saying that “positive frequencies move to the future and negative frequencies
move to the past.” Make this sentence precise by a computation similar to that in
Exercise 2.2 (c).

Exercise 2.4 (a) Assume that m > 0. Give a detailed proof of the distributional
relation (2.1.14). Hint: Argue similar as in Exercise 1.21.

(b) Prove that (2.1.14) also holds in the casem = 0.Hint: The subtle point is to ana-
lyze the behavior at q = 0. To this end, apply Lebesgue’s dominated convergence
theorem.

Exercise 2.5 (probability integral and current conservation) Let ψ,φ be two solu-
tions of the Dirac equation (2.1.5) with a smooth potential B which is symmet-
ric (2.1.20). Moreover, assume that ψ and φ are smooth and have spatially compact
support.

(a) Show that the integral (2.1.19) is independent of t0.
(b) More generally, let N be a Cauchy surface in Minkowski space with future-

directed normal ν. Show that the integral

ˆ
N

ψ(/νφ) dμN

is independent of the choice of the Cauchy surface (where dμN is the volume
measure corresponding to the induced Riemannian metric on N ). Hint: Show
that the vector field ψγ jφ is divergence-free and apply the Gauß divergence
theorem.

Exercise 2.6 (resolvent and contour integrals) The aim of this exercise is to make
the reader familiar with the notion of the resolvent and the contour integral repre-
sentation of spectral projectors in the finite-dimensional setting. More details and
generalizations to infinite dimensions can be found in the book by Kato [Ka].

(a) Let A ∈ L(Ck) be a k × k-matrix. The resolvent set is the set of all λ ∈ C for
which the matrix (A − λ) is invertible. The spectrum is the complement of the
resolvent set. For any λ in the resolvent set, we define the resolvent Rλ by

Rλ = (A − λ11)−1

(we use this sign convention consistently, although some authors use the opposite
sign convention). Prove the resolvent identity

Rλ Rλ′ = 1

λ − λ′
(
Rλ − Rλ′

)
,

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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valid for any λ,λ′ in the resolvent set. Hint: Multiply the identity λ′ − λ =
(A − λ) − (A − λ′) from the left and right by a resolvent.

(b) Assume that A is a Hermitian matrix. Let � be a contour which encloses only
one eigenvalue λ0 with winding number one. Show that the contour integral

− 1

2πi

‰
�

Rλ dλ (2.6.48)

is an orthogonal projection onto the corresponding eigenspace. Hint: Choose an
eigenvector basis and apply the Cauchy integral formula.

(c) Now let A be any matrix. Let � be a contour which encloses a point λ0 in the
spectrumwith winding number one. Show that the contour integral (2.6.48) is an
idempotent operator whose image is the corresponding invariant subspace.Hint:
Choose a Jordan representation of the matrix. Restrict attention to one Jordan
block. Then the resolvent can be written as a Neumann series, which reduces to
a finite sum. The resulting integral can be computed with residues.

(d) Derive the idempotence relation in (c) directly from the resolvent identity. Hint:
A very similar computation is given in the proof of Theorem 2.1.6.

Exercise 2.7 In this exercise we explore an alternative and more computational
proof of Lemma 2.1.8.

(a) Show by direct computation in momentum space that km |t0 km = km . Hint: Pro-
ceed similarly as in the derivation of (1.2.24) in the proof of Lemma 1.2.8.

(b) Show that due to current conservation (see Exercise 2.5 above), the opera-
tor k̃m |t0 k̃m is independent of t0. Therefore, it suffices to compute the limit t0 →
−∞. In order to study this limit, assume for technical simplicity that B has
compact support. Show with the help of (2.1.14), (2.1.25) and (2.1.26) that for
sufficiently small t0 < 0,

k̃m |t0 k̃m = 1

4π2

∞∑

n,n′=0

(−s∧
mB)n s∧

m |t0 s∨
m (−Bs∨

m)n
′

=
∞∑

n,n′=0

(−s∧
mB)n km |t0 km (−Bs∨

m)n
′
.

(c) Apply the result of (a) together with (2.1.14) to conclude that k̃m |t0 k̃m = k̃m .

Exercise 2.8 (causal perturbation expansion to second order)

(a) Compute P sea to second order inB.Hint: Use (2.1.64) as well as the perturbation
series for k̃. The resulting formulas are also listed in [FT2, Appendix A].

(b) The so-called residual fermionic projector is defined bymodifying the integrand
in (2.1.64) to

P sea
res = − 1

2πi

‰
�−

R̃λ dλ .

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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Show that to first order in B, the operators P sea and P sea
res coincide. However,

there is a difference to second order in B. Compute it. Hint: In order to simplify
the computation, it is helpful to write the difference as

P sea − P sea
res = 1

2πi

‰
�−

(λ + 1) R̃λ dλ ,

and to use that the factor λ + 1 decreases the order of the pole at λ = −1.

Exercise 2.9 (the fundamental solution p̃)

(a) Show that the operator k̃ has the contour integral representation

k̃ = − 1

2πi

‰
�+∪�−

λ R̃λ dλ .

Hint: Use (2.1.54) or the functional calculus of Theorem 2.1.6.
(b) Conclude that the fermionic projector Psea, (2.1.64), can be represented as

P sea = 1

2

(
p̃ − k̃

)
,

where p̃ is defined by

p̃ := − 1

2πi

(‰
�+

−
‰

�−

)
λ R̃λ dλ . (2.6.49)

Exercise 2.10 (structural properties of p̃: even number of factors k) The goal of
this exercise is to show that every contribution to the perturbation expansion of p̃
contains an even number of factors k.

(a) Use the multiplication rules (2.1.52) and (2.1.69) to show that the last summand
−(11 − p)/λ in (2.1.57) drops out of the perturbation expansion for p̃ as defined
by (2.6.49). Conclude that instead of (2.1.57), we may work with the formula

Rλ = Rp
λ + Rk

λ with Rp
λ = p

λ

1 − λ2
, Rk

λ = k
1

1 − λ2
. (2.6.50)

(b) Use the perturbation series for R̃λ in (2.1.56) and restrict attention to a contribu-
tion for fixed n. Insert (2.6.50) and multiply out. Analyze the symmetry of the
contour integral under the transformation λ → −λ. Show that all contributions
to p̃ which involve an even number of factors Rp

λ vanish.
(c) Deduce from (2.1.53) and (2.1.55) that every contribution to �k involves an

even numbers of factors k.
(d) Show that every contribution to the perturbation expansion of p̃ contains an

even number of factors k. Hint: Combine the results of (b) and (c) and use the
multiplication rules (2.1.52) and (2.1.69).
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Exercise 2.11 (structural properties of p̃: replacing k by p) In this exercise we
compute what one gets if in the perturbation series for p̃ one replaces all factors p
by k.

(a) Show that replacing all factors p by k, the formulas (2.1.53), (2.1.55) and (2.1.57)
simplify to

�k → −p +
∞∑

β=0

(−iπ)2β b< p (bp)2β b> , Rλ → p
1

1 − λ
.

Hint: See also Exercise 2.10 (a).
(b) Show that, using the formulas of part (a) in (2.1.56), the contour integral (2.6.49)

simplifies to

p̃ → − 1

2πi

‰
�+

λ

∞∑

n=0

1

(1 − λ)n+1
(−p · �k)n · p dλ .

Compute the contour integral with residues to obtain

p̃ →
∞∑

β=0

(−iπ)2β b< p (bp)2β b> .

Hint: Again use the multiplication rules (2.1.52) and (2.1.69).

Exercise 2.12 This exercise explains the notion of the light-cone expansion in sim-
ple examples.

(a) What is the light-cone expansion for a smooth function on M × M? In which
sense is it trivial? In which sense is it non-unique?

(b) Show that A(x, y) = log
(|y − x |2) is a well-defined distribution on M × M .

What is the order on the light cone? Write down a light-cone expansion.
(c) Now consider the distributional derivatives

( ∂

∂x0

)p
A(x, y) with p ∈ N

and A(x, y) as in part (b). What is the order on the light cone? Write down a
light-cone expansion.

(d) Consider the function

E(x, y) = sin
(
(y − x)2

)
log
(|y − x |2) .

Determine the order on the light cone and give a light cone expansion.
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(e) Consider the function

E(x, y) =
{
e
− 1

(y−x)2 if (y − x)2 ≥ 0
0 otherwise .

Determine the order on the light cone and give a light cone expansion.
(f) Show that the expression

lim
ε↘0

log
(|y − x |2)

(y − x)4 + iε

is a well-defined distribution on M × M . Derive its light-cone expansion.

Exercise 2.13 This exercise is devoted to computing the Fourier transform of the
advanced Green’s function (2.2.5) and deriving the series expansion (2.2.7).

(a) As in Lemma 1.2.9, we set ξ = y − x and ξ = (t, �ξ) with t > 0. Moreover,
we choose polar coordinates r = (| �ξ|,ϑ,ϕ). Carry out the ω-integration with
residues and compute the angular integrals to obtain

S∨
m2(x, y) = i

8πr

ˆ ∞

0

p

ω(p)

(
e−i pr − eipr

)(
eiω(p) t − e−iω(p) t

)
dp ,

where p = | �p| and ω(p) := √| �p2| + m2. Justify this integral as the Fourier
transform of a distribution and show that

S∨
m2(x, y) = i

8πr
lim
ε↘0

ˆ ∞

0
e−εp p

ω(p)

(
e−i pr − eipr

)(
eiω(p) t − e−iω(p) t

)
dp

with convergence as a distribution.
(b) Verify (2.2.6) in the case m = 0 by setting ω(p) = p and using (1.2.33).
(c) In order to analyze the behavior away from the light cone, it is most convenient

to take the limit r ↘ 0 and use Lorentz invariance. Show that in this limit,

S∨
m2(x, y) = 1

4π
lim
ε↘0

ˆ ∞

0
e−εp p2

ω(p)

(
eiω(p) t − e−iω(p) t

)
dp (2.6.51)

= 1

4π
lim
ε↘ω

ˆ ∞

m
e−εp

√
ω2 − m2

(
eiωt − e−iωt

)
dω . (2.6.52)

Compute this integral using [GR, formula (3.961.1)] (similar as in the proof of
Lemma 1.2.9. Use the relations between Bessel functions [OLBC, (10.27.6),
(10.27.11)] to obtain (2.2.6) away from the light cone.
As an alternative method for computing the Fourier integral, one can begin from
the integral representation for J0 in [OLBC, (10.9.12)], differentiate with respect
to x and use [OLBC, (10.6.3)].

(d) Combine the results of (b) and (c) to prove (2.2.6). Why is there no additional
contribution at ξ = 0?

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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(e) Use the series expansion [OLBC, (10.2.2)] to derive (2.2.7).
(f) The series expansion (2.2.7) can also be derived without using Bessel functions.

To this end, one expands (2.6.51) in powers of m2 and computes the Fourier
transform term by term. Verify explicitly that this procedure really gives (2.2.7).

Exercise 2.14 This exercise is devoted to the proof of Lemma 2.2.3 as given in [F6,
Lemma 2.2].

(a) Use (2.2.24) to derive the identity

ˆ
d4z S(l)(x, z) V (z) (y − z)k S

(−1)(z, y) = −2
∂

∂yk
(S(l) V S(0))(x, y) .

(2.6.53)

(b) Apply Lemma 2.2.2 and carry out the y-derivative in (2.6.53) to obtain the
formula in Lemma 2.2.3. Hint: Use the identity

∂k�nV (z) = − 1

2(n + 1)
�n+1

z

(
V (z) (y − z)k

)
+ 1

2(n + 1)

(
�n+1

z V (z)
)

(y − z)k

and shift the summation index.

Exercise 2.15 In this exercise we collect elementary properties of the ordered expo-
nential.

(a) Assume that the matrix-valued function F in Definition 2.2.5 is commutative in
the sense that [

F(α), F(β)
] = 0 for all α,β ∈ [a, b] .

Show that the ordered exponential reduces to the ordinary exponential,

Pexp

( ˆ b

a
F(α) dα

)
= exp

( ˆ b

a
F(α) dα

)
.

Hint: Show inductively that

ˆ b

a
dt0 F(t0)

ˆ b

t0

dt1 F(t1) · · ·
ˆ b

tn−1

dtn F(tn) = 1

(n + 1)!
( ˆ b

a
F(t) dt

)n+1

.

(b) Assume that F is continuous on [a, b]. Show that the Dyson series converges
absolutely and that

∥∥∥∥Pexp
( ˆ b

a
F(α) dα

)∥∥∥∥ ≤ exp

(ˆ b

a

∥∥F(α)
∥∥ dα

)
.

Hint: Estimate the integrals and apply (a).
(c) Show by direct computation that the ordered exponential satisfies the equations
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d

da
Pexp

(ˆ b

a
F(α) dα

)
= −F(a) Pexp

( ˆ b

a
F(α) dα

)
(2.6.54)

Pexp

( ˆ a

a
F(α) dα

)
= 11 . (2.6.55)

Use the uniqueness theorem for solutions of ordinary differential equations to
give an alternative definition in terms of the solution of an initial-value problem.
Use this reformulation to show the group property

Pexp

( ˆ b

a
F(α) dα

)
Pexp

( ˆ c

b
F(α) dα

)
= Pexp

( ˆ c

a
F(α) dα

)
.

(2.6.56)
(d) Show that

d

db
Pexp

( ˆ b

a
F(α) dα

)
= Pexp

(ˆ b

a
F(α) dα

)
F(b) . (2.6.57)

Hint: Differentiate the identity (2.6.56) in the case c = a and use the group
properties (2.6.55) and (2.6.56).

(e) Show that

Pexp

( ˆ b

a
F(α) dα

)∗
= Pexp

( ˆ a

b

(− F(α)∗
)
dα

)
.

Deduce that if F(α) is an anti-Hermitian matrix, then the ordered exponential
is a unitary matrix. Hint: There are two alternative methods. One method is to
argue using the differential equations (2.6.54) and (2.6.57) or with the group
property. A more computational approach is to take the adjoint of the Dyson
series and reparametrize the integrals.

Exercise 2.16 This exercise recalls the concept of local gauge transformations and
gets the connection to the ordered exponential.

(a) An electromagnetic potential A of the form A j = ∂ j� with a real-valued func-
tion � is called a pure gauge potential. Show that (i /∂ + /A − m) = U (i /∂ −
m)U−1, where U is the phase factor U = ei�. Conclude that every solution of
the Dirac equation (i /∂ + /A − m)ψ̃ = 0 can be written in the form ψ̃ = Uψ,
where ψ is a solution of the vacuum Dirac equation. In other words, pure gauge
potentials merely describe local phase transformations of the wave functions.

(b) Generalize the argument of (a) to the case of non-abelian gauge fields and an
additional gauge potential using the relation

U (i /∂ + /A − m 11)U−1 = i /∂ +U /AU−1 + iU
(
/∂U−1

)− m 11 ,
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where nowU (x) is a unitary matrix (the mass matrix was left out for simplicity).
How does the gauge potential transform under local unitary transformations of
the spinors?

(c) Prove that for a pure gauge potential A = iU (/∂U−1) the ordered exponential of
Definition 2.2.5 simplifies to

Pexp

(
− i

ˆ y

x
A j (y − x) j

)
= U (x)U (y)−1 .

Hint: Apply the integration-by-partsmethod of Exercise 2.17 to theDyson series.
Alternatively, one can make use of the differential equation (2.6.54) with initial
conditions (2.6.55).

Exercise 2.17 This exercise illustrates the handling of the tangential derivatives
mentioned before Proposition 2.2.6. Let z = βy + (1 − β)x be a point on the line
segment xy. Show that

ˆ y

z
[p, q|0] f (z′) dz′ =

ˆ 1

0
αp (1 − α)q f

(
α (1 − β)(y − x) + z

)

Deduce the identity

(y−x) j
ˆ y

z
[p, q|0] (∂ j f )(z

′) dz′

= 1

1 − β

ˆ 1

0
αp (1 − α)q

d

dα
f
(
α (1 − β)(y − x) + z

)
dα .

In the case p, q > 0, integrate by parts to derive the computation rule

(y − x) j
ˆ y

z
[p, q|0] (∂ j f )(z

′) dz′ = − 1

1 − β

ˆ y

z

(
p [p − 1, q | 0] − q [p, q − 1 | 0]

)
f .

What is the analogous computation rule in the cases p = 0 and/or q = 0?

Exercise 2.18 This exercise explains how theMaxwell field tensor and theMaxwell
current arise in the light cone expansion. To this end, we consider the first order
perturbation of the massless Green’s function by an electromagnetic potential A,

�s0 := −s0 /A s0 .

(a) Show that the leading contributions to the light-cone expansion of �sm have the
form

(�s0)(x, y) = 1

2

ˆ y

x
Ai (z) ξi /ξ S(−1)(x, y) (2.6.58)
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+
ˆ y

x
dz [0, 1 | 0] (/∂Ai )(z) ξi S(0)(x, y) (2.6.59)

−
ˆ y

x
dz [0, 0 | 0] /A(z) S(0)(x, y) (2.6.60)

+ /A(x) S(0)(x, y) + /ξ O
(
ξ−2)+ O

(
ξ0
)
, (2.6.61)

where ξ := y − x . Hint: First compute s0 using (2.2.20) and (2.2.24). Then per-
form the light-cone expansionof thefirst order perturbationbyusingLemma2.2.3
and then by differentiating similar as done in the displayed computation before
(2.2.24). Finally, the resulting formulas can be simplified by using (2.2.18) and
by integrating the tangential derivatives by part (see Exercise 2.17 or the proof
of Proposition 2.2.6).

(b) Which of the above contributions are phase-free? Show that the contribution
which is not phase-free can be understood as the first-order contribution to the
gauge phase in (2.2.57).

(c) Rewrite the phase-free contributions in an explicitly gauge-invariant way.
Hint: In (2.6.59) use the identity /∂Ai )(z) ξi = γ j Fjiξ

i − ξ j∂ j /A. Note that this
generates a tangential derivative (see (2.2.58)). Integrate it by parts as explained
in Exercise 2.17 or in the proof of Proposition 2.2.6.

(d) Compute the contributions to the above light-cone expansion of the form
∼ /ξ · · · S(0). There is a term involving �A. Rewrite it in an explicitly gauge-
invariant way using the Maxwell current ji := ∂ik Ak − �Ai .

(e) The reader who wants to get more computational practice may find it instructive
to carry out the light-cone expansion up to the order O(ξ2). In particular, there
is a term ∼ (� /A) S(1). Rewriting the contributions again an explicitly gauge-
invariant form, one thus obtains a contribution ∼ γk jk S(1). In fact, this contri-
bution gives rise to the Maxwell current in the field equations in the continuum
limit.

We note that all these computations are explained inmore detail in [F6, Appendix A].

Exercise 2.19 (contour integral representation of the residual fermionic projector)
In Exercise 2.9 (a) we derived a contour integral representation for the operator k̃
in (2.2.111). Thus it remains to derive a contour integral representation for the oper-
ator p̃res as defined by defined by (2.2.110). Verify to second order in perturbation
theory (see Exercise 2.8) that p̃res has the contour integral representation

p̃res = − 1

2πi

‰
�+∪�−

R̃λ dλ .

Remark: This equation indeed holds to every order in perturbation theory. This is a
consequence of an underlying symmetry of the perturbation expansions with mass
and spatial normalizations as explained in [FT2, Sect. 3.4].
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Exercise 2.20 The goal of this exercise is to explore weak evaluation on the light
cone in the example of the massless closed chain of the vacuum (2.4.11). Thus in
view of (2.4.17), we want to analyze the integral

ˆ ∞

−∞
η(t)

(t2 − r2) − iε[γ0, /ξ] + ε2
∣∣(t − iε)2 − r2

∣∣4
dt (2.6.62)

for a test function η ∈ C∞
0 (R) asymptotically as ε ↘ 0.

(a) Choose r > 0. Show that, changing the integral only by contributions which are
bounded uniformly in ε, we may replace η(t) by a test function supported in the
interval (r/2, 2r) around the upper light cone.

(b) Use the identity

1

(t − iε)2 − r2
= 1

(t − iε − r)(t − iε + r)
= 1

2r

(
1

t − iε − r
− 1

t − iε + r

)

to rewrite the integrand in (2.6.62) in the form

2∑

p,q=0

ηp,q(t, r, ε)

(t − iε − r)p (t + iε − r)q
,

with functions ηp,q(t, r, ε) which in the limit ε ↘ 0 converge in C∞ to smooth
functions ηp,q(t, r), i.e.

lim
ε↘0

∂α
t ∂β

r ηp,q(t, r, ε) = ∂α
t ∂β

r ηp,q(t, r) for all α,β ≥ 0 .

Compute the functions ηp,q . Verify that the contribution for p = q = 2 agrees
with the approximation (2.4.16).

(c) We now compute the leading contributions and specify what we mean by “lead-
ing.” First compute the following integrals with residues:

I0(ε) :=
ˆ ∞

−∞
1

(t − iε − r)2 (t + iε − r)2
dt

I1(ε) :=
ˆ ∞

−∞
t − r

(t − iε − r)2 (t + iε − r)2
dt .

Show that
ˆ ∞

−∞
η2,2(t, r)

(t − iε − r)2 (t + iε − r)2
dt

= I0(ε) η2,2(r, r) + I1(ε)
(
∂tη2,2

)
(r, r) + O(ε) .

Hint: To estimate the error term, proceed similar as in Exercise 1.10 (a).

http://dx.doi.org/10.1007/978-3-319-42067-7_1
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(d) We now analyze the dependence of the resulting terms on r . To this end, first
compute η2,2(r, r) and (∂tη2,2)(r, r). Verify the rules (2.4.20). Verify the scaling
of the error terms (2.4.18) and (2.4.19), where we use the convention that every
derivative of η gives rise to a factor 1/�macro.

(e) Show that the integrals for p < 2 or q < 2 can be absorbed into the error terms.
Also show that the term ∼ε2 in (2.4.11) can be absorbed into the error terms.

(f) So far we analyzed the integrals with the simplified test functions ηp,q(t, r).
Show that replacing them by ηp,q(t, r, ε) changes the integrals only by error
terms of the form (2.4.18) and (2.4.19).

Exercise 2.21 This exercise explains how the identities (2.4.24) and (2.4.26) can be
derived by explicit computation.

(a) Use (2.2.118) together with (2.2.117) and the series expansion (2.2.97) to derive
explicit formulas for T (l) for all l ≥ 0. Use the relation (2.4.4) in the case l = 0
to also compute T (−1).

(b) Show that for all n ≥ 0,

ξ2 T (l)(x, y) = −4 T (l−1) + (smooth contributions) . (2.6.63)

Why do the “smooth contributions” arise?
(c) Verify that the relation (2.6.63) remains valid for the iε-regularization. Hint:

One can argue without computations directly with a meromorphic extension
using (2.4.3).

(d) Verify the identities (2.4.26) by explicit computation. What are the “smooth
contributions”? Show that these identities remain valid for the iε-regularization.

Exercise 2.22 (computation of the local trace) Compute Pε(x, x) in theMinkowski
vacuumwith iε-regularization (see (2.4.1) and (2.4.2)). How do the vector and scalar
components scale in m and ε? Verify the scaling of the local trace (2.5.1).

Exercise 2.23 (scalar potentials and the local trace) Consider a potential B com-
posed of chiral potentials and a scalar potential, i.e. in generalization of (2.2.25),

B = χL /AR + χR /AL + �(x) .

(a) Show that the scalar potential can be combined with the mass terms to obtain
a Dirac equation of the form (2.2.10) with B as in (2.2.29), but now with Y (x)
depending on x . We remark that this so-called dynamical mass matrix was first
introduced in [F6, Sect. 2] (also including a pseudoscalar potential); see also [F7,
Sect. 2.5].

(b) Go through the proof of Theorem 2.2.4 and convince yourself that the statement
of the theorem remains valid in the presence of a scalar potential if in (2.2.33)
the matrix Y is replaced by Y (x). Remark: This generalization of Theorem 2.2.4
is given in [F6, Theorem 2.3].

(c) Use this generalization of Theorem 2.2.4 together with the scaling argument in
the proof of Proposition 2.5.1 to derive the formula for the local trace (2.5.4).
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Exercise 2.24 (spectral representation of Axy) Derive the formulas (2.6.11) by a
straightforward computation using (2.6.6) and (2.6.9).

Exercise 2.25 (spectral representation in the continuum limit) Derive (2.6.17) by
using (2.6.16), (2.6.12) as well as the contraction rules (2.4.44)–(2.4.46).

Exercise 2.26 In this exercise we consider the double null spinor frame in the exam-
ple of the iε-regularization.

(a) Consider a point (t, �ξ) on the upper light cone, i.e. t = |�ξ| (more specifically
one may choose �x = (t, 0, 0)). Use (2.4.6) to and compute z (up to errors of
the form (2.4.18)). Compute the spectral projectors (2.6.19). Verify the rela-
tions (2.6.24).

(b) Compute the solutions fcs of the eigenvector equations (2.6.20). Normalize them
according to (2.6.22).What is the remaining freedom tomodify the eigenvectors.

(c) Choose a space-like unit vector u which is orthogonal to ξ and ξ̄. What is the
freedom in choosing this vector? Show that by suitably choosing the phases of
the eigenvectors fcs one can arrange that the relations in (2.6.25) hold. What is
the remaining freedom in choosing the frame (fcs)?

(d) The diagram (2.6.25) implies in particular that /ξ fL+ = /ξ fL+. Explain how this
identity can be understood in view of the error terms (2.4.18).

Exercise 2.27 (matrix elements in the double null spinor frame) Compute thematrix
elements FLL++(B), FLL+−(B), FLR+−(B) and FRR+−(B) for B given by

B = i

2
χL /ξ T (−1)

[0] .

Simplify the expression as far as possible. Hint: Use the cyclic property of the trace,
the anti-commutation relations of the Dirac matrices and the contraction rules.

Exercise 2.28 (Perturbation of the eigenvalues of the closed chain) The light-cone
expansion can be understood as giving corrections to the fermionic projector of lower
order on the light cone. We now explore how these corrections affect the eigenvalues
of the closed chain, andwhich of them are compatible with the EL equations. In order
to work in a specific example, we assume that the unperturbed fermionic projector
is

P(x, y) = i

2
/ξ T (−1)

[0]

(similar as considered in Exercise 2.27), whereas the perturbation has a left- and
right-handed component,

�P(x, y) = χL /νL + χR /νR ,

where νL and νR are given vectors in Minkowski space.
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(a) Compute the corresponding perturbation �λ
xy
k to leading order in the degree

on the light cone. What is the leading degree? Which eigenvalues change,
which remain the same? Hint: Use the usual formula for first order perturba-
tions (see (2.6.44)) and rewrite it in the double null spinor frame.

(b) For which vectors νL and νR does the relation |λxy
k | = |λxy

l | hold for all k, l ∈
{1, . . . , 4}? Show that these relations are a sufficient condition for the EL equa-
tions to be satisfied. What would one need to verify in order to conclude that
these relations are necessary?Hint: Consider (2.6.44) and (2.6.46). Keep inmind
that the EL equations are evaluated weakly on the light cone.
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