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Abstract In this paper we show that a semi-commutative Galois extension of asso-
ciative unital algebra by means of an element τ , which satisfies τN = 1 (1 is the
identity element of an algebra and N ≥ 2 is an integer) induces a structure of graded
q-differential algebra, where q is a primitiveN th root of unity. A graded q-differential
algebra with differential d, which satisfies dN = 0,N ≥ 2, can be viewed as a gen-
eralization of graded differential algebra. The subalgebra of elements of degree zero
and the subspace of elements of degree one of a graded q-differential algebra together
with a differential d can be considered as a first order noncommutative differential
calculus. In this paper we assume that we are given a semi-commutative Galois
extension of associative unital algebra, then we show how one can construct the
graded q-differential algebra and when this algebra is constructed we study its first
order noncommutative differential calculus. We also study the subspaces of graded
q-differential algebra of degree greater than one which we call the higher order non-
commutative differential calculus induced by a semi-commutative Galois extension
of associative unital algebra. We also study the subspaces of graded q-differential
algebra of degree greater than one which we call the higher order noncommutative
differential calculus induced by a semi-commutative Galois extension of associative
unital algebra. Finally we show that a reduced quantum plane can be viewed as a
semi-commutative Galois extension of a fractional one-dimensional space and we
apply the noncommutative differential calculus developed in the previous sections
to a reduced quantum plane.
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1 Introduction

Let us briefly remind a definition of noncommutative Galois extension [12–15].
Suppose ˜A is an associative unitalC-algebra,A ⊂ ˜A is its subalgebra, and there is
an element τ ∈ ˜A which satisfies τ /∈ A , τN = 1, where N ≥ 2 is an integer and
1 is the identity element of ˜A . A noncommutative Galois extension ofA by means
of τ is the smallest subalgebra A [τ ] ⊂ ˜A such that A ⊂ A [τ ], and τ ∈ A [τ ]. It
should be pointed out that a concept of noncommutative Galois extension can be
applied not only to associative unital algebra with a binary multiplication law but
as well as to the algebra with a ternary multiplication law, for instant to a ternary
analog of Grassmann and Clifford algebra [6, 14, 15], and this approach can be used
in particle physics to construct an elegant algebraic model for quarks.

A graded q-differential algebra can be viewed as a generalization of a notion of
graded differential algebra if we use a more general equation dN = 0,N ≥ 2 than the
basic equation d2 = 0 of a graded differential algebra. This idea was proposed and
developedwithin the framework of noncommutative geometry [10], where the author
introduced the notions of N-complex, generalized cohomologies of N-complex and
making use of an N th primitive root of unity constructed an analog of an algebra
of differential forms in n-dimensional space with exterior differential satisfying the
relation dN = 0. Later this idea was developed in the paper [9], where the authors
introduced and studied a notion of graded q-differential algebra. It was shown [1, 2,
4, 5] that a notion of graded q-differential algebra can be applied in noncommutative
geometry in order to construct a noncommutative generalization of differential forms
and a concept of connection.

In this paper we will study a special case of noncommutative Galois extension
which is called a semi-commutative Galois extension. A noncommutative Galois
extension is referred to as a semi-commutative Galois extension [15] if for any
element x ∈ A there exists an element x′ ∈ A such that x τ = τ x′. In this paper we
show that a semi-commutative Galois extension can be endowed with a structure of
a graded algebra if we assign degree zero to elements of subalgebra A and degree
one to τ . This is the first step on a way to construct the graded q-differential algebra
if we are given a semi-commutative Galois extension. The second step is the theorem
which states that if there exists an element v of graded associative unital C-algebra
which satisfies the relation vN = 1 then this algebra can be endowedwith the structure
of graded q-differential algebra. We can apply this theorem to a semi-commutative
Galois extension because we have an element τ with the property τN = 1, and this
allows us to equip a semi-commutative Galois extension with the structure of graded
q-differential algebra. Then we study the first and higher order noncommutative
differential calculus induced by the N-differential of graded q-differential algebra.
We introduce a derivative and differential with the help of first order noncommutative
differential calculus developed in the papers [3, 7]. We also study the higher order
noncommutative differential calculus and in this case we consider a differential d
as an analog of exterior differential and the elements of higher order differential
calculus as analogs of differential forms. Finally we apply our calculus to reduced
quantum plane [8].



Semi-commutative Galois Extension … 15

2 Graded q-Differential Algebra Structure
of Noncommutative Galois Extension

In this section we remind a definition of noncommutative Galois extension, semi-
commutative Galois extension, and show that given a semi-commutative Galois
extension we can construct the graded q-differential algebra.

First of all we remind a notion of a noncommutative Galois extension [12–15].

Definition 1 Let ˜A be an associative unital C-algebra and A ⊂ ˜A be its subalge-
bra. If there exist an element τ ∈ ˜A and an integer N ≥ 2 such that

(i) τN = ±1,
(ii) τ k /∈ A for any integer 1 ≤ k ≤ N − 1,

then the smallest subalgebra A [τ ] of ˜A which satisfies

(iii) A ⊂ A [τ ],
(iv) τ ∈ A [τ ],
is called the noncommutative Galois extension of A by means of τ .

In this paper wewill study a particular case of a noncommutative Galois extension
which is called a semi-commutativeGalois extension [15]. A noncommutativeGalois
extension is referred to as a semi-commutative Galois extension if for any element
x ∈ A there exists an element x′ ∈ A such that x τ = τ x′.Wewill give this definition
in terms of left and right A -modules generated by τ . Let A 1

l [τ ] and A 1
r [τ ] be

respectively the left and right A -modules generated by τ . Obviously we have

A 1
l [τ ] ⊂ A [τ ], A 1

r [τ ] ⊂ A [τ ].

Definition 2 A noncommutative Galois extension A [τ ] is said to be a right
(left) semi-commutative Galois extension if A 1

r [τ ] ⊂ A 1
l [τ ] (A 1

l [τ ] ⊂ A 1
r [τ ]). If

A 1
r [τ ] ≡ A 1

l [τ ] then a noncommutative Galois extension will be referred to as a

semi-commutative Galois extension, and in this case A 1[τ ] = A 1
r [τ ] = A 1

l [τ ] is
the A -bimodule.

It is well known that a bimodule over an associative unital algebra A freely
generated by elements of its basis induces the endomorphism from an algebra A
to the algebra of square matrices over A . In the case of semi-commutative Galois
extension we have only one generator τ and it induces the endomorphism of an
algebra A . Indeed let A [τ ] be a semi-commutative Galois extension and A 1[τ ]
be its A -bimodule generated by [τ ]. Any element of the right A -module A 1

r [τ ]
can be written as τ x, where x ∈ A . On the other handA [τ ] is a semi-commutative
Galois extension which means A 1

r [τ ] ≡ A 1
l [τ ], and hence each element x τ of the

left A -module can be expressed as τ φτ (x), where φτ (x) ∈ A . It is easy to verify
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that the linear mapping φ : x → φτ (x) is the endomorphism of subalgebra A , i.e.
for any elements x, y ∈ A we have φτ (xy) = φτ (x)φτ (y). This endomorphism will
play an important role in our differential calculus, and in what follows we will also
use the notation φτ (x) = xτ . Thus

u τ = τ φτ (x), u τ = τ uτ .

It is clear that
φN

τ = idA , uτN = u,

because for any u ∈ A it holds u τN = τN φN (u) and taking into account that
τN = 1 we get φN

τ (u) = u.

Proposition 1 Let A [τ ] be a semi-commutative Galois extension of A by means
of τ , and A k

l [τ ],A k
r [τ ] be respectively the left and right A -modules generated by

τ k, where k = 1, 2, . . . ,N − 1. ThenA k
l [τ ] ≡ A k

r [τ ] = A k[τ ] is theA -bimodule,
and

A [τ ] = ⊕N−1
k=0 A

k[τ ] = A 0[τ ] ⊕ A 1[τ ] ⊕ · · · ⊕ A N−1[τ ],

where A 0[τ ] ≡ A .

Evidently the endomorphism ofA induced by theA -bimodule structure of Ak[τ ]
is φk , where φ : A → A is the endomorphism induced by theA -bimoduleA 1[τ ].
We will also use the notation φk(x) = xτ k .

It follows from Proposition 1 that a semi-commutative Galois extensionA [τ ] has
a naturalZN -graded structure which can be defined as follows: we assign degree zero
to each element of subalgebra A , degree 1 to τ and extend this graded structure to
a semi-commutative Galois extension A [τ ] by determining the degree of a product
of two elements as the sum of degree of its factors. The degree of a homogeneous
element of A [τ ] will be denoted by | |. Hence |u| = 0 for any u ∈ A and |τ | = 1.

Now our aim is to show that given a noncommutative Galois extension we can
construct a graded q-differential algebra, where q is a primitive N th root of unity.
First of all we remind some basic notions, structures and theorems of theory of graded
q-differential algebras.

LetA = ⊕k∈ZNA
k = A 0 ⊕ A 1 ⊕ · · · ⊕ A N−1 be aZN -graded associative uni-

tal C-algebra with identity element denoted by 1. Obviously the subspace A 0 of
elements of degree 0 is the subalgebra of a graded algebra A . Every subspace A k

of homogeneous elements of degree k ≥ 0 can be viewed as the A 0-bimodule. The
graded q-commutator of two homogeneous elements u, v ∈ A is defined by

[v, u]q = v u − q|v||u|u v.

A graded q-derivation of degree m of a graded algebra A is a linear mapping
d : A → A of degreem, i.e. d : A i → A i+m, which satisfies the graded q-Leibniz
rule
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d(u v) = d(u) v + qmlu d(v), (1)

where u is a homogeneous element of degree l, i.e. u ∈ A l. A graded q-derivation d
of degreem is called an inner graded q-derivation of degreem induced by an element
v ∈ A m if

d(u) = [v, u]q = v u − qmlu v, (2)

where u ∈ A l.
Now let q be a primitive N th root of unity, for instant q = e2π i/N . Then

qN = 1, 1 + q + · · · + qN−1 = 0.

A graded q-differential algebra is a graded associative unital algebraA endowed
with a graded q-derivation d of degree one which satisfies dN = 0. In what follows
a graded q-derivation d of a graded q-differential algebra A will be referred to as
a graded N-differential. Thus a graded N-differential d of a graded q-differential
algebra is a linear mapping of degree one which satisfies a graded q-Leibniz rule
and dN = 0. It is useful to remind that a graded differential algebra is a graded
associative unital algebra equipped with a differential d which satisfies the graded
Leibniz rule and d2 = 0. Hence it is easy to see that a graded differential algebra
is a particular case of a graded q-differential algebra when N = 2, q = −1, and in
this sense we can consider a graded q-differential algebra as a generalization of a
concept of graded differential algebra. Given a graded associative algebraA we can
consider the vector space of inner graded q-derivations of degree one of this algebra
and put the question: under what conditions an inner graded q-derivation of degree
one is a graded N-differential? The following theorem gives answer to this question.

Theorem 1 LetA be a ZN-graded associative unitalC-algebra and d(u) = [v, u]q
be its inner graded q-derivation induced by an element v ∈ A 1. The inner graded
q-derivation d is the N-differential, i.e. it satisfies dN = 0, if and only if vN = ±1.

Now our goal is apply this theorem to a semi-commutative Galois extension to
construct a graded q-differential algebra with N-differential satisfying dN = 0.

Proposition 2 Let q be a primitive Nth root of unity. A semi-commutative Galois
extension A [τ ], equipped with the ZN-graded structure described above and with
the inner graded q-derivation d = [τ, ]q induced by τ , is the graded q-differential
algebra, and d is its N-differential. For any element ξ of semi-commutative Galois
extension A [τ ] written as a sum of elements of right A -modules A k[τ ]

ξ =
N−1∑

k=0

τ k uk = 1 u0 + τ u1 + τ 2 u2 + · · · τN−1 uN−1, uk ∈ A ,
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it holds

dξ =
N−1∑

k=0

τ k+1(uk − qk (uk)τ ), (3)

where uk → (uk)τ is the endomorphism of A induced by the bimodule structure of
A 1[τ ].

3 First Order Differential Calculus over Associative Unital
Algebra

In this section we describe a first order differential calculus over associative unital
algebra [7]. If an associative unital algebra is generated by a family of variables,
which obey commutation relations, then one can construct a coordinate first order
differential calculus over this algebra. A coordinate first differential calculus induces
the partial derivatives with respect to generators of algebra and these partial deriva-
tives satisfy the twisted Leibniz rule.

A first order differential calculus is a triple (A ,M , d) whereA is an associative
unital algebra,M is anA -bimodule, and d, which is called a differential of first order
differential calculus, is a linear mapping d : A → M satisfying the Leibniz rule
d(fh) = dfh + fdh, where f , h ∈ A . A first order differential calculus (A ,M , d)

is referred to as a coordinate first order differential calculus if an algebra A is
generated by the variables x1, x2, . . . , xn which satisfy the commutation relations,
and an A -bimodule M , considered as a right A -module, is freely generated by
dx1, dx2, . . . , dxn. It is worth to mention that a first order differential calculus was
developed within the framework of noncommutative geometry, and an algebra A
is usually considered as the algebra of functions of a noncommutative space, the
generators x1, x2, . . . , xn of this algebra are usually interpreted as coordinates of this
noncommutative space, and anA -bimoduleM plays the role of space of differential
forms of degree one. In this paper wewill use the corresponding terminology in order
to stress a relation with noncommutative geometry.

Let us consider a structure of coordinate first order differential calculus. This
differential calculus induces the differentials dx1, dx2, . . . , dxn of the generators
x1, x2, . . . , xn. Evidently dx1, dx2, . . . , dxn ∈ M . M is a bimodule, i.e. it has a
structure of left A -module and right A -module. Hence for any two elements
f , h ∈ A and ω ∈ M it holds (fω)h = f (ωh). According to the definition of a coor-
dinate first order differential calculus the right A -module M is freely generated
by the differentials of generators dx1, dx2, . . . , dxn. Thus for any ω ∈ M we have
ω = dx1f1 + dx2f2 + . . . + dxnfn where f1, f2, . . . , fn ∈ A . A coordinate first order
differential calculus (A ,M , d) is an algebraic structure, which extends to noncom-
mutative case the classical differential structure of amanifold. From the point of view
of noncommutative geometry A can be viewed as an algebra of smooth functions,
d is the exterior differential, andM is the bimodule of differential 1-forms. In order
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to stress this analogy we will call the elements of algebra A “functions” and the
elements of A -bimodule M “1-forms”.

Because M is A -bimodule, for any function f ∈ A we have two products f dxi

and dxi f . Since dx1, dx2, . . . , dxn is the basis for the right A -module M , each
element ofM can be expressed as linear combination of dx1, dx2, . . . , dxn multiplied
by the functions from the right. Hence the element fdxi ∈ M can be expressed in
this way, i.e.

fdxi = dx1ri1( f ) + dx2ri2( f ) + · · · + dxnrin( f ) = dxjrij ( f ), (4)

where ri1( f ), r
i
2( f ), . . . , r

i
n( f ) ∈ A are the functions. Making use of these functions

we can compose the square matrix

R( f ) = (rij ( f )) =
⎛

⎜⎝
r11( f ) r

2
1( f ) · · · rn1( f )

...
...

...
...

r1n( f ) r
2
n( f ) · · · rnn( f )

⎞

⎟⎠ .

It is worth to point out that an entry rij ( f ) stands on intersection of i-th column
and j-th row. This square matrix determines the mapping R : A → Matn(A ) where
Matn(A ) is the algebra of n order square matrices over an algebra A . It can be
proved

Proposition 3 R : A → Matn(A ) is the homomorphism of algebras.

Proof We need to prove that for any f , g ∈ A it holds R(fg) = R( f )R(g). Now
according to the Eq. (4) we have

(fg)dxi = dxjrij (fg).

The left hand side of the above relation can be written as

f (gdxi) = f (dxjrij (g)) = (fdxj)rij (g) = (dxkrjk( f ))r
i
j (g) = dxk(rjk( f )r

i
j (g)).

Now we can write

dxjrij (fg) = dxk(rjk( f )r
i
j (g)) ⇒ rik(fg) = rjk( f )r

i
j (g),

or in matrix form R(fg) = R( f )R(g), which ends the proof. �

Let A ,M , d be a coordinate first order differential calculus such that right
A -moduleM is a finite freely generated by the differentials of coordinates {dxi}ni=1.
The mappings ∂k : A → A , where k ∈ {1, 2, . . . , n}, uniquely defined by

df = dxk ∂k( f ), f ∈ A , (5)
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are called the right partial derivatives of a coordinate first order differential calculus.
It can be proved

Proposition 4 If A ,M , d is a coordinate first order differential calculus over an
algebra A such that M is a finite freely generated right A -module with a basis
{dxi}ni=1 then the right partial derivatives ∂k : A → A of this differential calculus
satisfy

∂k(fg) = ∂k( f ) g + r(f )ik ∂i(g). (6)

The property (6) is called the twisted (with homomorphism R) Leibniz rule for
partial derivatives.

If A is a graded q-differential algebra with differential d then evidently the sub-
space of elements of degree zeroA 0 is the subalgebra ofA , the subspace of elements
of degree oneA 1 is theA 0-bimodule, a differential d : A 0 → A 1 satisfies the Leib-
niz rule. Consequently we have the first order differential calculus (A 0,A 1, d) of a
graded q-differential algebraA . IfA 0 is generated by some set of variables then we
can construct a coordinate first order differential calculus with corresponding right
partial derivatives.

4 First Order Differential Calculus of Semi-commutative
Galois Extension

It is shown inSect. 2 that given a semi-commutativeGalois extensionwecan construct
a graded q-differential algebra. In the previous section we described the structure of
a coordinate first order differential calculus over an associative unital algebra, and
at the end of this section we also mentioned that the subspaces A 0,A 1 of a graded
q-differential algebra together with differential d of this algebra can be viewed as a
first order differential calculus overA 0. In this section we apply an approach of first
order differential calculus to a graded q-differential algebra of a semi-commutative
Galois extension.

Let A [τ ] be a semi-commutative Galois extension of an algebra A by means
of τ . Thus we have an algebra A and A -bimodule A 1[τ ]. Next we have the N-
differential d : A [τ ] → A [τ ] induced by τ , and if we restrict this N-differential
to the subalgebra A of Galois extension A [τ ] then d : A → A 1[τ ] satisfies the
Leibniz rule. Consequently we have the first order differential calculus which can
be written as the triple (A , d,A 1[τ ]). In order to describe the structure of this first
order differential calculuswewill need the vector space endomorphismΔ : A → A
defined by

Δu = u − uτ , u ∈ A .

For any elements u, v ∈ A this endomorphism satisfies

Δ(u v) = Δ(u) v + uτ Δ(v).
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Let us assume that there exists an element x ∈ A such that the element Δx ∈ A
is invertible, and the inverse element will be denoted by Δx−1. The differential dx
of an element x can be written in the form dx = τ Δx which clearly shows that dx
has degree one, i.e. dx ∈ A 1[τ ], and hence dx can be used as generator for the right
A -module A 1[τ ]. Let us denote by φdx : u → φdx(u) = udx the endomorphism of
A induced by bimodule structure of A 1[τ ] in the basis dx. Then

udx = Δx−1 uτ Δx = AdΔ x uτ . (7)

Definition 3 For any element u ∈ A we define the right derivative du
dx ∈ A (with

respect to x) by the formula

du = dx
du

dx
. (8)

Analogously one can define the left derivative with respect to x by means of the
leftA -module structure ofA 1[τ ]. Furtherwewill only use the right derivativewhich
will be referred to as the derivative and often will be denoted by u′

x. Thus we have
the linear mapping

d

dx
: A → A ,

d

dx
: u �→ u′

x.

Proposition 5 For any element u ∈ A we have

du

dx
= Δx−1 Δu. (9)

The derivative (8) satisfies the twisted Leibniz rule, i.e. for any two elements
u, v ∈ A it holds

d

dx
(u v) = du

dx
v + φdx(u)

dv

dx
= du

dx
v + AdΔ x uτ

dv

dx
.

We have constructed the first order differential calculus with one variable x, and it
is natural to study a transformation rule of the derivative of this calculus if we choose
another variable. From the point of view of differential geometry we will study a
change of coordinate in one dimensional space. Let y ∈ A be an element ofA such
that Δ y = y − yτ is invertible.

Proposition 6 Let x, y be elements of A such that Δ x,Δ y are invertible elements
of A . Then

dy = dx y′
x,

d

dx
= y′

x

d

dy
, dx = dy x′

y,
d

dy
= x′

y

d

dx
,

where x′
y = (y′

x)
−1.
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Indeed we have dy = τ Δ y, dx = τ Δ x. Hence τ = dxΔ x−1 and

dy = dx (Δ x−1Δ y) = dx y′
x.

If u is any element of A the for the derivatives we have

du

dx
= Δ x−1 Δ u = (Δ x−1 Δ y) (Δ y−1 Δ u) = y′

x

du

dy
.

As an example of the structure of graded q-differential algebra induced by dτ on a
semi-commutative Galois extension we can consider the quaternion algebra H. The
quaternion algebra H is associative unital algebra generated over R by i, j, k which
are subjected to the relations

i2 = j2 = k2 = −1, i j = −j i = k, j k = −k j = i, k i = −i k = j,

where 1 is the unity element of H. Given a quaternion

q = a0 1 + a1 i + a2 j + a3 k

we can write it in the form q = (a0 1 + a2 j) + i (a1 + a3 j). Hence if we consider the
coefficients of the previous expression z0 = a0 1 + a2 j, z1 = a1 + a3 j as complex
numbers then q = z0 1 + i z1 which clearly shows that the quaternion algebraH can
be viewed as the semi-commutative Galois extension C[i]. Evidently in this case we
haveN = 2, q = −1, andZ2-graded structure defined by |1| = 0, |i| = 1. Hence we
can use the terminology of superalgebras. It is easy to see that the subspace of odd
elements (degree 1) can be considered as the bimodule over the subalgebra of even
elements a1 + b j and this bimodule induces the endomorphism φ : C → C, where
φ(z) = z̄. Let d be the differential of degree one (odd degree operator) induced by i.
Then making use of (3) for any quaternion q we have

dq = d(z0 1 + i z1) = −(z̄1 + z1)1.

Obviously d2q = 0.

5 Higher Order Differential Calculus
of Semi-commutative Galois Extension

Our aim in this section is to develop a higher order differential calculus of a
semi-commutative Galois extension A [τ ]. This higher order differential calculus
is induced by the graded q-differential algebra structure. In Sect. 2 it is mentioned
that a graded q-differential algebra can be viewed as a generalization of a concept of
graded differential algebra if we takeN = 2, q = −1. It is well known that one of the
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most important realizations of graded differential algebra is the algebra of differen-
tial forms on a smooth manifold. Hence we can consider the elements of the graded
q-differential algebra constructed by means of a semi-commutative Galois extension
A [τ ] and expressed in terms of differential dx as noncommutative analogs of differ-
ential forms with exterior differential d which satisfies dN = 0. In order to stress this
analogy we will consider an element x ∈ A as analog of coordinate, the elements of
degree zero as analogs of functions, elements of degree k as analogs of k-forms, and
we will use the corresponding terminology. It should be pointed out that because of
the equation dN = 0 there are higher order differentials dx, d2x, . . . , dN−1x in this
algebra of differential forms.

Before we describe the structure of higher order differentials forms it is useful to
introduce the polynomials Pk(x),Qk(x), where k = 1, 2, . . . ,N . Let us remind that
Δx = x − xτ ∈ A . Applying the endomorphism τ we can generate the sequence of
elements

Δxτ = xτ − xτ 2 ,Δxτ 2 = xτ 2 − xτ 3 , . . . , ΔxτN−1 = xτN−1 − x.

Obviously each element of this sequence is invertible. Nowwedefine the sequence
of polynomials Q1(x),Q2(x), . . . ,QN (x), where

Qk(x) = Δxτ k−1Δxτ k−2 . . . ΔxτΔx.

These polynomials can be defined by means of the recurrent relation

Qk+1(x) = (Qk(x))τΔx.

It should be mentioned that Qk(x) is the invertible element and

(Qk(x))
−1 = Δx−1Δx−1

τ . . . Δx−1
τ k−1 .

Wedefine the sequence of elementsP1(x),P2(x), . . . ,PN (x) ∈ A by the recurrent
formula

Pk+1(x) = Pk(x) − qk (Pk(x))τ , k = 1, 2, . . . ,N − 1,

and P1(x) = Δx. Clearly P1(x) = Q(x) and for the k = 2, 3 a straightforward calcu-
lation gives

P2(x) = x − (1 + q) xτ + q xτ 2 ,

P3(x) = x − (1 + q + q2) xτ + (q + q2 + q3) xτ 2 − q3 xτ 3 .

Proposition 7 If q is a primitive Nth root of unity then there are the identities

PN−1(x) + (PN−1(x))τ + · · · + (PN−1(x))τN−1 ≡ 0, PN (x) ≡ 0.
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Now we will describe the structure of higher order differential forms. It follows
from the previous section that any 1-form ω, i.e. an element ofA 1[τ ], can be written
in the form ω = dx u, where u ∈ A . Evidently d : A → A 1[τ ], dω = dx u′

x. The
elements of A 2[τ ] will be referred to as 2-forms. In this case there are two choices
for a basis for the right A -module A 2[τ ]. We can take either τ 2 or (dx)2 as a basis
for A 2[τ ]. Indeed we have

(dx)2 = τ 2 Q2(x).

It is worth mentioning that the second order differential d2x can be used as the
basis for A 2[τ ] only in the case when P2(x) is invertible. Indeed we have

d2x = τ 2 P2(x), d2x = (dx)2 Q−1
2 (x)P2(x).

If we choose (dx)2 as the basis for the module of 2-formsA 2[τ ] then any 2-form
ω can be written as ω = (dx)2 u, where u ∈ A . Now the differential of any 1-form
ω = dx u, where u ∈ A , can be expressed as follows

dω = (dx)2
(
q u′

x + Q−1
2 (x)P2(x) u

)
. (10)

It should be pointed out that the second factor of the right-hand side of the above
formula resembles a covariant derivative in classical differential geometry. Hence
we can introduce the linear operator D : A → A by the formula

Du = q u′
x + Q−1

2 (x)P2(x) u, u ∈ A . (11)

If ω = dv, v ∈ A , i.e. ω is an exact form, then

dω = d2v = (dx)2 Dv′
x = (dx)2

(
q v′′

x + Q−1
2 (x)P2(x) v

′
x

)
.

If we consider the simplest case N = 2, q = −1 then

d2v = 0, P2(x) ≡ 0, (dx)2 �= 0,

and from the above formula it follows that v′′
x = 0.

Proposition 8 Let A [τ ] be a semi-commutative Galois extension of algebra A by
means of τ , which satisfies τ 2 = 1, and d be the differential of the graded differential
algebra induced by an element τ as it is shown in Proposition 2. Let x ∈ A be an
element such that Δx is invertible. Then for any element u ∈ A it holds u′′

x = 0,
where u′

x is the derivative (8) induced by d. Hence any element of an algebra A is
linear with respect to x.

The quaternions considered as the noncommutative Galois extension of complex
numbers (Sect. 3) provides a simple example for the above proposition. Indeed in
this case τ = i,A ≡ C, where the imaginary unit is identified with j, (a1 + b j)τ =
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a1 − b j. Hence we can choose x = a1 + b j iff b �= 0. Indeed in this case Δx =
x − xτ = a1 + b j − a1 + b j = 2b j, and Δx is invertible iff b �= 0. Now any z =
c1 + d j ∈ A can be uniquely written in the form z = c̃1 + d̃ x iff

∣∣∣∣
1 a
0 b

∣∣∣∣ = b �= 0.

Thus any z ∈ A is linear with respect to x.
Now we will describe the structure of module of k-forms A k[τ ]. We choose

(dx)k as the basis for the right A -module A k[τ ], then any k-form ω can be written
ω = (dx)k u, u ∈ A . We have the following relations

(dx)k = τ k Qk(x), dkx = τ k Pk(x).

In order to get a formula for the exterior differential of a k-form ω we need
the polynomials Φ1(x),Φ2(x), . . . , ΦN−1(x) which can be defined by the recurrent
relation

Φk+1(x) = AdΔx(Φk) + qk−1Φ1(x), k = 1, 2, . . . ,N − 1, (12)

where Φ1(x) = Q−1
2 (x)P2(x). These polynomials satisfy the relations d(dx)k =

(dx)k+1Φk(x) and given a k-form ω = (dx)k u, u ∈ A we find its exterior differ-
ential as

dω = (dx)k+1

(
qk u′

x + Φk(x) u

)
= (dx)k+1 D(k)u.

The linear operatorD(k) : A → A , k = 1, 2, . . . ,N − 1 introduced in the previ-
ous formula has the form

D(k)u = qk u′
x + Φk(x) u, (13)

and, as it was mentioned before, this operator resembles a covariant derivative of
classical differential geometry. It is easy to see that the operator (11) is the particular
case of (13), i.e. D(1) ≡ D.

6 Semi-commutative Galois Extension Approach
to Reduced Quantum Plane

In this section we show that a reduced quantum plane can be considered as a semi-
commutative Galois extension. We study a first order and higher order differential
calculus of a semi-commutative Galois extension in the particular case of a reduced
quantum plane.
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Let x, y be two variables which obey the commutation relation

x y = q y x, (14)

where q �= 0, 1 is a complex number. These two variables generate the algebra of
polynomials over the complex numbers. This algebra is an associative algebra of
polynomials over C and the identity element of this algebra will be denoted by 1.
In noncommutative geometry and theoretical physics a polynomial of this algebra
is interpreted as a function of a quantum plane with two noncommuting coordinate
functions x, y and the algebra of polynomials is interpreted as the algebra of (poly-
nomial) functions of a quantum plane. If we fix an integer N ≥ 2 and impose the
additional condition

xN = yN = 1, (15)

then a quantum plane is referred to as a reduced quantum plane and this polynomial
algebra will be denoted by Aq[x, y].

Let us mention that from an algebraic point of view an algebra of functions
on a reduced quantum plane may be identified with the generalized Clifford alge-
bra CN

2 with two generators x, y. Indeed a generalized Clifford algebra is an asso-
ciative unital algebra generated by variables x1, x2, . . . , xp obeying the relations
xixj = qsg(j−i)xjxi, xNi = 1, where sg is the sign function.

It is well known that the generalizedClifford algebras havematrix representations,
and, in the particular case of the algebra Aq[x, y], the generators of this algebra x, y
can be identified with the square matrices of order N

x =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0
0 q−1 0 . . . 0 0
0 0 q−2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . q−(N−2) 0
0 0 0 . . . 0 q−(N−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1
1 0 0 . . . 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where q is a primitive N th root of unity. As the matrices (16) generate the algebra
MatN (C) of square matrices of order N we can identify the algebra of functions on
a reduced quantum plane with the algebra of matrices MatN (C).

The set of monomials B = {1, y, x, x2, yx, y2, . . . , ykxl, . . . , yN−1xN−1} can be
taken as the basis for the vector space of the algebra Aq[x, y]. We can endow this
vector space with an ZN -graded structure if we assign degree zero to the identity
element 1 and variable x and we assign degree one to the variable y. As usual we
define the degree of a product of two variables x, y as the sum of degrees of factors.
Then a polynomial

w =
N−1∑

l=0

βly
kxl, βl ∈ C, (17)
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will be a homogeneous polynomialwith degree k. Let us denote the degree of a homo-
geneous polynomial w by |w| and the subspace of the homogeneous polynomials of
degree k by A k

q [x, y]. It is obvious that

Aq[x, y] = A 0
q [x, y] ⊕ A 1

q [x, y] ⊕ · · · ⊕ A N−1
q [x, y]. (18)

In particular a polynomial r of degree zero can be written as follows

r =
N−1∑

l=0

βlx
l, βl ∈ C, r ∈ A 0

q [x, y]. (19)

Obviously the subspace of elements of degree zero A 0
q [x, y] is the subalgebra of

Aq[x, y] generated by the variable x. Evidently the polynomial algebra Aq[x, y] of
polynomials of a reduced quantum plane can be considered as a semi-commutative
Galois extension of the subalgebra A 0

q [x, y] by means of the element y which sat-
isfies the relation yN = 1. The commutation relation x y = q y x gives us a semi-
commutativity of this extension.

Now we can endow the polynomial algebra Aq[x, y] with an N-differential d.
Making use of Theorem 1 we define the N-differential by the following formula

dw = [y,w]q = y w − q|w| w y, (20)

where q is a primitiveN th root of unity andw ∈ Aq[x, y]. Hence the algebraAq[x, y]
equipped with the N-differential d is a graded q-differential algebra.

In order to give a differential-geometric interpretation to the graded q-differential
algebra structure of Aq[x, y] induced by the N-differential dv we interpret the com-
mutative subalgebraA 0

q [x, y] of the x-polynomials (19) ofAq[x, y] as an algebra of
polynomial functions on a one dimensional space with coordinate x. SinceA k

q [x, y]
for k > 0 is a A 0

q [x, y]-bimodule we interpret this A 0
q [x, y]-bimodule of the ele-

ments of degree k as a bimodule of differential forms of degree k and we shall call
an element of this bimodule a differential k-form on a one dimensional space with
coordinate x. The N-differential d can be interpreted as an exterior differential.

It is easy to show that in one dimensional case we have a simple situation when
every bimodule A k

q [x, y], k > 0 of the differential k-forms is a free right module
over the commutative algebra of functionsA 0

q [x, y]. Indeed if we write a differential
k-form w as follows

w = yk
N−1∑

l=0

βlx
l = yk r, r =

N−1∑

l=0

βlx
l ∈ A 0

q [x, y], (21)

and take into account that the polynomial r = (yk)−1w = yN−kw is uniquely deter-
mined then we can conclude that A k

q [x, y] is a free right module over A 0
q [x, y]

generated by yk .
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As it was mentioned before a bimodule structure of a free right module over an
algebra B generated freely by p generators is uniquely determined by the homomor-
phism from an algebra B to the algebra of (p × p)-matrices over B. In the case of a
reduced quantum plane every right moduleA k

q [x, y] is freely generated by one gen-
erator (for instant we can take yk as a generator of this module). Thus its bimodule
structure induces an endomorphism of the algebra of functions A 0

q [x, y] and denot-
ing this endomorphism in the case of the generator yk by Ak : A 0

q [x, y] → A 0
q [x, y]

we get
r yk = yk Ak(r), (no summation over k) (22)

for any function r ∈ A 0
q [x, y]. Making use of the commutation relations of vari-

ables x, y we easily find that Ak(x) = qk x. Since the algebra of functions A 0
q [x, y]

may be viewed as a bimodule over the same algebra we can consider the func-
tions as degree zero differential forms, and the corresponding endomorphism is
the identity mapping of Aq[x, y], i.e. A0 = I , where I : A 0

q [x, y] → A 0
q [x, y] is

the identity mapping. Thus the bimodule structures of the free right modules
A 0

q [x, y],A 1
q [x, y], . . . ,A N−1

q [x, y]of differential forms induce the associated endo-
morphisms A0,A1, . . . ,AN−1 of the algebra A 0

q [x, y]. It is easy to see that for any k
it holds Ak = Ak

1.
Let us start with the first order differential calculus (A 0

q [x, y],A 1
q [x, y], d)

over the algebra of functions A 0
q [x, y] induced by the N-differential d, where

d : A 0
q [x, y] → A 1

q [x, y] and A 1
q [x, y] is the bimodule over A 0

q [x, y]. For any
w ∈ A 0

q [x, y] we have

dw = yw − wy = yw − yA1(w) = y(w − A1(w)) = yΔq(w), (23)

where Δq = I − A1 : A 0
q [x, y] → A 0

q [x, y]. It is easy to verify that for any two
functions w,w′ ∈ A 0

q [x, y] the mapping Δq has the following properties

Δq(ww
′) = Δq(w)w′ + A1(w)Δq(w

′), (24)

Δq(x
k) = (1 − q)[k]q xk . (25)

Particularly dx = yΔq(x), and this formula shows that dx can be taken as a gen-
erator for the free right module A 1

q [x, y].
Since the bimodule A 1

q [x, y] of the first order differential calculus (A 0
q [x, y],

A 1
q [x, y], d) is a free right module we have a coordinate first order differential calcu-

lus over the algebra A 0
q [x, y], and in the case of a calculus of this kind the differen-

tial induces the derivative ∂ : A 0
q [x, y] → A 0

q [x, y] which is defined by the formula
dw = dx ∂w, ∀w ∈ A 0

q [x, y]. Using this definition we find that for any function w
it holds

∂w = (1 − q)−1xN−1Δq(w). (26)
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From this formula and (24), (25) it follows that this derivative satisfies the twisted
Leibniz rule

∂(ww′) = ∂(w) · w′ + A1(w) · ∂(w′), (27)

and
∂xk = [k]q xk−1. (28)

Let us study the structure of the higher order exterior calculus on a reduced quan-
tum plane or, by other words, the structure of the bimodule A k

q [x, y] of differential
k-forms, when k > 1. In this case we have a choice for the generator of the free right
module. Indeed since the kth power of the exterior differential d is not equal to zero
when k < N , i.e. dk �= 0 for k < N , a differential k-form w may be expressed either
by means of (dx)k or by means of dkx. Straightforward calculation shows that we
have the following relation between these generators

dkx = [k]q
q

k(k−1)
2

(dx)k x1−k . (29)

We will use the generator (dx)k of the free right module A k
q [x, y] as a basis in

our calculations with differential k-forms. For any differential k-form w ∈ A k
q [x, y]

we have dw ∈ A k+1
q [x, y]. Let us express these two differential forms in terms of

the generators of the modulesA k
q [x, y] andA k+1

q [x, y]. We havew = (dx)k r, dw =
(dx)k+1 r̃, where r, r̃ ∈ A 0

q [x, y] are the functions. Making use of the definition of
the exterior differential d we calculate the relation between the functions r, r̃ which
is

r̃ = (Δqx)
−1(q−kr − qkA1(r)), (30)

where A1 is the endomorphism of the algebra of functions A 0
q [x, y]. This relation

shows that the exterior differential d considered in the case of the differential k-forms
induces themappingΔ(k)

q : A 0
q [x, y] → A 0

q [x, y]of the algebra of the functionwhich
is defined by the formula

dw = (dx)k+1Δ(k)
q (r), (31)

where
w = (dx)k r. (32)

It is obvious that

Δ(k)
q (r) = (Δqx)

−1(q−kr − qkA1(r)). (33)

It is obvious that for k = 0 themappingΔ(0)
q coincides with the derivative induced

by the differential d in the first order calculus, i.e.
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Δ(0)
q (r) = ∂r = (Δqx)

−1(r − A1(r)). (34)

The higher order mappings Δ(k)
q , which we do not have in the case of a classical

exterior calculus on a one dimensional space, have the derivation type property

Δ(k)
q (r r′) = Δ(k)

q (r) r′ + qk A1(r)Δ(0)
x (r′), (35)

where k = 0, 1, 2, . . . ,N − 1. A higher order mapping Δ(k)
q can be expressed in

terms of the derivative ∂ as a differential operator on the algebra of functions as
follows

Δ(k)
q = qk ∂ + q−k − qk

1 − q
x−1. (36)

Thus we see that exterior calculus on a one dimensional space with coordinate x
satisfying xN = 1 generated by the exterior differential d satisfying dN = 0 has the
differential forms of higher order which are not presented in the case of a classical
exterior calculus with d2 = 0. The formula for the exterior differential of differential
forms can be defined by means of contains not an a derivative which satisfies the
twisted Leibniz rule (36).
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