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Abstract In this paper we show that a semi-commutative Galois extension of asso-
ciative unital algebra by means of an element t, which satisfies ¥ = 1 (1 is the
identity element of an algebra and N > 2 is an integer) induces a structure of graded
g-differential algebra, where g is a primitive N'th root of unity. A graded g-differential
algebra with differential d, which satisfies dV =0,N > 2, can be viewed as a gen-
eralization of graded differential algebra. The subalgebra of elements of degree zero
and the subspace of elements of degree one of a graded g-differential algebra together
with a differential d can be considered as a first order noncommutative differential
calculus. In this paper we assume that we are given a semi-commutative Galois
extension of associative unital algebra, then we show how one can construct the
graded g-differential algebra and when this algebra is constructed we study its first
order noncommutative differential calculus. We also study the subspaces of graded
g-differential algebra of degree greater than one which we call the higher order non-
commutative differential calculus induced by a semi-commutative Galois extension
of associative unital algebra. We also study the subspaces of graded g-differential
algebra of degree greater than one which we call the higher order noncommutative
differential calculus induced by a semi-commutative Galois extension of associative
unital algebra. Finally we show that a reduced quantum plane can be viewed as a
semi-commutative Galois extension of a fractional one-dimensional space and we
apply the noncommutative differential calculus developed in the previous sections
to a reduced quantum plane.
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1 Introduction

Let us briqﬂy remind a definition of noncommutatiye Galois extension [12-15].
Suppose &7 is an associative unital C-algebra, .«f' C .o/ is its subalgebra, and there is
an element 7 € o/ which satisfies 7 ¢ o, ¥ =1, where N > 2 is an integer and
1 is the identity element of <7/ . A noncommutative Galois extension of .7 by means
of 7 is the smallest subalgebra <7[7] C o such that & C «/[t], and T € []. It
should be pointed out that a concept of noncommutative Galois extension can be
applied not only to associative unital algebra with a binary multiplication law but
as well as to the algebra with a ternary multiplication law, for instant to a ternary
analog of Grassmann and Clifford algebra [6, 14, 15], and this approach can be used
in particle physics to construct an elegant algebraic model for quarks.

A graded g-differential algebra can be viewed as a generalization of a notion of
graded differential algebra if we use a more general equation ¥ = 0, N > 2 than the
basic equation d> = 0 of a graded differential algebra. This idea was proposed and
developed within the framework of noncommutative geometry [10], where the author
introduced the notions of N-complex, generalized cohomologies of N-complex and
making use of an Nth primitive root of unity constructed an analog of an algebra
of differential forms in n-dimensional space with exterior differential satisfying the
relation V¥ = 0. Later this idea was developed in the paper [9], where the authors
introduced and studied a notion of graded g-differential algebra. It was shown [1, 2,
4, 5] that a notion of graded g-differential algebra can be applied in noncommutative
geometry in order to construct a noncommutative generalization of differential forms
and a concept of connection.

In this paper we will study a special case of noncommutative Galois extension
which is called a semi-commutative Galois extension. A noncommutative Galois
extension is referred to as a semi-commutative Galois extension [15] if for any
element x € o7 there exists an element x” € .o such that x T = 7 x’. In this paper we
show that a semi-commutative Galois extension can be endowed with a structure of
a graded algebra if we assign degree zero to elements of subalgebra <7 and degree
one to t. This is the first step on a way to construct the graded g-differential algebra
if we are given a semi-commutative Galois extension. The second step is the theorem
which states that if there exists an element v of graded associative unital C-algebra
which satisfies the relation vV = 1 then this algebra can be endowed with the structure
of graded g-differential algebra. We can apply this theorem to a semi-commutative
Galois extension because we have an element T with the property ¥ = 1, and this
allows us to equip a semi-commutative Galois extension with the structure of graded
g-differential algebra. Then we study the first and higher order noncommutative
differential calculus induced by the N-differential of graded g-differential algebra.
We introduce a derivative and differential with the help of first order noncommutative
differential calculus developed in the papers [3, 7]. We also study the higher order
noncommutative differential calculus and in this case we consider a differential d
as an analog of exterior differential and the elements of higher order differential
calculus as analogs of differential forms. Finally we apply our calculus to reduced
quantum plane [8].
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2 Graded g-Differential Algebra Structure
of Noncommutative Galois Extension

In this section we remind a definition of noncommutative Galois extension, semi-
commutative Galois extension, and show that given a semi-commutative Galois
extension we can construct the graded g-differential algebra.

First of all we remind a notion of a noncommutative Galois extension [12—15].

Definition 1 Let < be an associative unital C-algebra and & C o be its subalge-
bra. If there exist an element T € 2/ and an integer N > 2 such that

G) o = +1,
(i) ¥ ¢ o7 for any integer 1 <k <N — 1,

then the smallest subalgebra o/[7] of o/ which satisfies

(i) o C A[1],
(iv) Tt € 1],

is called the noncommutative Galois extension of .« by means of t.

In this paper we will study a particular case of a noncommutative Galois extension
which is called a semi-commutative Galois extension [15]. A noncommutative Galois
extension is referred to as a semi-commutative Galois extension if for any element
x € of thereexists anelementx’ € o7 suchthatx r = t x’. We will give this definition
in terms of left and right .&/-modules generated by 7. Let ;2%11 [t] and erl [z] be
respectively the left and right .«/-modules generated by 7. Obviously we have

A'lr] C Alt], &'lt] C lx].

Definition 2 A noncommutative Galois extension </[t] is said to be a right
(left) semi-commutative Galois extension if ! [t] C mfll[r] (.Q/ll[‘f] C ). If
,ﬂrl[r] = %1[1] then a noncommutative Galois extension will be referred to as a

semi-commutative Galois extension, and in this case «7![t] = szrl[t] = m/ll[r] is
the .o7-bimodule.

It is well known that a bimodule over an associative unital algebra </ freely
generated by elements of its basis induces the endomorphism from an algebra <7
to the algebra of square matrices over 7. In the case of semi-commutative Galois
extension we have only one generator t and it induces the endomorphism of an
algebra o7 Indeed let <7/[t] be a semi-commutative Galois extension and .7'[7]
be its .o/-bimodule generated by [r]. Any element of the right .«7-module <%'[7]
can be written as t x, where x € .oZ. On the other hand .&7/[t] is a semi-commutative
Galois extension which means ,;zfr‘ [tr] = ,Q%ll [7], and hence each element x T of the
left o7-module can be expressed as T ¢, (x), where ¢, (x) € <7. It is easy to verify
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that the linear mapping ¢ : x — ¢, (x) is the endomorphism of subalgebra <7, i.e.
for any elements x, y € 2 we have ¢, (xy) = ¢, (x)¢.(y). This endomorphism will
play an important role in our differential calculus, and in what follows we will also
use the notation ¢, (x) = x;. Thus

UT =T P (x), UT =T Uy.

It is clear that
Y =idy, un =u,

N

because for any u € &7 it holds ut" = vV ¢" () and taking into account that

™ =1 we get ¢ (u) = u.

Proposition 1 Let o/ [t] be a semi-commutative Galois extension of </ by means
of T, and 427/‘[1], 1] be respectively the left and right <7 -modules generated by
8 wherek =1,2,...,N — 1. Then .szflk[t] = ;zf,l‘[t] = o/*[1] is the o7 -bimodule,
and

At =@y )= re [t @ &V [1],

where o/°[t] = .

Evidently the endomorphism of . induced by the .7 -bimodule structure of A*[7]
is ¢, where ¢ : &/ — < is the endomorphism induced by the .7 -bimodule .«7'[].
We will also use the notation ¢* (x) = x.

It follows from Proposition 1 that a semi-commutative Galois extension .2/ [7] has
anatural Zy-graded structure which can be defined as follows: we assign degree zero
to each element of subalgebra o7, degree 1 to t and extend this graded structure to
a semi-commutative Galois extension .27 [7] by determining the degree of a product
of two elements as the sum of degree of its factors. The degree of a homogeneous
element of <7[7] will be denoted by | |. Hence |u| = O for any u € & and |7| = 1.

Now our aim is to show that given a noncommutative Galois extension we can
construct a graded g-differential algebra, where ¢ is a primitive Nth root of unity.
First of all we remind some basic notions, structures and theorems of theory of graded
g-differential algebras.

Let & = @pez, 7* = 7° D ' @ --- ® /N~ be a Zy-graded associative uni-
tal C-algebra with identity element denoted by 1. Obviously the subspace .<7° of
elements of degree 0 is the subalgebra of a graded algebra 7. Every subspace .7
of homogeneous elements of degree k > 0 can be viewed as the .o/ 0_bimodule. The
graded g-commutator of two homogeneous elements u, v € o7 is defined by

v,uly=vu— g"Mlyy.
A graded g-derivation of degree m of a graded algebra <7 is a linear mapping

d: o — of ofdegreem,ie.d: /' — </ which satisfies the graded ¢-Leibniz
rule
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duv) =dw) v+ ¢"ud®v), (1)

where u is a homogeneous element of degree /, i.e. u € .27'. A graded g-derivation d
of degree m is called an inner graded g-derivation of degree m induced by an element
ved"if

ml

du) =[v,uly=vu—q"uv, 2)

where u € <7,
Now let g be a primitive Nth root of unity, for instant ¢ = ¢**/N. Then

qN=1, 1+q—|—-~-+qN_l=O.

A graded g-differential algebra is a graded associative unital algebra <7 endowed
with a graded g-derivation d of degree one which satisfies " = 0. In what follows
a graded g-derivation d of a graded g-differential algebra <7 will be referred to as
a graded N-differential. Thus a graded N-differential d of a graded g-differential
algebra is a linear mapping of degree one which satisfies a graded g-Leibniz rule
and d¥ = 0. It is useful to remind that a graded differential algebra is a graded
associative unital algebra equipped with a differential d which satisfies the graded
Leibniz rule and d*> = 0. Hence it is easy to see that a graded differential algebra
is a particular case of a graded g-differential algebra when N =2, g = —1, and in
this sense we can consider a graded g-differential algebra as a generalization of a
concept of graded differential algebra. Given a graded associative algebra ./ we can
consider the vector space of inner graded g-derivations of degree one of this algebra
and put the question: under what conditions an inner graded g-derivation of degree
one is a graded N-differential? The following theorem gives answer to this question.

Theorem 1 Let o7 be a Zy-graded associative unital C-algebra and d(u) = [v, ul,
be its inner graded q-derivation induced by an element v € o/". The inner graded
g-derivation d is the N-differential, i.e. it satisfies d¥ = 0, if and only if VW = +1.

Now our goal is apply this theorem to a semi-commutative Galois extension to
construct a graded g-differential algebra with N-differential satisfying 4V = 0.

Proposition 2 Let g be a primitive Nth root of unity. A semi-commutative Galois
extension </ [t], equipped with the Zy-graded structure described above and with
the inner graded q-derivation d = [, |, induced by 7, is the graded qg-differential
algebra, and d is its N-differential. For any element § of semi-commutative Galois
extension </ [t] written as a sum of elements of right o7 -modules <7/*[t]

N—1
&= E My =Tug+tu +12ur+ ™V un_y, w € A,
k=0
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it holds

N—-1

dg = > T w — g (), 3)

k=0

where u, — (uy), is the endomorphism of </ induced by the bimodule structure of

F[7].

3 First Order Differential Calculus over Associative Unital
Algebra

In this section we describe a first order differential calculus over associative unital
algebra [7]. If an associative unital algebra is generated by a family of variables,
which obey commutation relations, then one can construct a coordinate first order
differential calculus over this algebra. A coordinate first differential calculus induces
the partial derivatives with respect to generators of algebra and these partial deriva-
tives satisfy the twisted Leibniz rule.

A first order differential calculus is a triple (<7, .# , d) where </ is an associative
unital algebra, .# is an <7 -bimodule, and d, which is called a differential of first order
differential calculus, is a linear mapping d : @/ — ./ satisfying the Leibniz rule
d(fh) = dfh + fdh, where f, h € o/. A first order differential calculus (o7, ., d)
is referred to as a coordinate first order differential calculus if an algebra o is
generated by the variables x' x%, ..., x" which satisfy the commutation relations,
and an &/-bimodule ./, considered as a right </-module, is freely generated by
dx', dx?, ..., dx". It is worth to mention that a first order differential calculus was
developed within the framework of noncommutative geometry, and an algebra <7
is usually considered as the algebra of functions of a noncommutative space, the
generators x', x?, ..., x" of this algebra are usually interpreted as coordinates of this
noncommutative space, and an .o/ -bimodule . plays the role of space of differential
forms of degree one. In this paper we will use the corresponding terminology in order
to stress a relation with noncommutative geometry.

Let us consider a structure of coordinate first order differential calculus. This
differential calculus induces the differentials dx', dx2, ..., dx" of the generators
x',x?, ..., x". Evidently dx',dx?,...,dx" € .#. .# is a bimodule, i.e. it has a
structure of left «/-module and right »7-module. Hence for any two elements
f,he o andw € .# itholds (fw)h = f(wh). According to the definition of a coor-
dinate first order differential calculus the right .o/-module .# is freely generated
by the differentials of generators dx!, dx?, ..., dx". Thus for any w € .# we have
o = dx'fi + dx*f + ...+ dxX"f, where fi,f>,....f, € &/. A coordinate first order
differential calculus (&7, .#, d) is an algebraic structure, which extends to noncom-
mutative case the classical differential structure of a manifold. From the point of view
of noncommutative geometry 2/ can be viewed as an algebra of smooth functions,
d is the exterior differential, and .# is the bimodule of differential 1-forms. In order
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to stress this analogy we will call the elements of algebra ./ “functions” and the
elements of &7-bimodule .# “1-forms”.

Because . is o7-bimodule, for any function f € . we have two products f dx’
and dx'f. Since dx', dx?, ..., dx" is the basis for the right .«7-module .#, each
element of .# can be expressed as linear combination of dxl, dx?, ..., dx" multiplied
by the functions from the right. Hence the element fdx’ € .# can be expressed in
this way, i.e.

Jax' = dx'r(f) + dry(f) + - 4 dX"r (f) = dri(f), 4)

where ri (f, ré (f)s ..., r.(f) € o are the functions. Making use of these functions
we can compose the square matrix

() rf) - )
RNH=@M=| + =+
r () rEf) - TS

It is worth to point out that an entry rj’ (f) stands on intersection of i-th column
and j-th row. This square matrix determines the mapping R : &/ — Mat, (<) where
Mat, (/) is the algebra of n order square matrices over an algebra <. It can be
proved

Proposition 3 R : &7 — Mat, (<) is the homomorphism of algebras.

Proof We need to prove that for any f, g € o7 it holds R(fg) = R(f)R(g). Now
according to the Eq. (4) we have

(fe)dx' = dx’ r; (fg).
The left hand side of the above relation can be written as
Flgdx) = f(dri(g)) = (fd)ri(g) = (dx*r(f)ri(e) = dx (. ()ri(g)).
Now we can write
dxri(fe) = dx* (rl(f)ri(9)) = ri(f3) = rl(f)ri(g).
or in matrix form R(fg) = R(f)R(g), which ends the proof. O

Let o/, . #,d be a coordinate first order differential calculus such that right
&/-module .# is a finite freely generated by the differentials of coordinates {dx;}}_,.
The mappings o : &/ — 7, where k € {1, 2, ..., n}, uniquely defined by

df =dx* o (f), fed, (5)
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are called the right partial derivatives of a coordinate first order differential calculus.
It can be proved

Proposition 4 If o/, #,d is a coordinate first order differential calculus over an
algebra of such that ./ is a finite freely generated right o7 -module with a basis
{dx;Y_, then the right partial derivatives d : &/ — ' of this differential calculus
satisfy

K (f8) = 0 (f) & + r(f); 0:i(Q). (6)

The property (6) is called the twisted (with homomorphism R) Leibniz rule for
partial derivatives.

If o is a graded g-differential algebra with differential d then evidently the sub-
space of elements of degree zero .27 is the subalgebra of .27, the subspace of elements
of degree one o7 ! is the .«7°-bimodule, a differential d : &7° — 7! satisfies the Leib-
niz rule. Consequently we have the first order differential calculus (279, 27!, d) of a
graded g-differential algebra .o7. If &7 is generated by some set of variables then we
can construct a coordinate first order differential calculus with corresponding right
partial derivatives.

4 First Order Differential Calculus of Semi-commutative
Galois Extension

Itis shownin Sect. 2 that given a semi-commutative Galois extension we can construct
a graded g-differential algebra. In the previous section we described the structure of
a coordinate first order differential calculus over an associative unital algebra, and
at the end of this section we also mentioned that the subspaces .«7°, 7! of a graded
g-differential algebra together with differential d of this algebra can be viewed as a
first order differential calculus over .7°. In this section we apply an approach of first
order differential calculus to a graded g-differential algebra of a semi-commutative
Galois extension.

Let o7/[7] be a semi-commutative Galois extension of an algebra ./ by means
of 7. Thus we have an algebra .«7 and .«7-bimodule .27'[7]. Next we have the N-
differential d : «/[t] — &/[t] induced by 7, and if we restrict this N-differential
to the subalgebra .7 of Galois extension .</[r] then d : &/ — o/'[1] satisfies the
Leibniz rule. Consequently we have the first order differential calculus which can
be written as the triple (<7, d, </ '[t]). In order to describe the structure of this first
order differential calculus we will need the vector space endomorphism A : &/ — &7
defined by

Au=u—u,, ucd.

For any elements u, v € <7 this endomorphism satisfies

A(uv) = A(w) v+ u; A(w).
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Let us assume that there exists an element x € .2/ such that the element Ax € o7
is invertible, and the inverse element will be denoted by Ax~!. The differential dx
of an element x can be written in the form dx = v Ax which clearly shows that dx
has degree one, i.e. dx € <7'[t], and hence dx can be used as generator for the right
o/-module «7'[t]. Let us denote by ¢y, : u — ¢gc (1) = ug, the endomorphism of
<7 induced by bimodule structure of .'[7] in the basis dx. Then

Ugy = Ax~! Uy Ax = Adp, u;. (7)

Definition 3 For any element u € &/ we define the right derivative % € o/ (with

respect to x) by the formula

du
du = dx —. 8
u=dx— (3

Analogously one can define the left derivative with respect to x by means of the
left o7 -module structure of .<7'[7]. Further we will only use the right derivative which
will be referred to as the derivative and often will be denoted by u. Thus we have
the linear mapping

d
E:d_)%’ Eur—)u;

Proposition 5 For any element u € o/ we have

du
— = Ax"! Au. 9)
dx
The derivative (8) satisfies the twisted Leibniz rule, i.e. for any two elements
u,v € & it holds

%(uv) = Z—z v+ ¢ar (1) % = Z—ZV—}—AdAxur %

‘We have constructed the first order differential calculus with one variable x, and it
is natural to study a transformation rule of the derivative of this calculus if we choose
another variable. From the point of view of differential geometry we will study a
change of coordinate in one dimensional space. Let y € . be an element of .« such
that Ay = y — y, is invertible.

Proposition 6 Let x, y be elements of of such that A x, Ay are invertible elements
of /. Then

d d
dy=dxy, —=y,—, de=dyx, —= ;
VEME e gy T dy rTas dy Y dx

where x, = (/)7L
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Indeed we have dy =t Ay, dx =1 Ax. Hence T = dx Ax~! and
dy =dx (Ax~'Ay) =dxy..
If u is any element of <7 the for the derivatives we have

du

du 1 —1 —1 /
=Ax Au=(Ax" Ay)(Ay A”)=yxd_'
y

=

As an example of the structure of graded g-differential algebra induced by d; on a
semi-commutative Galois extension we can consider the quaternion algebra H. The
quaternion algebra H is associative unital algebra generated over R by i, j, k which
are subjected to the relations

P==kt=-1,ij=—ji=k jk=—kj=i, ki=—ik=}j,
where 1 is the unity element of H. Given a quaternion
g=al4+aii+ayj+ask

we can write it in the form q = (ag 1 + a»j) + i (a; + aszj). Hence if we consider the
coefficients of the previous expression zo = ag 1 + a2 j, z1 = a; + azj as complex
numbers then q = zp 1 4 i z; which clearly shows that the quaternion algebra H can
be viewed as the semi-commutative Galois extension C[{]. Evidently in this case we
have N = 2, g = —1, and Z,-graded structure defined by |1| = 0, |i| = 1. Hence we
can use the terminology of superalgebras. It is easy to see that the subspace of odd
elements (degree 1) can be considered as the bimodule over the subalgebra of even
elements a 1 + bj and this bimodule induces the endomorphism ¢ : C — C, where
¢ (z) = z. Let d be the differential of degree one (odd degree operator) induced by i.
Then making use of (3) for any quaternion g we have

dq=d(zol+iz)) =—(1 +z1) L

Obviously d?q = 0.

S Higher Order Differential Calculus
of Semi-commutative Galois Extension

Our aim in this section is to develop a higher order differential calculus of a
semi-commutative Galois extension 7 [t]. This higher order differential calculus
is induced by the graded g-differential algebra structure. In Sect.?2 it is mentioned
that a graded g-differential algebra can be viewed as a generalization of a concept of
graded differential algebra if we take N = 2, ¢ = —1. It is well known that one of the
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most important realizations of graded differential algebra is the algebra of differen-
tial forms on a smooth manifold. Hence we can consider the elements of the graded
g-differential algebra constructed by means of a semi-commutative Galois extension
o/[t] and expressed in terms of differential dx as noncommutative analogs of differ-
ential forms with exterior differential d which satisfies ¥ = 0. In order to stress this
analogy we will consider an element x € .27 as analog of coordinate, the elements of
degree zero as analogs of functions, elements of degree k as analogs of k-forms, and
we will use the corresponding terminology. It should be pointed out that because of
the equation dN = 0 there are higher order differentials dx, d%x,...,d""'x in this
algebra of differential forms.

Before we describe the structure of higher order differentials forms it is useful to
introduce the polynomials Py (x), Qi (x), where k = 1,2, ..., N. Let us remind that
Ax = x — x; € o/. Applying the endomorphism T we can generate the sequence of
elements

AXy = Xp — X2, AXg2 = X2 — Xg3, oy AXgN—1 = Xon-1 — X.

Obviously each element of this sequence is invertible. Now we define the sequence
of polynomials Q; (x), Q>(x), ..., Oy (x), where

Or(x) = Axpe1 Axpr— . .. Axp Ax.
These polynomials can be defined by means of the recurrent relation
OQr1(x) = (Qr(x)) Ax.
It should be mentioned that Qy (x) is the invertible element and
Q)™= Axtax; L Ax
We define the sequence of elements Py (x), P> (x), ..., Py(x) € <7 by the recurrent
formula

Pri1(x) = Py(x) — ¢" (Pr(x))e, k=1,2,...,N—1,

and P (x) = Ax. Clearly P;(x) = Qx) and for the k = 2, 3 a straightforward calcu-
lation gives

Py(x) =x—(14+¢q) x; + gxp2,
Pi)=x—(14+qg+g)x +(@+¢ +q) x> — ¢ x5

Proposition 7 If g is a primitive Nth root of unity then there are the identities

Py_1(x) + (Py-1(0)e + -+ (Py—1(X))v1 =0, Py(x) =0.
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Now we will describe the structure of higher order differential forms. It follows
from the previous section that any 1-form w, i.e. an element of .27'[], can be written
in the form @ = dxu, where u € <7. Evidently d : &/ — </'[1], dw = dx u).. The
elements of .«72[t] will be referred to as 2-forms. In this case there are two choices
for a basis for the right .<7-module .27?[7]. We can take either 72 or (dx)? as a basis
for «7°[r]. Indeed we have

(d0)? = 7° 0 ().

It is worth mentioning that the second order differential d*x can be used as the
basis for @7?[t] only in the case when P, (x) is invertible. Indeed we have

d’x = T2 Py(x), d*x = (d)* 0y (X)Pr(x).

If we choose (dx)? as the basis for the module of 2-forms .z7[t] then any 2-form
o can be written as w = (dx)? u, where u € <7. Now the differential of any 1-form
w = dxu, where u € o7, can be expressed as follows

dw = (dx)* (qu, + Q5 (X)Pr(x) u). (10)

It should be pointed out that the second factor of the right-hand side of the above
formula resembles a covariant derivative in classical differential geometry. Hence
we can introduce the linear operator D : &/ — <7 by the formula

Du=qu,+Q,' (WPy(x)u, uec. (11)
Ifw=4dv,v e ,ie. wisan exact form, then
do = d*v = (dx)> DV, = (dx)* (qv + 05 ' (x)P2(x) V).
If we consider the simplest case N = 2, ¢ = —1 then
d*>v=0, P,(x) =0, (dx)*#0,

and from the above formula it follows that VZ =0.

Proposition 8 Let <7 [1] be a semi-commutative Galois extension of algebra <f by
means of T, which satisfies > = 1, and d be the differential of the graded differential
algebra induced by an element T as it is shown in Proposition 2. Let x € < be an
element such that Ax is invertible. Then for any element u € o/ it holds u] = 0,
where U, is the derivative (8) induced by d. Hence any element of an algebra </ is
linear with respect to x.

The quaternions considered as the noncommutative Galois extension of complex
numbers (Sect.3) provides a simple example for the above proposition. Indeed in
this case T = i, &/ = C, where the imaginary unit is identified withj, (a 1 + bj), =
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al —bj. Hence we can choose x = a 1 + bj iff b # 0. Indeed in this case Ax =
x—x;=al+bj—al+bj=2bj, and Ax is invertible iff b # 0. Now any z =
¢ 1+ dj € of can be uniquely written in the form z = ¢ 1 4 d x iff

=b#£0.

la
0b

Thus any z € &7 is linear with respect to x.

Now we will describe the structure of module of k-forms 7*[t]. We choose
(dx)* as the basis for the right «7-module &7 k[r], then any k-form w can be written
® = (dx)* u, u € o/. We have the following relations

@o* =" 0rx), d*x = F P (x).

In order to get a formula for the exterior differential of a k-form o we need
the polynomials @ (x), ®,(x), ..., Py_1(x) which can be defined by the recurrent
relation

@1 (x) = Adpc(Pp) + ¢ ' (x), k=1,2,...,N—1, (12)

where @(x) = Q5 '(x)P,(x). These polynomials satisfy the relations d(dx)* =
(dx)*'d,(x) and given a k-form w = (dx)*u, u € o/ we find its exterior differ-
ential as

dw::(dxv+1(qku;+-¢kuou):=(dxﬁ+lzﬂ“u.

The linear operator D® o —~ of k=1,2,...,N — 1 introduced in the previ-
ous formula has the form
DPu =g v 4+ &p(x)u, (13)

and, as it was mentioned before, this operator resembles a covariant derivative of
classical differential geometry. It is easy to see that the operator (11) is the particular
case of (13), i.e. DV = D.

6 Semi-commutative Galois Extension Approach
to Reduced Quantum Plane

In this section we show that a reduced quantum plane can be considered as a semi-
commutative Galois extension. We study a first order and higher order differential
calculus of a semi-commutative Galois extension in the particular case of a reduced
quantum plane.
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Let x, y be two variables which obey the commutation relation
Xy=4qYyx, (14)

where g # 0, 1 is a complex number. These two variables generate the algebra of
polynomials over the complex numbers. This algebra is an associative algebra of
polynomials over C and the identity element of this algebra will be denoted by 1.
In noncommutative geometry and theoretical physics a polynomial of this algebra
is interpreted as a function of a quantum plane with two noncommuting coordinate
functions x, y and the algebra of polynomials is interpreted as the algebra of (poly-
nomial) functions of a quantum plane. If we fix an integer N > 2 and impose the
additional condition

» =y =1, (15)

then a quantum plane is referred to as a reduced quantum plane and this polynomial
algebra will be denoted by <7 [x, y].

Let us mention that from an algebraic point of view an algebra of functions
on a reduced quantum plane may be identified with the generalized Clifford alge-
bra €)' with two generators x, y. Indeed a generalized Clifford algebra is an asso-
ciative unital algebra generated by variables xi, x2, ..., x, obeying the relations
xixj = ¢58U D x;x;, xV = 1, where sg is the sign function.

Itis well known that the generalized Clifford algebras have matrix representations,
and, in the particular case of the algebra .27 [x, y], the generators of this algebra x, y
can be identified with the square matrices of order N

10 0 ... O 0 010...00
0g' 0 ... 0 0 001...00
00g¢g2... 0 0 000...00
00 0 ...¢q7%2 0 000...01
00 O 0 g ®D 100...00

where ¢ is a primitive Nth root of unity. As the matrices (16) generate the algebra
Maty (C) of square matrices of order N we can identify the algebra of functions on
areduced quantum plane with the algebra of matrices Maty (C).

The set of monomials B = {1, v, x, x2, yx, y>, ..., ¥y, ...,y 1x¥~1} can be
taken as the basis for the vector space of the algebra .27 [x, y]. We can endow this
vector space with an Zy-graded structure if we assign degree zero to the identity
element 1 and variable x and we assign degree one to the variable y. As usual we
define the degree of a product of two variables x, y as the sum of degrees of factors.

Then a polynomial
N-1

w=> By'x, B eC, (17)

1=0
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will be a homogeneous polynomial with degree k. Let us denote the degree of a homo-
geneous polynomial w by |w| and the subspace of the homogeneous polynomials of
degree k by sziqk [x, ¥]. It is obvious that

Aylx, y] = &)1, Y1 @ 7 [x, )] @ - & ) [x, y]. (18)

In particular a polynomial r of degree zero can be written as follows
N-1
r=>Y px', B eC. redxyl (19)
1=0

Obviously the subspace of elements of degree zero %0 [x, y] is the subalgebra of
“/,[x, y] generated by the variable x. Evidently the polynomial algebra 27 [x, y] of
polynomials of a reduced quantum plane can be considered as a semi-commutative
Galois extension of the subalgebra %O[x, y] by means of the element y which sat-
isfies the relation yV = 1. The commutation relation xy = ¢ yx gives us a semi-
commutativity of this extension.

Now we can endow the polynomial algebra .27 [x, y] with an N-differential d.
Making use of Theorem 1 we define the N-differential by the following formula

dw=[y,wly =yw— g™ wy, (20)

where ¢ is a primitive Nth root of unity and w € 7, [x, y]. Hence the algebra o7 [x, y]
equipped with the N-differential d is a graded g-differential algebra.

In order to give a differential-geometric interpretation to the graded g-differential
algebra structure of <7,[x, y] induced by the N-differential d, we interpret the com-
mutative subalgebra %0 [x, y] of the x-polynomials (19) of .<7,[x, y] as an algebra of
polynomial functions on a one dimensional space with coordinate x. Since %k [x, ¥]
fork>0is a %O[x, y]-bimodule we interpret this %O[x, y]-bimodule of the ele-
ments of degree k as a bimodule of differential forms of degree k and we shall call
an element of this bimodule a differential k-form on a one dimensional space with
coordinate x. The N-differential d can be interpreted as an exterior differential.

It is easy to show that in one dimensional case we have a simple situation when
every bimodule ,;afq" [x, y], kK > O of the differential k-forms is a free right module
over the commutative algebra of functions %0 [x, y]. Indeed if we write a differential
k-form w as follows

N—1 N—1
w=y> gl =y r=> gl € @Lx v, @1)
=0

=0 =

and take into account that the polynomial r = (y*)~'w = yV%w is uniquely deter-
mined then we can conclude that 42%(," [x,y] is a free right module over %0 [x, y]

generated by y.
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As it was mentioned before a bimodule structure of a free right module over an
algebra BB generated freely by p generators is uniquely determined by the homomor-
phism from an algebra B to the algebra of (p x p)-matrices over B. In the case of a
reduced quantum plane every right module Mq" [x, ¥] is freely generated by one gen-

erator (for instant we can take y* as a generator of this module). Thus its bimodule
structure induces an endomorphism of the algebra of functions %0 [x, y] and denot-
ing this endomorphism in the case of the generator yk by Ay : dqo[x, y] — ,sz{qo [x, y]
we get

r yk = yk Ay (r), (nosummation over k) (22)

for any function r € %0 [x, y]. Making use of the commutation relations of vari-
ables x, y we easily find that Az (x) = ¢* x. Since the algebra of functions .27 [x, y]
may be viewed as a bimodule over the same algebra we can consider the func-
tions as degree zero differential forms, and the corresponding endomorphism is
the identity mapping of <[x,y], i.e. Ao =1, where [ : %O[x, y] — quo[x,y] is
the identity mapping. Thus the bimodule structures of the free right modules
%0 [x, y1, ,szfq' Xy, .. ., ,saqu ~![x, y] of differential forms induce the associated endo-
morphisms Ag, Ay, ..., Ay_; of the algebra Jz{qo[x, y]. It is easy to see that for any k
it holds A; = A%.

Let us start with the first order differential calculus (szqo[x, vl, ,Qf/;; [x,v], d)
over the algebra of functions dqo[x, y] induced by the N-differential d, where
d: %O[x, y] — ,Qiql [x,y] and ,qul [x,y] is the bimodule over %O[x, y]. For any
w e %O[x, y] we have

dw =yw —wy =yw —yAi(w) = y(w — A1 (W)) =y Ay(w), (23)

where A, =1 —A; : o)[x,y] = )[x,y]. It is easy to verify that for any two
functions w, w' € szfqo [x, y] the mapping A, has the following properties

Ayww') = A,(ww" + A (w) A, (W), (24)
AN = (1 = @)Lkl x~. (25)

Particularly dx = yA,(x), and this formula shows that dx can be taken as a gen-
erator for the free right module %1 [x, y].

Since the bimodule %1 [x, y] of the first order differential calculus (ﬁfq‘)[x, yl,
;zf/;; [x, y], d) is a free right module we have a coordinate first order differential calcu-
lus over the algebra %0 [x, y], and in the case of a calculus of this kind the differen-
tial induces the derivative 9 : %O[x, y] = ,quo [x, y] which is defined by the formula

dw =dx dw, Yw € %0 [x, y]. Using this definition we find that for any function w
it holds
dw=(1-g) "x""A,w). (26)
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From this formula and (24), (25) it follows that this derivative satisfies the twisted
Leibniz rule
aww) =a(w) -w +A;(w) - d(W), 27

and
axk = [k], X1 (28)

Let us study the structure of the higher order exterior calculus on a reduced quan-
tum plane or, by other words, the structure of the bimodule ,Q/qk [x, y] of differential
k-forms, when k > 1. In this case we have a choice for the generator of the free right
module. Indeed since the kth power of the exterior differential d is not equal to zero
when k < N, i.e. d* # 0for k < N, a differential k-form w may be expressed either
by means of (dx)* or by means of d*x. Straightforward calculation shows that we
have the following relation between these generators

[k]q
[R)

q 2

d*x = (dx)* x'F, (29)

We will use the generator (dx)* of the free right module %k [x, y] as a basis in
our calculations with differential k-forms. For any differential k-form w € ;zqu [x, y]
we have dw € %k+l [x, y]. Let us express these two differential forms in terms of
the generators of the modules @/qk [x, y] and %k+1 [x, y]. We have w = (dx)*r, dw =
(dx)*' 7, where r, 7 € %o [x, y] are the functions. Making use of the definition of
the exterior differential d we calculate the relation between the functions r, 7 which
is

F= (A0 (g7 r = 4 A (), (30)

where A is the endomorphism of the algebra of functions ,szfqo [x, y]. This relation
shows that the exterior differential d considered in the case of the differential k-forms
induces the mapping Afik) : 421{10 [x,y] — %0 [x, y] of the algebra of the function which
is defined by the formula

dw = (d0) ' AP (r), GD
where
w= (dx)k r. (32)
It is obvious that
AP (r) = (Ax) (g r — 4" A (1)), (33)

Itis obvious that for k = 0 the mapping A;O) coincides with the derivative induced
by the differential d in the first order calculus, i.e.
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AL (r) = 3r = (Ag0) ™' (r — Ay (). (34)

The higher order mappings A", which we do not have in the case of a classical
exterior calculus on a one dimensional space, have the derivation type property

AL )y = AP ) 1 + 4" A1) AV (), (35)

where k =0,1,2,..., N — 1. A higher order mapping Afi") can be expressed in
terms of the derivative 9 as a differential operator on the algebra of functions as
follows » .

-4 _,
—_—x .

AP = gt +ql—q (36)

Thus we see that exterior calculus on a one dimensional space with coordinate x
satisfying xV = 1 generated by the exterior differential d satisfying " = 0 has the
differential forms of higher order which are not presented in the case of a classical
exterior calculus with d> = 0. The formula for the exterior differential of differential
forms can be defined by means of contains not an a derivative which satisfies the
twisted Leibniz rule (36).
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