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Abstract. The guided local search method has been successfully applied to a
significant number of NP-hard optimization problems, producing results of
similar caliber, if not better, compared to those obtained from algorithms spe-
cially designed for each singular optimization problem. Ranging from the
familiar TSP and QAP to general function optimization problems, GLS sits atop
many well-known algorithms such as Genetic Algorithm (GA), Simulated
Annealing (SA) and Tabu Search (TS). With lesser parameters to adjust to, GLS
is relatively simple to implement and apply in many problems. This paper
focuses on the potential applications of GLS in ligand docking problems via
drug design. Over the years, computer aided drug design (CADD) has spear-
headed the drug design process, whereby much focus has been trained on
efficient searching in de novo drug design. Previous and ongoing approaches of
meta heuristic methods such as GA, SA & TS have proven feasible, but not
without problems. Inspired by the huge success of Guided Local Search
(GLS) in solving optimization problems, we incorporated it into the drug design
problem in protein ligand docking and have found it to be effective.

Keywords: Bioinformatics + Guided local search - Protein ligand docking -
Drug design - Meta-heuristics

1 Introduction

Drugs only bind to receptors with complementary structures. It is why ligand docking
is highly dependent on how well a ligand would effectively fit and bind to any binding
site. In computer aided drug design, ‘docking’ is referred to as the prediction of the
binding mode between ligand and a known or estimated structure of a receptor (Fig. 1).
This process is affected by many variables [1], one of which is the equilibrium state of
the ligand-receptor structure. The free energy of binding molecules must be low.
Hence, a scoring function or an objective function is required as a representation of the
binding energy as an approach to predict ligand docking. Example approaches are
Genetic Algorithm, Simulated Annealing and Tabu Search.

Ligand binding can be predicted through 3 aspects: functional site detection,
functional site similarity [2] and molecular docking [3]. For the location of binding
sites, some approaches focus on geometric matches (i.e. SURFNET; LIGSITE,
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Fig. 1. Protein ligand docking

POCKET, APROPOS, CAST, vdw-fft, Drugsite) [4]. Many are evolutionary tech-
niques [5] and are highly effective, because there is an abundance of information on
structural and sequence related data. Knowledge on evolutionary of protein and ligand
structures can be obtained from chemical databases such as the Protein Data Bank,
Cambridge Structural Database, sc-PDB and more.

Prediction is further made complicated with internal flexibility within ligands,
receptors and solvent molecules [6]. This is why large amounts of translational and
external rotational degrees of freedom are associated with these molecules, contributing
to computational complexity. Ligands are non-static in nature with frequent changes in
geometry. They may form similar 3D conformation upon binding to receptors, and
active conformation is hard to predict. Current computational processing process is not
sufficient for thorough combing of vast search spaces for optimal solutions. This issue
is becoming increasingly important due to progressive availability of protein structures
from high throughput protein purification, X-ray crystallography and Nuclear Magnetic
Resonance spectroscopy.

To create efficient docking softwares, both the scoring function and optimization
algorithms are key concerns that are crucial. In this paper, we propose a meta-heuristic
technique to simulate the molecular docking process. Looking at past successes of
meta-heuristic applications in protein ligand docking based approaches, we are positive
that GLS, a top optimization metaheuristic solution is able to provide new approaches
to the ligand docking problem. The following sections describe various related meta-
heuristics, GLS, applications of GLS and the methodology of GLS in ligand docking
followed by our conclusion.
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2 Related Work

2.1 Meta Heuristic Techniques

Metaheuristic techniques are non-exact optimization techniques that are applied to
problems classified as NP-hard or NP Complete (nondeterministic polynomial time
complete) as well as combinatorial optimisation problems. They aim to guide under-
lying heuristics in solving specific problems in terms of improved efficiency. Although
great at providing solutions on large scale instances, metaheuristics share a common
problem of being computationally expensive and often requires fine-tuning to solve a
particular problem. Sections 3 and 4 will cover the capabilities of GLS in overcoming
this computational hurdle.

2.1.1 Genetic Algorithm

A widely used heuristic that imitates Darwin’s evolution and natural selection, Genetic
Algorithms remain the most popular metaheuristic to date. GA was invented by John
Holland who works on the principle of evolution whereby human genes that have
undergone crossover and mutation subsequently produce future generations with better
traits. This technique includes operators such as crossovers to pass on preferred
qualities in an individual to offsprings. During rare circumstances, mutation is applied
to promote diversity within the new population by changing variables in the parent
solutions. After passing the evaluation process, these new individuals rejoin the pop-
ulation to collectively change the composition of the population.

Jones et al. [7] formulated GOLD dock with implementation of GA and have
achieved 71 % of a success rate in docking 100 ligands with root mean square of less
than 2 A. It has also been proven that both the traditional GA and Lamarkian GA [8]
far exceed the capabilities of the Monte Carlo SA in handling more degrees of freedom.
Additionally, it has been used in a wide variety of computational algorithms for
molecular recognition such as DIVALI and SSGA. More reviews on GA applications
in molecular docking have been compiled by Willette [9].

GA has been used alongside GLS in the hybrid metaheuristic Guided Genetic
Algorithm (GGA) [10]. When the current solution can no longer be further improved,
GLS modifies the objective function by means of penalties for GA to use in future
generations. Needless to say, these penalties greatly affect mutation and crossover
operators in GA to introduce in high numbers, specific characteristics to a population.
This allows for increased focus in its search for optimum solutions.

2.1.2 Simulated Annealing

Simulated Annealing [11] works are based on the non-linear cooling process of glass
where various stages of changes precede the formation of a crystal. It is assumed that
different rates of cooling lead to different formations of glass. The system is first
‘melted’ at a high effective temperature. Annealing is the lowering of the temperature
via slow stages to ensure the system ‘freezes’ so that there are no other changes. This
technique performs a check at every interval of cooling where if the energy is lower,
the step of cooling is accepted. However, controlled uphill steps are incorporated in the
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search for generalized iterative improvement in solutions. SA has been incorporated in
many other heuristics to optimize problems [12].

In ligand docking, this Metropolis Method (SA) is used for positional search and
refinement of the ligand-receptor binding conformation. MCDOCK [13] utilises SA to
widely sample the binding site for discovery of the local minimum, and has managed to
predict fairly accurately (rms of 0.25-1.84 A) the binding modes of ligands while
taking full flexibility into account. Glide [14] incorporates SA in the optimization of its
scoring function and has proven to be superior to Dock, GOLD and FlexX.

2.1.3 Tabu Search

Tabu Search (TS) is a heuristic which works on the principle of searching for the
optimal solution without revisiting previous search spaces by checking on neighboring
areas with its memory storage. This storage takes the form of a tabu list that contains
previously visited solutions. This technique improves on the local search (LS) method
by relaxing the few basic rules: a worsening move will only be accepted if there are no
other improving moves. In addition to that, Tabu Search encourages exploration of
otherwise difficult areas by prohibiting moves that lead to previous search areas.

Unlike other metaheuristics, TS is less common in its application in ligand docking.
Baxter et al. pioneered the usage of TS in ligand docking with PRO_LEADS [15].
Found to be on par with SA, GA and Evolutionary Programming (EP), TS was used to
sample the conformational space. Although slower in computational time, TS was
found to be superior to both FlexX and GOLD in terms of prediction rates and esti-
mation of binding affinities.

Both TS and GLS possess the same function of guiding LS out of the local optima.
The penalties in GLS are similar to the restrictions implemented in TS. Like GLS, an
initial solution is first created at random to be the current solution, and if is deemed the
best after evaluation, it will be added into the Tabu List. Eventually the list will be
updated with increasingly better solutions for more intensive search. Because too many
penalties would misguide LS, a limited number of penalties are used in later versions of
GLS. Old penalties are overwritten and replaced to help the algorithm escape from
local minima. A combined approach of TS and GLS was applied to the service network
design problem (SNDP) with commendable results [16].

2.1.4 Ant Colony System

The Ant Colony System mimics the behavior of ants in a colony when searching for the
shortest route to and back from a feeding source. Every time an ant finds a food source,
it will drop pheromones along its path to the food source and back to its nest as a guide
for fellow ants. Each ant chooses with high probability to (or not to) follow the original
pathway, thus reinforcing the pathway. Upon finding a shorter route, new pheromone
trails are laid out. Eventually, the new passageway will be the current preferred route
from increased pheromones dropping, due to relatively faster travel. It is assumed that
the constant updating of path will eventually lead to an optimal solution. This popu-
lation based approach is easily applied without major modifications to the Job-shop
scheduling problem (SP), Quadratic assignment problems (QAP) and similar versions
of the Travelling Salesman Problem (TSP). Tabu lists have also been incorporated in
ants as memory storage for improved search results [17].
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3 GLS

Many real life problems cannot be realistically solved by a complete search. Similarly,
many NP-hard problems are unlikely to be solved via constructive search due to
impossibly high computational demand. This led to the development of local search or
heuristic methods as an alternative. LS searches in the space of (mostly) randomly
generated candidate solutions, then moves on to better ‘neighbors’ until there are no
better solutions than the current option. Solutions of LS can be obtained in a relatively
short amount of time, but tend to be trapped in local optima. To continue looking for
the global minima, GLS guides LS out of the minima via the implementation of
penalties. Certain features are banned so that the algorithm focuses its search in more
promising areas. Voudouris [18] surmised the similarity of GLS to the Frequency
Based Memory approaches in Tabu Search, in which GLS additionally considers both
the structural solution and feedback from local optimization heuristic.

To apply this penalty based metaheuristic algorithm, a candidate solution is first
defined as a set of features. Each feature will be associated with a cost and penalty,
which are the terms and coefficients from the objective function. When the algorithm
settles in local optima, the cost function is augmented by accumulating penalties on
selected features. These penalty terms are dynamically manipulated throughout the
course of the search to steer the heuristic towards more viable solutions. Naturally, the
overall cost will be greatly affected by costly features. This way, GLS is able to focus
and distribute its searching efforts into more promising areas besides avoiding the
accumulation of unnecessary workforce in any one region of the search space. After
iteration of the improvement process, the improved solution is assigned as the current
best solution until stopping criterion is met.

Similar to Tabu Search, GLS utilises knowledge gained from the previous searches
to guide heuristics out of local optima. It provides more flexibility for exploitation of
features of a problem in terms of associated costs. Therefore, GLS is able to converge
to a high quality solution much more quickly than other metaheuristics such as Tabu
Search or Simulated Annealing.

As mentioned, GLS requires definition of problem features. Voudouris and Tsang
(1997) detailed the equations reiterated below. Penalties are first initialized at O to be
subsequently increased as LS reaches a local optimum. GLS defines a function % that
will replace g, the objective function which maps candidate solutions s to numerical
values. Z is the parameter to the GLS algorithm; i refers to range of features; p; is the
penalty for feature I and /; indicates the exhibition of feature i (present or absent of
exhibition):

h(s) = g(s)+ 2% Y [ps ¥ Ii(s)] (1)
Li(s) = Lif s exhibits feature i; 0 otherwise (2)

To take into account the current penalty value of features, util; (utility of penalizing
feature) is defined as follows, with ¢; the cost and P; the current penalty value of feature i.
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utili(sx) = Li(sx) X

1+ P; ®)

From the equation above, it is clear that the higher the cost (the greater the c;), the
greater the utility of penalizing it. Conversely, the higher the number of times penalized
(the greater the P;), the lower the utility of penalizing it. The idea is to consider both
cost and current penalty in the bid to focus searches in more promising search spaces
defined by lower cost features i.e. ‘good features’ (Fig. 2).

feature penalised
v

feature penalised

S

Fig. 2. Penalising features of local minimum to change cost [17]

3.1 Successful Applications of GLS

GLS has been successfully applied in a wide range of well-known NP-hard problems
with world class results. In the Radio Link Frequency Assignment Problem, the
combination of GGA and GLS hold some of the best results in the CALMA set of
benchmark problems, which is the most widely used. GLS also achieved outstanding
results in the vehicle routing problem (VRP), another NP-hard problem. In the
workforce scheduling problem (WSP), GLS and Fast local search (FLS) achieved the
best results in this benchmark problem of minimizing a function involving many
variables in the assignment of technicians to jobs [18]. GLS approach in the Optimal
Communication Spanning Tree (OCST) problem has also outperformed EA approaches
equipped with state-of-the-art search operators [19]. One other highly notable example
is the combination of GLS+FLS+20pt [20] in outperforming Lin-Kernighan algorithm
(LK), the specialized algorithm for TSP in average. This GLS combination also
achieved superior results compared to SA, TS and GA.

Other than that, general function optimisation problems too benefited from GLS
which managed to find consistent solutions in a landscape where local sub-optimals are
in abundance. The results show that GLS is capable of defining artificial features for
problems without obvious features from the objective function. The Team Orienteering
Problem (TOP) found the implementation of GLS to have improved computational
time with similar caliber results from other heuristics [21]. Furthermore, GLSSAT
(extension of GLS) managed to produce results produced by WalkSAT in the
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Max-SAT problem. Once again, a general-purpose algorithm accomplished results
comparable to that achieved by a specialized solution to a problem.

In addition to that, GGA obtained results comparable to those produced by GA but
with improved robustness in the Generalized Assignment Problem in which agents are
assigned to jobs. In 2012, Barbucha introduced agent based GLS [20], which found
satisfactory results in the VRP.

4 Motivation

GLS approaches have proven to be effective in a wide variety of optimization prob-
lems. It is within our interest to incorporate this meta-heuristic into the ligand docking
problem as we believe that it can be a leading tool in the prediction of binding modes
and affinities. We are of the opinion that GLS can bring improvements to solving the
docking problem. First, it has been proven that this method could yield better results in
Travelling Salesman Problem (TSP) than the traditional State of the Art Genetic
Algorithm method. Also, it is fast in converging to the optimal solution within a
reasonable time frame. Lastly, implementation of GLS for problem solving has proven
to be fast and effective besides having a simple and clear approach. As a meta-heuristic,
GLS has proven to have wide applications in varied problems with its ability in
creating artificial solution features without prior conclusion of present features from the
objective function.

5 Proposed Solution

To implement Guided Local Search efficiently, we implement a local search to drive
the search to a local optima (Fig. 3). We use the same scoring function to evaluate the
binding energy of docking methods. We represent the docking process by constructing
the ligand and protein structure using 3D modelling. Once the 3D modelling of the
protein and ligand structure is constructed, we then represent the various atoms and
bonds between molecule structures.

Initialize

Local Search

A 4

Penalty

Fig. 3. Flow chart of guided local search
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To test our search technique on the docking problem, we divided the docking
process into two stages, the first being the orientation of the ligand and the second
being the energy generated after binding of ligand and their respective protein structure.
Our local search technique alters the orientation of molecules based on two factors, the
rotational and degree of freedom. It uses a greedy search that attempts to bind the
ligand to the protein structure through best fit. Even the ligand conformation to the
protein matched, the respective molecules pairing may eventually lead to non-binding
scenario. For such a case, we calculate the binding energy generated after the molecules
successfully paired. Every time a ligand is bind to the protein structure, their energy is
evaluated. We use scoring function to evaluate the binding energy. Binding energy is
evaluated based on the following scoring function:

AGbind = AGvdw + A(}H-bond + A(}hydrophobic + AGrotor

Where AG,q, is the van der Waal energy, AGy.pong 1S the hydrogen bonding,
AGhygrophobic 18 the hydrophobic bonding, and AG,, is the rotatable bonds.

If the energy reduces a lot, the molecule is altered slightly on the assumption that it
has nearly reach local optima. Alteration is made on the molecule rotational degree of
freedom by twisting the orientation of some of the atoms. Otherwise, the molecule is
altered by a large portion so that the energy is reduced drastically. If the energy
increases after binding, the new ligand structure is not accepted on the assumption that
this step leads to a poorer solution. Instead, we use the same old ligand structure and
perform the same step again.

Under certain circumstances, a molecule is altered randomly even the energy
decreases. We perform this step as a penalty function, on the assumption that it could
lead the solution out of the local optima. On the other hand, if the solution converges to
local optima, we modify the scoring function by adding “extra values” to some of the
scoring functions. The penalty we imposed on the scoring function may eventually lead
to a better solution. The addition of “extra values” is made based on the following
criteria:

Van der Waals Energy

Extra values are added to all the atoms which bind between protein and ligand
Hydrogen Bonding Energy

Extra values are added to the H-H binding between protein and ligand
Rotatable Bonds

Extra values are added to the atom or molecule involved in the rotation
Hydrophobic Interaction Energy

Extra values are added to every hydrophobic interactions

The addition of “extra values” is based on the overall effect the various binding
energies generated, for example, we would anticipate that hydrophobic interactions
generates the least energy among all the binding interactions, hence a smaller penalty
values is assigned.
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6 Experimental Evaluation

We evaluate our proposed method with the state of the art system AutoDock. We are of
the opinion that AutoDock is the most suitable benchmark for our evaluation since
AutoDock uses meta-heuristic techniques as part of its operation and it is freely
available. We measure the success rate of docking by calculating the binding energy of
the protein ligand docking. We test our method with respect to that of AutoDock on
protein databank (PDB database), where we randomly choose 50 random samples
comprising simple and complex molecules. In addition to that, we measure the exe-
cution time for convergence to the optimal solution in the docking process (Fig. 4).

Convergence

35
2.5

15

|

0.5

5 20 60 300 10000

e AUtODOCK === Our method

Fig. 4. Convergence graph (Color figure online)

As shown in Table 1, our docking method is more efficient in docking the protein
molecular structure. This is due to the fact that we propose a penalty function, where
our method impose penalty to the solution randomly, on the assumption that it could
jump out from the local optima. On the other hand, we adopt a fast heuristic technique

Table 1. The average binding energy with respect to execution time

Time (s) | AutoDock | Our method

5 3.36 3.18
20 1.56 1.44
60 1.24 1.05
300 0.98 0.87

10000 |0.76 0.66
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which could converge to the suboptimal solution within reasonable time frame with
high accuracy. We believe that our novel proposed method is useful for future protein
ligand docking process.

7 Conclusions

It is clear from the results that GLS is a resourceful tool for efficient and effective ligand
docking. Similar to past success in application to combinatorial problems, GLS once
again proved that it is a potential meta-heuristic for yet another optimization problem.
Meta-heuristic techniques are proven to solve many combinatorial optimization
problems that involves computationally expensive processing power. We are of the
opinion that further refinements on GLS will enable it to stand atop other heuristics in
the field of ligand docking.
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