Chapter 19
Clifford and the Number of Holes

€699

We saw that Riemann denoted the genus by “p”, a notation which is still frequently
used today, in particular for the generalizations of this notion in higher dimensions.
On the other hand, Riemann did not give a name to this notion, and his definition
was not the one we saw in the Introduction, in terms of holes. There is a good reason
for this, namely, that the surfaces imagined by Riemann consisted of sheets which
thinly cover the plane, and therefore do not admit visible holes.

It was Clifford who, a little later, had the idea of defining the genus of a surface
by counting its holes. The reason being that he first proved that a Riemann surface
is necessarily homeomorphic to a surface admitting holes, embedded in the usual
3-dimensional space, as in the examples of the first image of the Introduction. This
is precisely stated in his paper [47] of 1877:

The object of this Note is to assist students of the theory of complex functions, by proving
the chief propositions about Riemann’s surfaces in a concise and elementary manner. [... ]

If two variables s and z are connected by an equation [polynomial of degree n in s and m
in z], each is said to be an algebraic function of the other. Regarding z as a complex quantity
x + iy, we represent its value by the point whose co-ordinates are x, y, on a certain plane.
To every point in this plane belongs one value of z, and consequently, in general, n values
of s, which are the roots of the equation [...].

‘We shall now go on to shew that this n-valued function, which we have spread out upon
a single plane, may be represented as a one-valued function on a surface consisting of n
infinite plane sheets, supposed to lie indefinitely near together, and to cross into one another
along certain lines. [...]

Let now this n-fold plane be inverted in regard to any point outside it, so that it becomes
an n-fold sphere passing through the point. [...]

We shall now prove that this n-fold spherical surface can be transformed without tearing
into the surface of a body with p holes iniit. [...]

A closed curve drawn on a surface is called a circuit. If it is possible to move a circuit
continuously on the surface until it shrinks up into a point, the circuit is called reducible;
otherwise it is irreducible. In general there is a finite number of irreducible circuits on a
closed surface which are independent, that is, no one of which can be made by continuous
motion to coincide with a path made out of the others. [...]
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[...] on the surface of a body having p holes through it, there are 2p independent
irreducible circuits; one around each hole, and one through each hole.!

Another rather intuitive manner to define the genus of a closed orientable surface
topologically is to decompose the surface as a connected sum.

In general, if S}, S, are two oriented and connected surfaces, their connected sum
S1 § S, is a new oriented surface, which is constructed by taking out a compact disk
D; from each surface S; and by identifying the two resulting boundary circles by a
diffeomorphism compatible with the orientations of the two surfaces S; \ D; and
S \ D,. This is illustrated in Fig. 19.2.

In this way, one gets a composition law on the set of diffeomorphism classes of
closed, oriented and connected surfaces. The diffeomorphism class of the spheres is
a neutral element for this law. A surface S is called prime if it is not a sphere and if it
cannot be written non-trivially as a connected sum (that is, if one writes § = S1 15>,
then necessarily one of the surfaces S; and S5 is a sphere). One shows that there is
only one prime orientable surface, the torus.

Here is the announced interpretation of the genus:

Theorem 19.1 If one decomposes an orientable closed surface of genus p as a
connected sum of prime surfaces (that is, of tori), then there are exactly p of them.

Fig. 19.1 Clifford’s circuits around and through the holes

'The curves around each hole are for instance those represented in Fig. 4 of the Introduction. In
Fig. 19.1 is also represented a curve through each hole.
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Fig. 19.2 The connected sum of two surfaces

An analogous vision was developed in the twentieth century for the oriented
3-dimensional closed manifolds. More precisely, the definition of prime 3-manifolds
mimicking that of prime surfaces, one has:

Theorem 19.2 Each closed, connected and oriented 3-dimensional manifold M
may be written as a connected sum of a finite number of prime manifolds. Moreover,
up to permutations, those are independent of the chosen decomposition.

The first statement was proved in 1929 by Kneser in [119] and the second one
in 1962 by Milnor in [132]. By analogy with Theorem 19.1, one could define the
genus of a 3-dimensional manifold as the number of prime factors which appear in
such a decomposition. But this denomination is not used.

An illustration of the explosion of the complexity of the topological structure
when one passes from surfaces to 3-dimensional manifolds is given by the fact
that there is only one prime surface (the torus), but there are infinitely many prime
3-dimensional manifolds. One still does not have a complete system of invariants to
differentiate them.
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At the end of his article [132], Milnor gave an example which shows that there
is no analog of Theorem 19.2 in dimension 4. I will explain his example, because
it uses two notions introduced in the sequel, the blow ups of points (see Chaps. 22
and 29) and the stereographical projection of a smooth quadric S of the complex
projective space onto a complex projective plane P (see Chap. 29).

This stereographical projection is birational. It may be obtained by composing
the blow up of the center of projection O € S, which produces a complex projective
surface M, and the contraction of the strict transforms E, E; on M of the two straight
lines Ly, L, of S which pass through O. These two strict transforms are disjoint, as
the blow-up of O separates L; and L,. Denote by O; and O, the points of P obtained
by contracting E; and E.

In M, one gets three smooth rational curves: E, E| and E,. Each one of the three
curves contracts to a smooth point of one of the surfaces S and P. Therefore, they
have neighborhoods bounded by 3-dimensional spheres ¥, ¥, X,: one may simply
take preimages of balls centered at the smooth points O, O; and O,. This allows
one to decompose M in different ways as a connected sum, by cutting either along
the sphere ¥ or along the sphere ¥, and then by filling the resulting boundary
components by 4-dimensional balls.

One may show that the closed 4-dimensional manifolds resulting from the
neighborhoods of the complex rational curves E and E| are orientation-preserving
diffeomorphic to the complex projective plane with the opposite orientation from
the orientation induced by its complex structure, denoted P2.

The two other closed 4-dimensional manifolds, obtained by filling with balls
the complements of the neighborhoods of E and E;, are diffeomorphic with the
complex surfaces obtained by contracting £ and E; respectively in M. That is, they
are diffeomorphic with S and with the blow-up P’ of P at O,. The two previous
contractions as well as the objects involved in the above explanation are represented
schematically in Fig. 19.3.

Therefore, the two decompositions along the spheres X and X; allow one to write
M in two different ways as a connected sum:

M=S{P>=P {P2.

The point is that the 4-dimensional manifolds S and P’ are not even homeomor-
phic, which shows that they cannot be decomposed into the same prime factors. In
fact, in the language explained in Chap. 39, their intersection forms on their second
homology groups H»(S,Z) and H,(P’,Z) are not isomorphic. The first one takes
only even values, which may be shown by using the fact that the smooth quadric S is
doubly ruled, that is, algebraically isomorphic (therefore diffeomorphic) to P! x P!,
This is not true for the second intersection form, which takes the value —1 on the
homology class of the oriented surface E, in Hy(P’, Z).
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Fig. 19.3 Two different contractions

This shows that the two previous decompositions of M as connected sums cannot
lead to decompositions into prime factors which coincide up to permutations.

Is there a notion of “ideal factors” in 4-dimensional topology, giving back the
uniqueness of the decomposition?

After this brief incursion into higher dimensions, let us come back to algebraic
curves and their associated Riemann surfaces.
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