Chapter 3
Singularities of Three-Dimensional Ricci Flows

Carlo Sinestrari

Abstract The Ricci flow is an evolution of a Riemannian metric driven by
a parabolic PDEs and was introduced by Hamilton in 1982. It has been the
fundamental tool for some important achievements in geometry in the early 2000s,
such as Perelman’s proof of the geometrization conjecture and Brendle—Schoen’s
proof of the differentiable sphere theorem. In these notes we provide an introduction
to the Ricci flow, by giving a survey of the basic results and examples. In particular,
we focus our attention on the analysis of the singularities of the flow in the three-
dimensional case which is needed in the surgery construction by Hamilton and
Perelman.

3.1 The Ricci Flow

Let .# be an n-dimensional Riemannian manifold with a metric go. The Ricci flow,
also called Hamilton—Ricci flow of (4, go) is a time-dependent family g(¢) (with
t > 0) of metrics on . satisfying g(0) = go and evolving according to the equation

0 .
Eg(t) = —ZRICg(t)

where Ricy( is the Ricci curvature tensor associated with the metric g(f). The
Ricci flow is a parabolic system of partial differential equations which has a unique
solution at least in some finite time interval ¢ € [0, T) if .# is compact.

The Ricci flow was introduced by R. Hamilton in [30]. The motivation was to
define an evolution of the metric tensor analogous to the evolution of functions
defined by the heat equation. An earlier example of the use of parabolic PDEs
in geometric problems was the paper by Eels and Sampson [27], who considered
the heat flow of a map between two Riemannian manifolds, in order to obtain a
harmonic mapping as the long time limit of the solution. Hamilton expected that
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the Ricci flow should enjoy similar properties and exhibit convergence to stationary
states in many cases. On the other hand, it was also clear that a complete analogy
with the heat equation could not be expected. In fact, in the Ricci flow the evolution
equation of the curvature contains additional reaction terms which may induce a
singular behavior in finite time.

To illustrate the powerful applications of the flow, let us start by describing the
first important result obtained by Hamilton in [30].

Theorem 3.1 Any closed three-dimensional Riemannian manifold with positive
Ricci curvature is diffeomorphic to a quotient of the sphere S* under a finite group
of isometries.

To prove this result, Hamilton considered the evolution of the metric under
the Ricci flow and showed that it converges to a metric of constant positive
sectional curvature. More precisely, there is a finite time 7 > 0 at which the flow
becomes singular and the manifold “shrinks to a point”: that is, the metric tends
to zero and the curvature becomes unbounded everywhere. However, by choosing
an appropriate rescaling factor p(7), the normalized metric p(¢)g(f) converges, as
t — T, to a metric of positive constant sectional curvature. On the other hand, it is
known that a manifold with such a metric must be S or one of its quotients.

After that seminal paper, a rich variety of studies of the Ricci flow followed
through the years to obtain several geometric applications. Other classes of Rie-
mannian manifolds were found which converge under the Ricci flow to a limit
of constant curvature after rescaling. For instance, this holds for all closed two-
dimensional manifolds, a property which provides an alternative proof of the
uniformization theorem. Moreover, manifolds with positive curvature operator also
converge to space forms under the Ricci flow. This was proved by Hamilton [31] in
dimension 4 and by Bohm and Wilking [7] in the general case. A further spectacular
result in this direction is the recent proof of the differentiable sphere theorem
by Brendle and Schoen [10], which is treated in G. Besson’s contribution in this
volume.

On the other hand, it was soon clear that in many cases the Ricci flow can develop
local singularities where no global information on the manifold is available. During
the 1990s, Hamilton proposed a strategy to study these cases, whose main goal was
the proof of the Thurston geometrization conjecture, which provides a complete
classification of the closed three-dimensional manifolds, and includes in particular
the

Poincaré Conjecture Every closed simply connected three-dimensional manifold
is homeomorphic to the sphere S3.

Hamilton’s idea to handle local singularities is to define a flow with surgeries.
The Ricci flow is stopped shortly before the singular time, the regions with large
curvature are removed by a surgery and replaced by more regular ones, and the
flow is restarted. Hamilton conjectured that, after a finite number of surgeries, each
component of the manifold converges to one of the structures described by Thurston,
with the consequence that the initial manifold admits the desired decomposition.
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Hamilton was able to perform various important steps of his program [32, 33, 35,
36] but some crucial parts remained unsolved. Then, in 2002 and 2003 G. Perelman
posted on the web three papers [49-51] which introduced several new ideas and
gave a more detailed understanding of the Ricci flow. In particular, these new results
allowed Perelman to finally prove the geometrization conjecture.

A central part in Hamilton’s and Perelman’s surgery construction is the study
of the possible singular profiles of 3-manifolds under Ricci flow. This allows a
description of the regions with large curvature enough detailed to perform a surgery
which preserves the relevant curvature estimates and changes the topology of the
manifold in a controlled way.

In these notes we will present the basic properties and techniques in the study of
the Ricci flow, and the main results about the analysis of singularities which are used
in the proof of the geometrization conjecture. In order to make the exposition easily
accessible to non experts, the presentation will be often informal and the proofs
will be omitted except in some simple and significant cases. A final bibliographical
section will give to the interested reader the references for a detailed study of these
topics.

These notes describe the content of the lectures given at a CIME Summer Course
in 2010. The author wishes to thank CIME and the organizers of the course for the
invitation and their patience while these notes were written.

3.2 Notation, Examples and Special Solutions

We consider an n-dimensional Riemannian manifold .# and denote by g = (g;)
its metric. We assume that the reader has some familiarity with the basic notions
of Riemannian geometry, and refer to the notes by G. Besson in this volume for
more details. The Riemann curvature tensor associated with the metric will be
denoted by Rm = (Rj), the Ricci curvature by Ric = (R;) and the scalar
curvature by R. Associated to the metric there is the Levi-Civita connection, which
induces a covariant differentiation V on tangent vector fields and on tensor fields
of arbitrary type. Because of its symmetries, the Riemann curvature tensor can also
be interpreted as a symmetric bilinear map on AZ(T,,//Z ), the algebra of 2-forms on
T,.# ; such a map is called the curvature operator of the Riemannian manifold.

In these notes, we are mainly interested in three-dimensional manifolds, where
the curvature quantities admit a simpler representation than in the general case.
At a given point p € A 3. let ey, ez, e3 be an orthonormal basis of T,.# which
diagonalizes Ric. Let A, i, v be the sectional curvatures at p associated with the
planes orthogonal to ey, e», e3 respectively. Then the Ricci tensor has the form

nw+v 0 0
Ric(p) = 0 A+v O
0 0 A+4+pu
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The scalar curvature is given by R(p) = 2(A + p + v). Thus, positive sectional
curvature implies positive Ricci curvature, which in turn implies positive scalar
curvature, but the reverse implications do not hold. On the other hand, it is easily
seen that A, u,v are also the eigenvalues of the curvature operator. Therefore,
positive sectional curvature is equivalent to positive curvature operator, a property
which fails in higher dimension.

As we said at the beginning, we say that a time-dependent family of metrics g(¢)
on ./ is a solution of the Ricci flow if it satisfies

0 .
Eg(t) = —2R10g(r). 3.1

Usually, an initial data g(0) = go is given and the problem is studied for # > 0. The
choice of the sign in the right-hand side is essential to ensure the parabolic character
of the equation and the well-posedness for positive times, while the factor 2 is only
a matter of convenience which simplifies some later formulas.

Before giving general results about the existence and uniqueness, it is interesting
to consider special solutions of the Ricci flow. There are very few cases where the
solutions can be described explicitly, see e.g. [33, Sect.2] or [17, Sect. 2]; here we
present some of them. Trivial examples are Ricci-flat spaces, which are constant
solutions. Other easy examples are provided by Einstein manifolds, which give rise
to homothetic solutions. In fact, if g satisfies Ricg, = cgo for some constant ¢, then
it is easy to check that the metric

8(1) = (1 —2cn)go

is a solution to the Ricci flow. Observe that the flow is defined for t € (—o0, (2¢)™")
ifc> 0andforre ((2c)~", +00) if ¢ < 0.

Thus, for instance, if (.#, go) is a Euclidean sphere of radius ry and dimension
n > 2, which corresponds to ¢ = (n — 1)ry 2, its evolution at time ¢ is a sphere of

radius
r(t) = ,/r% —2(n—1)t,

which shrinks to a point as ¢ approaches the maximal time 7 = r3/2(n — 1). As
t — T, the sectional curvature blows up like (7 — £)~!. On the other hand, the flow
starting from a manifold with constant negative curvature is defined for all positive
times and is homothetically expanding with a curvature decay of order ™.

When we have a product metric, each factor evolves independently under Ricci
flow. For example, given a cylinder of the form .# = S& x R"* where S} is a
k-dimensional sphere of radius ry, the spherical factor shrinks homothetically while
the flat factor remains unchanged. Thus, the global evolution is given by a cylinder
with shrinking radius.

At an intuitive level, it is often useful to picture the evolution of a metric under the
Ricci flow as if the manifold were immersed in an Euclidean case with a shape which
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changes in time, contracting or expanding in the regions of positive or negative
curvature respectively. This description corresponds to the exact behavior of the
flow in the case of the homothetic solutions described above, but it should only be
regarded as a heuristic tool in general.

In addition to the exact solutions described above, there are some examples
of “intuitive solutions”, described in [33, Sect.3], which are very important to
understand the possible singular behavior of the flow. Consider a dumbbell-shaped
manifold, of dimension at least three, consisting approximately of two big spheres
St joined by a thin tube (or “neck”) close to an S"~! x [a, b]. Both the spheres
and the cylinder shrink under the flow; however, if r is enough small compared to
R, we expect the cylinder to shrink faster. Therefore, the neck should pinch in its
central part before the two spheres have become singular. Such a behavior is called
neckpinch. It is natural to expect that a similar behavior should occur for much more
general shapes, whenever there is a thin cylindrical region connecting large regions
with lower curvature. A solution developing a neckpinch singularity has been later
constructed rigorously in [4, 53], see also [17, Sect. 2.5].

By considering variants of the dumbbell example above, a further interesting
possible behavior can be detected. We can observe that, if we take a dumbbell with
r only slightly smaller than R, then the manifold has positive Ricci curvature and it
will shrink with an asymptotically spherical profile as described in Theorem 3.1.
Intuitively speaking, the two spheres “catch up” with the cylinder while they
shrink, and the three parts merge in a shape which becomes more and more round.
Therefore, there must be a threshold value of 7, R where a limiting behavior occurs,
and the cylinder pinches off at the same time as the two spheres collapse. Such
a behavior, again conjectured in [33, Sect. 3], is called “degenerate neckpinch”. A
rigorous construction of solutions exhibiting these properties has been performed in
[5].

An important class of solutions to the Ricci flow is provided by the so-called
solitons. A steady Ricci soliton is a manifold .# (not necessarily closed) with a
metric g which is a constant solution of the Ricci flow up to a diffeomorphism. By
this we mean that there exists a time-dependent family of diffeomorphisms ¢; of .#
such that, if we set g(1) = ¢, (), i.e. the pull-back metric under ¢;, then g(7) solves
the Ricci flow.

More generally, a shrinking (resp. expanding) Ricci soliton is a homothetically
shrinking (resp. expanding) solution of the flow up to a diffeomorphism. That is,
the evolving metric g(7) has the form g(r) = o ()¢ (g), where g is a fixed metric,
o (1) is a scalar function and ¢, a family of diffeomorphisms. It can be proved [17,
Lemma 2.4] that the scaling factor is necessarily of the form o(f) = 1 + 2pt for
some p € R. The case p = 0 corresponds to the steady solitons, while p < 0
and p > 0 yield a shrinking or expanding metric respectively. As in the case of
Einstein metrics, such solutions are defined in an unbounded time interval of the
form (—oo, —(2p) ") or (—(2p)~!, +00), depending on the sign of p. If the family
of diffeomorphisms is generated by the gradient of a function f, these solutions are
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called gradient solitons, and f is characterized by the equation
Ric; + V*f = pg. (3.2)

An explicit example of steady gradient soliton in dimension 2 is the so-called
cigar, which is R? endowed with the metric

__ 8
8ij = T+2+2 )
see e.g. [17, Sect. 2.2] or [8, Sect. 2.1] for the details. To understand how the metric
looks like, we can take a generic circle centered at the origin y,(f) = (rcost, rsinf);
its length in the above metric is 277(1 4 r*)~!/2, and thus it tends to 27 as r — oo.
Intuitively speaking, the manifold looks like a one-ended infinite cylinder for r large,
and it closes with a round cap for r close to zero. It is also easy to see that the
curvature decays very rapidly away from the origin, while the injectivity radius is
close to the value 7 of a cylinder. It follows in particular

inf inj(P)R(P) = 0. (3.3)
PeR?

These properties are important in connection to the non-collapsing property which
will be introduced later in these notes.

It can be proved that the cigar is the unique rotationally symmetric nonflat steady
gradient soliton on R?. Similarly, on any R" with n > 3 there exists a unique
rotationally symmetric steady gradient soliton with positive sectional curvature, as
shown by Bryant [11], see also [19, Sect. 1.4]. In contrast to the cigar soliton, these
higher dimensional solutions look like a paraboloid in R”*! rather than a cylinder.
In addition, they satisfy

inf inj(P)|Rm|(P) > 0. (3.4)
PeR2

In general, a solution which is defined on a time interval of the form ¢ € (—oo, T)
for some finite 7 > 0 is called an ancient solution; if it is defined for ¢t € (—o0, 00),
it is called an eternal solution. Examples are given by the shrinking and steady
Ricci solitons respectively, and other such solutions exist which are not solitons.
Solutions defined for all negative times are very special, since the Ricci flow in
general ill-posed backward in time. However, they are of great importance since
they describe the possible profile of general solutions near a singularity, as we will
see in the following.

To conclude this section, it is interesting to mention another geometric flow
which has many similarities with the Ricci flow. A hypersurface in Euclidean space,
or in a general Riemannian manifold, is said to evolve by the mean curvature flow it
every point moves with normal speed given by the opposite of the mean curvature.
The signs are chosen in such a way that a closed hypersurface with positive mean
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curvature is contracting under the flow. While the Ricci flow applies to abstract
Riemannian manifolds, this evolution deals with immersed ones. In many cases,
however, the two flows exhibit striking analogies: for instance, the examples of
the sphere, of the cylinder, of the standard and degenerate neckpinch occur in the
mean curvature flow with almost identical properties. The analogy between the two
flows can be useful at a heuristic level, because results and techniques can often
be exported from one problem to the other. In addition, since immersed manifolds
are sometimes easier to visualize, some examples in the Ricci flow can be better
understood in connection with their mean curvature flow analogue.

It should be pointed out that the two evolutions are not equivalent, and that
there are some different properties as well. For example, in the mean curvature
flow any closed hypersurface of the Euclidean space develops singularity in finite
time. However, most of the relevant results on the Ricci flow treated on these notes
have some analogues for the mean curvature flow, although possibly with some
substantial difference in the hypotheses or in the method of proof. For example,
a counterpart of Theorem 3.1 was obtained by G. Huisken [39], who proved that
every closed convex hypersurface evolving by mean curvature flow in Euclidean
space converges to a sphere after rescaling. We will mention in the following the
other main correspondences and differences between the two flows.

3.3 Short Time Existence and Singularity Formation

When written in coordinates, the Ricci flow is a parabolic system of partial
differential equations for the components of the metric. There exists a standard
theory giving short time existence of solutions for systems which are strictly
parabolic; however, the Ricci flow does not completely fit into this framework since
for this system the parabolicity is not strict. Nevertheless, using the special structure
of the equations, Hamilton was able to prove short time existence for the Ricci flow,
as stated in the next result [30].

Theorem 3.2 Given a closed manifold and a smooth initial metric, the Ricci flow
has a unique smooth solution in a time interval [0, ty) for some ty > 0.

The original proof by Hamilton [30] was rather difficult and used a sophisticated
version of the implicit function theorem due to Nash and Moser. Shortly afterwards,
De Turck [24] gave a simpler proof, which exploited an equivalent formulation of
the flow where the parabolicity becomes strict. For more details about these matters,
one can consult [30, Sects. 4-6], [33, Sect. 6], [17, Sects. 3.1-3.4].

A typical feature of parabolic problems is that boundedness of the solution
implies boundedness of its derivatives of any order. A property of this kind holds
also for the Ricci flow and was first proved by W.X. Shi [52].

Theorem 3.3 Ler g(t) be a solution of the Ricci flow on a compact manifold #,
defined for t € [0, ty]. Suppose that the associated Riemann tensor Rm is bounded
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on M, uniformly for t € [0,1)] . Then any derivative V¥Rm, with k > 1, is also
bounded on .4 uniformly fort € [0, t].

Using the above estimates, a standard continuation argument allows to prove that,
whenever the maximal time of a solution is finite, the curvature necessarily becomes
unbounded, as shown by the next theorem [33, Sect. 8].

Theorem 3.4 Each solution of the Ricci flow on a compact manifold can be
extended to a maximal time interval [0,T), with T < +oo. If T is finite, then
necessarily

lim sup M(f) = o0,

t—T

where M(t) is the maximum of the norm of the Riemann curvature tensor at time t.

We describe the above behavior by saying that the flow becomes singular at time T.
Such a behavior is very frequent on compact manifolds, as it can be seen for
instance from Hamilton’s Theorem 3.1 in the positive Ricci case. However, there are
also examples where the Ricci flow is defined for all positive times, like compact
quotients of the hyperbolic space which give rise to homothetically expanding
solutions.

The examples of the previous sections show that the behavior of the flow as a
singularity is approached can be very different depending on the cases considered. In
a shrinking soliton, and in a general compact solution with positive Ricci curvature,
see Theorem 3.1, the metric tends to zero and the curvature becomes unbounded
everywhere, so that we can say that the whole manifold becomes singular and
collapses to a point. In the case of a neckpinch singularity, instead, the curvature
becomes unbounded only in a part of the manifold, while on the rest remains regular
even at the singular time.

3.4 Evolution of Curvature, Preservation of Positivity

As the metric on a manifold evolves by Ricci flow, the Riemann curvature tensor
also evolves and satisfies an equation which can be computed explicitly and has the
form

ad
ERm = ARm + Q(Rm). (3.5)
Here A = Ay is the Laplace operator associated to the evolving metric g(%),

while Q(Rm) is a tensor which is a quadratic function of Rm. Its explicit expression
can be found for instance in [30] or in the notes of G. Besson in this volume.
From the evolution equation for the Riemann tensor one can easily derive equations
satisfied by the Ricci tensor and other quantities. The equation satisfied by the scalar
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curvature has the following particularly simple expression

oR 5
— = AR + 2|Ric|". (3.6)
ot

Using the parabolic maximum principle one can obtain several invariance results
for the positivity of curvature under Ricci flow, see [17, Sect. 6], [33, Sect. 5]. For
example, Eq.(3.6) immediately implies that the minimum of the scalar curvature
on a compact manifold evolving by Ricci flow is nondecreasing in time. As a
consequence, if the initial metric has positive scalar curvature, then the same holds
at all positive times. More precisely, the strong maximum principle says that, if the
initial metric has nonnegative scalar curvature and is not Ricci flat, then the solution
has strictly positive scalar curvature everywhere for all positive times.

In addition to the usual maximum principle for scalar functions evolving
by parabolic equations, see e.g. [28, Sect.7.1.4], there are maximum principles
for systems of reaction-diffusion equations which ensure the invariance of sets
satisfying suitable conditions. Some of these statements, which are due to Hamilton,
are particularly useful for the study of geometric flows. A first version, see [30,
Theorem 9.1], gave a criterion for the preservation of the positivity of a 2-tensor.
We state here a more general formulation which was proved in [31], see also [20,
Chap. 10].

Theorem 3.5 Let (#, g(t)) be a Riemannian manifold evolving by Ricci flow and
let F be a time dependent section of a tensor bundle & on . Suppose that F
satisfies the system

aai: = AF + ®(F) (3.7)

for some function @ mapping each fiber of & into itself. Let Z be a closed subset of
& which is invariant under parallel translation and such that its intersection with
each fiber is convex. If Z is invariant in each fiber under the ordinary differential
system dZ/dt = ®(Z), then Z is also invariant for system (3.7). That is, if F belongs
to Z at a given time, it also belongs to Z for all later times.

The above maximum principle for tensors is a fundamental tool for the analysis
of the Ricci flow, and its application relies on the study of the ordinary differential
equation %Rm = Q(Rm) associated to (3.5). In the three dimensional case, it is
enough to study the corresponding equation for the Ricci tensor, which can be
obtained by taking the trace of (3.5). It can be proved, see [30] or [8, Chap. 6],
that if the Ricci tensor is diagonal at the initial time with respect to a given basis,
it remains so along the evolution by the ODE. In addition, the sectional curvatures
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A, i, v in the principal directions evolve according to the system

di

== )2

jt + v

H 2

i A 3.8
éh uo =+ Av (3.8)
v 2

— = AL,

7 v+ Au

The following result then follows as an easy application of Theorem 3.5.

Theorem 3.6 Let g(¢) be a solution to the Ricci flow on a closed three-dimensional
manifold A .

(i) If the initial metric has positive sectional curvature, then the same holds at any
positive time.

(ii) If the initial metric has positive Ricci curvature, then the same holds at any
positive time.

Proof Both properties describe a convex cone in the space of 2-tensors which is
invariant under parallel translations. Positive sectional curvature corresponds to
A > 0,u > 0,v > 0, a property which is preserved by the ODE (3.8) since
the expressions in the right hand side are positive. Positive Ricci means instead
A+u>0,A+v>0,u+v>0.From (3.8) we deduce

d
E(A—i—u)zkz—i—uz—k(k—ku)vz(/\—i—u)v.

Thus, if A 4 w is positive, it remains so for all later times. The other two expressions
are treated similarly. Thus the maximum principle for tensors can be applied to
deduce the desired properties.

It should be pointed out that the above invariance properties are peculiar
of the three-dimensional case. In higher dimensions, neither positive Ricci nor
positive sectional curvature is preserved. Properties valid in any dimension are the
preservation of the positivity for the scalar curvature and for the curvature operator.

It is important to study the limiting cases of Theorem 3.6. Using a strong
version of the maximum principle for tensors [31, Sects. 8-9], Hamilton proves the
following statement:

Theorem 3.7 Let g(¢), witht € [0, T), be a solution to the Ricci flow on a complete,
connected, not necessarily compact, three-dimensional manifold 4. If (A, g(t))
has nonnegative sectional curvature, and there is at least a point P € ./ where one
sectional curvature vanishes at a positive time t, then . splits as a product with a
flat factor, that is (A, g(1)) = (Mox (M , (1)), where My is a flat one-dimensional
factor and (A, g(1)) is a two-dimensional solution to the Ricci flow with strictly
positive sectional curvature for all t > 0. The same result holds if (A ,g(t)) has
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nonnegative Ricci curvature, and the Ricci curvature vanishes at some point and
positive time.

3.5 Curvature Properties Which Improve

In addition to the invariance properties described in the previous section, there
are some remarkable results showing that when the flow becomes singular some
curvature properties improve. A property of this kind is the crucial step in the proof
of Hamilton’s first result [30] on manifolds with positive Ricci curvature. To show
this, we follow the simpler approach of the paper [31, Sect. 5], see also [8, Chap. 6].

Theorem 3.8 Let g(¢) be a solution to the Ricci flow on a closed three-dimensional
manifold .# with positive Ricci curvature. Denote by A < @ < v the sectional
curvatures in an orthonormal frame which diagonalizes Ricci, and let §,C be
positive constants such that the initial metric satisfies at every point

A+p=280, (=" <=CcA+p. 3.9)

Then the same inequalities hold on (A, g(¢)) for all t > 0 such that the flow exists.

Proof Let us check that the two inequalities in (3.9) define a set which satisfies
the hypotheses of the maximum principle for tensors. In general, any set defined by
inequalities on the sectional curvatures A, u, v is invariant under parallel translation.
We therefore only need to check the convexity and the invariance with respect to the
ODE (3.8).

Recall that, if A is a symmetric matrix, then its smallest and largest eigenvalues
A, v are given by

A = min (Av,v), v = max (Av, v).
llvll=1 llvll=1

It follows that A is a concave function of A, being the infimum of linear functions.
Similarly, v is a convex function of A. In addition, the trace A + @ + v is a linear
function of A since it coincides with the sum of the elements on the diagonal. Thus,
we also obtain that A + u = (A + u 4+ v) — v is a concave function of A. These
properties show that each of the two inequalities in (3.9) defines a convex set, and
so do the two together.

Let us now show that the first inequality A + p > 26v, with § > 0, defines an
invariant set under the ODE. This is equivalent to the property

d d
A =26 —(A > —20v.
tu=2v = GGt =520



82 C. Sinestrari

We therefore suppose that A + @ = 28v. Observe that this is only possible if § < 1.
We compute from (3.8)

d
E(k+u—25v)=AZ+/L2—25/\;L+(X+,1L—25U)U
=2+ p? =282 = (1= 8)(A* + p?) + 8(u — 1)* = 0.

Thus, the set defined by the first inequality in (3.9) is invariant. Again from (3.8),
we find

A%+ p?
A+pu

d 1
S0+ ) = A CE DR SN (R

In addition,

V2 4+ A — A2 —
v—2~

d
d—fln(v—k): =v+A—pu=<v

From this we deduce
d
S [+ —2) —In( + p)] <0.

This shows that the ratio (v — 1)!7¥ /(A + w) is decreasing in time, and that the set
defined by (3.9) is invariant under (3.8). The assertion follows.

Observe that condition (3.9) is always satisfied on the initial metric for suitable
constants §, C, by the positivity of the Ricci tensor and by compactness. However,
when the singular time is approached and the curvature becomes unbounded, the
second inequality in (3.9) has important consequences. We see that the difference
v—A is only allowed to grow at a lower rate than the sum A + w. This implies that, if
the three curvatures become unbounded, their ratio must tend to one. After justifying
that the curvatures blow up everywhere on .# as the singular time is approached,
and that a smooth limit of the rescaled flow exists, Hamilton obtained in this way
that the limit has A = p = v at each point, a property which implies constant
curvature on .. This gives an outline of the strategy of the proof of Theorem 3.1.

Using the maximum principle one can prove further estimates which yield the
improvement of some curvature properties near the singular time. An important
example is given by the next result, usually called Hamilton-Ivey pinching estimate
and which was proved in [33, Theorem 24.4] and [43]. We follow here the
presentation of [8, Sect. 6.2].

Theorem 3.9 Let g(f) be a solution of the Ricci flow on a closed three-manifold
M and let Ry be the minimum of the scalar curvature at time 0. Then there exists a
Sfunction ¢ : [Ry, +00) — (0, 00) such that ¢(r)/r — 0 as r — +o00 and such that



3 Singularities of Three-Dimensional Ricci Flows 83

the smallest sectional curvature A at any point and time satisfies
A= —¢(R). (3.10)

Proof Up to a homothety in our solution, we can assume that the initial metric
satisfies R = 2(A + u + v) > —1. Then this inequality also holds for positive
times, as it follows from (3.6) and the maximum principle. Let us now consider the
function f(x) = xInx —x, whose derivative is f’(x) = Inx. We have that f is convex
and strictly increasing for x € (1, 4+00), and therefore one-to-one from (1, +o00)
to (—1, +00). Let us denote by ¢ : (—1,+00) — (1, +00) its inverse. Then ¢ is
increasing, concave and satisfies

1

") = ————. 3.11
¢ n@0) (3.11)
In addition,
fim 29— jim S o,
y=>oo y x—00 f(x)

Let us consider the set of 3 x 3 symmetric matrices defined by the inequalities
1
A+M+uz—§,/\z—¢>(k+u+u) (3.12)

on their eigenvalues A < p < v. As observed in the proof of the previous theorem,
A is a concave function while A + @ + v is linear. From the concavity of ¢ we
deduce that the set defined above is convex. We claim that it is also invariant under
the ODE (3.8). The first condition corresponds to R > —1, which we already know
to hold. To check the invariance of the second inequality, assume that

1
Atptvz—c,  A=-¢G+pt+v)
Then A < —1 and

We also have

w+v

@R+ p+v)) =In(-4) = ——
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It follows, using (3.8), (3.11)

d d A d
“ o =—A-——"(
R O TR el U b A G )

AR P VP 4 A+ v 4 Av)
n+v

=A%+ v

/\2 2
= (=M — A
n+v

We recall that A < —1 and u + v > 0, which also implies v > %(,u 4+ v) > 0. Thus
the above expression is positive, showing the invariance of the set defined by (3.12).

Intuitively speaking, the previous theorem says that when the scalar curvature
becomes large (that is, when the singular time is approached) the negative sectional
curvatures, if there are any, become negligible compared to the other ones. In fact,
if we consider a sequence of points approaching the singular time such that A < 0
and R = 2(A + p + v) — 400, we have

m: 2/\< 21 <4¢>(R)_>

—— <- < 0.
v 2v A+u+v R

Thus, even if the sign of the curvature at the initial time is completely arbitrary, the
asymptotic profile near the singularity necessarily has nonnegative curvature. This
property will be stated in a more precise way later in these notes, when we introduce
the rescaling of a solution near a singularity.

Invariance properties for positive curvature as the ones of the previous section
also hold for the mean curvature flow described in Sect. 3.2. For instance, convexity
or positive mean curvature are invariant properties in all dimensions. There is also
an analogue of the Hamilton-Ivey estimate for the mean curvature flow, which
was proved in [41] and [56]. Unlike the Ricci flow case, the result for the mean
curvature flow holds for general dimension, but requires the positivity of the mean
curvature. Under this hypothesis, the smallest principal curvature satisfies a lower
bound similar to (3.10), which implies that its negative part becomes negligible near
a singularity.

3.6 Differential Harnack Inequality

The classical Harnack inequality for elliptic equations is an estimate controlling the
oscillation of positive solutions. We recall the statement in the case of the Laplace
equation, see e.g. [29, Theorem 2.5].
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Theorem 3.10 Let A C R” be open and let 2 be any bounded set such that 2 C A.
Then there exists a constant C > 0, depending only of §2 and A, with the following
property: given any nonnegative function u € C>(A) such that Au = 0 in A, we
have

< Cinfu.
sgp_Clgu

Similar estimates hold for parabolic equations; in this case, however, the
supremum of the solution in a spatial domain at a given time is estimated above
by a multiple of the infimum in the same domain at a later time, (see e.g. [28,
Sect.7.1.4b]). In [45] P. Li and S.-T. Yau introduced an alternative approach to
Harnack inequalities in the parabolic case, showing that in certain cases they can be
obtained from suitable estimates involving derivatives. Since this approach has been
of fundamental importance in the study of the Ricci flow afterwards, we illustrate
the main ideas in the “toy model” provided by the heat equation in R"; to avoid
technicalities, we assume some a priori bound on the derivatives of the solutions
which are stronger than needed for the validity of the result. Our exposition follows
[13, Chap.2].

Proposition 3.11 Let w € C*(R" x [0, T]) satisfy

ow
— = Aw.
ot
Suppose in addition that w > 0 and that its first and second derivatives are bounded.
Then w satisfies

Dw® D
Dt Wy D, (3.13)
2t w

ow nw  |Dw)?

— > 0. 3.14
ot 2t wo ( )

Here D*w denotes the Hessian matrix of w with respect to the space variables and
[ the identity matrix, inequality (3.13) means that the matrix at the left-hand side is
positive semi-definite.

Proof 1t is not restrictive to assume that w is greater than some positive constant;
if this is not the case, we can replace w by w + & and then let ¢ — 0. Let us set
u(x,r) = —In(w(x, r)). Then it is easily checked that u is a solution of equation

d
e + |Dul* = Au.
ot
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In addition, u is bounded together with its first and second derivatives. Given any
. 2
unit vector v € R”, let us then set i(x, 1) = t% (x, ). We have

2

oh h 5 ou
5 =7 T Ah=2D(Dul®). Dh) =2t |D (5)
< ?(1 —2h) + Ah —2(D(|Du|?), Dh).

Since h(:,t) — 0 uniformly as t — 0, the maximum principle implies that 2a(x, ) <
1 for all (x,7) € R" x [0, T]. By the definition of 4 and the arbitrariness of v, this
means

) 1
Du < —I.
2t

On the other hand, an easy computation shows that

D*w  Dw® Dw
+

2 —
D u = 5

w w

and this proves (3.13). Taking the trace of the left-hand side of (3.13), we obtain

D 2
Aw g IDWE

0,
2t \

which implies (3.14), since w solves the heat equation.

Inequalities of the form (3.13)—(3.14) are often called differential Harnack
inequalities. The connection with the classical Harnack inequality is explained by
the following result.

Corollary 3.12 Let w be as in the previous proposition. Then w satisfies

n/2 —y|2
w(y. ) = wix, 1) (%) P (_%)

for all x,y € R", t, > t; > 0. Therefore, given any bounded set 2 C R" and
t, > t; > 0, we have

rnélxw(-,tl) < Cngnw(tz,-) (3.15)

for some constant C > 0 depending on t,, t, and the diameter of §2 but not on w.
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Proof Letus set

s—1

y(s) = x + tll(y—x), s € [t o).

1)

Then we have, using (3.14),

d
—w(y(s),s) = dw+Dw-y
ds

CIpwlE Wil

> 0w
w 4
nw  wlyl?
-2t 4

It follows that

In (w(y, IZ)) = /tz %ln w(s, y(s)) ds

w(x, ll) f

(- w—nZ)
= ) ds
o 2 A=y

n ) ly — x|?
= ()X
2\ 4(rr—1)

After the work [45] by Li and Yau, Hamilton developed extensively this approach
for various geometric evolution equations. In particular, for the Ricci flow he
obtained the following result [32].

Theorem 3.13 Let (4, g(t)) be a solution to the Ricci flow, defined fort € [0, T),
which is either closed or complete with bounded curvature, and has nonnegative
curvature operator. Then, for any vector field V and any time t € [0, T) we have

%

which proves our statement.

R 1
= T R+2(VR,V) + 2Rie(V, V) > 0. (3.16)

The above result is sometimes called “trace differential Harnack inequality” for
the Ricci flow, because it is obtained taking the trace of a more general tensor
inequality, similarly to what we have described above for the heat equation in R”.
Integrating along a suitable path in space time as in Corollary 3.12, one obtains the
following result.
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Corollary 3.14 Under the same hypotheses as in the previous theorem, given any
P,Py € # and 0 < t] < 1, we have

n >
R(P3, 1) > t—R(Pl,tl)e W=
2

where d is the distance between P\ and P, at time t,.

Differential Harnack estimates for geometric flows are elegant and mysterious
at the same time. They are strictly related to special solutions of the flow, where
they hold identically as equalities, similarly to the case of the heat equation in R”,
where they hold as equalities on the heat kernel. Some geometric interpretations
that give a deeper insight in these inequalities can be found in [14]. A detailed
general exposition can be found in [48]. Harnack estimates have also been obtained
for the mean curvature flow [34] and for more general curvature flows of immersed
manifolds [1].

3.7 The Intuitive Picture of the Flow with Surgeries

To motivate the analysis of the following sections, we give here an intuitive
description of the strategy of proof of the Poincaré and Thurston conjecture using
the Ricci flow with surgeries. We follow Hamilton’s original approach [31], where
surgeries are performed shortly before the singular time, which in our opinion is
slightly easier to picture than Perelman’s one [50], where surgeries are performed
exactly at the singular time.

Let us consider an arbitrary closed three-dimensional manifold .#, and suppose
that we want to study its possible topology. It is not restrictive to assume that .# has
a differentiable structure, and some smooth Riemannian metric go chosen arbitrarily.
Then, we let the metric go evolve by the Ricci flow and study the behavior of
the solution. The aim is to show that the metric g(¢) eventually converges, up to
rescaling, to some limit that can be explicitly described. We then obtain that the
initial manifold . has to be diffeomorphic to one of the possible limits of the flow.

This strategy works very well in the case of Hamilton’s first result [30]. Here we
have the additional assumption that the initial metric has positive Ricci curvature,
and the only possible limits are the sphere and its quotients. However, for more
general initial metrics, neckpinch singularities can occur and the smooth Ricci
flow does no longer give a global information on the manifold. In a neckpinch
singularity, in fact, we can hope to describe the structure of the region were the
curvature becomes unbounded, but we have no knowledge of the remaining part of
the manifold, which can have arbitrary topology.

To overcome the difficulty, Hamilton proposed a way to continue the flow after
singularities using a surgery procedure. Consider a three-manifold which develops
a neckpinch singularity, where the region with the largest curvature looks like a
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portion of a cylinder with radius shrinking to zero as the singular time approaches.
Such a cylindrical region is usually called a neck. The strategy is to stop the
flow shortly before the singular time, remove the neck and fill smoothly the two
remaining holes with two 3-balls. Such a modification is called a surgery, and in
general it can change the topological type of the manifold. However, the surgery
defined in this way is the reverse of a standard operation in algebraic topology called
connected sum. In particular, the possible topological changes of our manifold under
surgery can be precisely described.

After the surgery, the flow can be restarted until the next singularity occurs, and
then other surgeries are performed. At each surgery time, we are allowed to discard
connected components of the manifold of known topology. Now suppose that we
can show that, after a finite number of surgeries, all the remaining components
of the manifold are diffeomorphic to one of the eight model manifolds allowed
by Thurston conjecture. This implies that the initial manifold can be obtained
performing a finite number of connected sums on these model geometries, and
proves the validity of the conjecture. In particular the Poincaré conjecture is
obtained, since the only simply connected manifold allowed by Thurston conjecture
is the sphere.

In order to implement this program, one needs to prove that the singular behavior
of the Ricci flow in three dimension must be, roughly speaking, of one of two kinds
described above, namely:

(i) Either the curvature becomes large on the whole manifold, and the manifold
converges to a sphere up to rescaling, or

(ii) the curvature becomes unbounded only in a part of the manifold, which
becomes asymptotically close to a portion of a shrinking cylinder.

In case (i) the flow is stopped, while the other connected components of the
manifold, if any, continue their evolution. In case (ii) the flow is stopped shortly
before the singular time, the neck is removed by a surgery, and the flow is restarted.

Therefore, a crucial part of the implementation of the program is the analysis of
the possible asymptotic profile of the singularities. This will be the object of the
remainder of these notes. The other part of the program, consisting of showing that
after finitely many surgeries we are left with components which satisfy Thurston
conjecture, is outlined in M. Boileau’s notes in this volume. Before passing to
more precise statements in the next sections, let us add two important details to
the intuitive picture given above.

A first observation is that, in order to really increase the lifespan of the solution,
we must perform the surgery in such a way that the maximum of the curvature on
the manifold is substantially decreased after removing the necks. However, if our
necks are close to a portion of a cylinder, as in the crude description above, the
curvature on the boundary of the neck is comparable to the one in the interior, and
we cannot claim that the surgery decreases the curvature. Instead, our necks should
be only diffeomorphic to a cylinder, but the curvature on the boundary should be
much smaller than the one in the middle part. Intuitively speaking, we should think
of them as long tubes, with a very small radius in the middle region which becomes
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slowly larger as we move towards the ends. To obtain such a picture, one needs to
prove that the points where the curvature is large enough, but not necessarily close
to the maximum value, possess a neighborhood almost isometric to a portion o f
a cylinder. By gluing together all these neighborhoods, we obtain a neck with the
desired properties which covers a whole region with large curvature but has much
smaller curvature on its boundary.

The other caveat is that there is a third possible singular behavior in addition to (i)
and (ii) described above. In fact, in the case of the degenerate neckpinch described
in Sect. 3.2, the region with the largest curvature is not cylindrical, but it is instead
diffeomorphic to a ball. However, the surgery procedure can be adapted to this case
too. In fact, it is possible to show that the spherical region with the largest curvature
is surrounded by a neck along which the curvature gradually decays. Then we can
remove these two regions, which together are diffeomorphic to a ball, and fill the
remaining hole with another ball with smaller curvature. In this case the surgery is
topologically trivial, but it again reduces the maximum of the curvature and it allows
to restart the flow to obtain a solution defined in a longer time interval.

The above description should be kept in mind in the following sections, to
understand the goal of the analysis of the singularities.

3.8 Rescaling Around Singularities

To study the behavior of the solutions of the Ricci flow when the curvature becomes
unbounded one can use rescaling procedures which are common also for other kinds
of PDEs. We will describe the technique in an informal way because the rigorous
statements are rather technical, see [33, Sect. 16].

Let us first observe that the Ricci flow is invariant under parabolic rescalings,
that is, if we dilate a solution by a factor A > 0 in space and A? in time, we obtain
another solution of the flow, which has the norm of the curvature |Rm| reduced
by a factor A2. Suppose now that we have a solution (.7, g()) of the Ricci flow
which becomes singular as ¢+ — T. We can consider a sequence of rescalings with
larger and larger factors near the singular time and then take a limit which describes,
intuitively speaking, the singular profile of the original solution. More precisely, let
us take a sequence of points P; € .# and times ¢ such that #; 1 7 and in addition

IRm(P.7)| < CIRm(P;.1;)| VP e.#. €01

for some constant C > 1 independent of j. For any j > 1 we now rescale our flow
by a factor A;, where A; = /|[Rm(P},#)|. In addition, we take P; to be the origin
of the rescaled flow and we translate the time so that #; becomes zero. Then the j-th
flow is defined for # € [=A7t;, (T — £;)A7]. Observe that the initial endpoint of the
time interval tends to —oo at j — o00; the final endpoint is positive, and it can be
proved that it stays bounded away from zero for all j. By construction, each rescaled
flow satisfies |Rm| < C everywhere at all times r < 0. It is possible to show that
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this curvature bound ensures the existence of a converging subsequence, provided
the rescaled flows also satisfy an injectivity radius bound.

Theorem 3.15 Let (A, g(t)) a solution of the Ricci flow which becomes singular
ast — T, and let us consider a family of rescaled flows defined as above. Suppose
in addition that the injectivity radius of our manifold satisfies the estimate

C
Vmax 4 [Rm|[(-.7)’

Jor some ¢ > 0. Then a subsequence of the rescaled flows converges uniformly on
compact sets to a limit (A , §(t)), which is a solution to the Ricci flow and is defined
in an interval of the form (—oo, T*), with T* > 0 (possibly infinite). If n = 3 then
the limit flow has nonnegative sectional curvature at every point and satisfies the
improved differential Harnack estimate

inj(P,1) >

YPe.#,te(0,T) (3.17)

IR
=, *+2(DR. V) + 2Rie(V. V) = 0. (3.18)

For the proof of the first part of this statement, see [33, Sect. 16]. The assertion
concerning the sectional curvature can be obtained from Theorem 3.9; in fact,
the right-hand side of (3.10) disappears in the rescaling procedure due to the
sublinearity of ¢. Observe also that in three dimensions positive sectional curvature
is equivalent to positive curvature operator. Thus the limit flow satisfies the Harnack
inequality (3.16) where the R/t term can be replaced by R/ (t — fy) with £y arbitrarily
small since the solution is defined in (—oo, T*). Thus, letting fy — —oo0, this term
vanishes and we obtain the improved inequality (3.18).

In [33, Sect. 16] one can also find a precise definition of the “convergence on
compact sets” mentioned in the statement. In particular, even if the rescaled flows
are all compact, their diameter can go to +oo, and thus the limit flow can be
noncompact. The typical example is the neckpinch of Sect. 3.2, where the limit flow
is an infinite cylinder S? x R.

Hamilton then proved the following classification results of the possible structure
of the limit flow in dimension 3.

Theorem 3.16 Let g(f) be a solution of the Ricci flow on a closed three-manifold
M . Suppose that the flow becomes singular as t — T and that we have an injectivity
radius estimate of the form (3.17). Then it is possible to choose the sequence (P}, t;)
in the above construction in such a way that the limit flow is one of the following (or
a quotient under a finite group of isometries)

(i) the shrinking sphere S, or
(ii) the shrinking cylinder S* x R, or
(iii) ¥ xR, where X' is the “cigar” soliton described in Sect. 3.2.

The above theorem is given at the end of the paper [33] and the proof uses all the
properties of the limit flow which we have mentioned before. Although such a result
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already gave strong restrictions on the possible structure of the singularities, there
remained two unsatisfactory aspects. One was the lack of a general argument which
could provide the injectivity radius estimate needed in the theorem. The second
problem regarded case (iii): if such a limit could occur then it would represent a
fatal obstruction to Hamilton’s program, because there is no clear way to do surgery
on a singularity which exhibits such a profile. Hamilton conjectured that case (iii)
cannot occur, but did not succeed in proving this. We will see in the next sections
how Perelman’s new results have solved both of these difficulties.

3.9 Perelman’s Monotonicity Formula

In [49, Sect. 3] Perelman introduced the following functional. Let .# be a closed
n-dimensional manifold. Given a metric g on .#, a functionf : .# — R and a
positive number 7, consider

PGt = [ 09T + 8+ f =l T,

known as Perelman’s # -entropy functional. Define also, for fixed g and t,

nig, t) = inf{ W (g.f,7) : fsuchthat / (rr)y ™ eV du, =14 .
M

Then the following result holds.

Theorem 3.17 Let g(t) be a solution of the Ricci flow for t € [ty, 1] on a closed
manifold A, and let T(t) =t — t for somet > ). Let f : M X [t1, 1] — R satisfy

af n
— =-A Vf?—R+ —.
ot f+ 1V + 2t
Then
aw 1 P .
— = / 2t |Rj + ViVif — —gj (4nr)_5e_fdu. (3.19)
dt Y 2T

In addition, the quantity u(g(t), ©(t)) is nondecreasing in t for t € [to, t1].

The above result, known as Perelman’s entropy monotonicity formula, has
important applications to the analysis of singularities of the Ricci flow. Let us
introduce the notion of local collapsing.

Definition 3.18 Let (.#, g(r)) be a solution of the Ricci flow for ¢ € [0, T), with
T finite. We say that the solution is locally collapsing at time T if there exists a
sequence of times # 1 T, of points Py € .# and of radii ry > 0 such that {r;} is
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bounded and such that, if we denote by By the ball of center Py and radius ry with
respect to the metric g(#), we have that |[Rm|(P,#) < ri for all P € By and that
Vol (By)/r} — 0 as k — oo.

Roughly speaking, collapsing means that we can find metric balls where the
volume ratio is arbitrarily small. This is due to an increasingly smaller injectivity
radius, which implies that the balls actually cover many times the same tiny portion
of the manifold. The hypothesis that [Rm|(P,#;) < r;> on By shows that the
smallness of the injectivity radius is not due to the size of the curvature. Therefore,
for instance, a family of shrinking n-dimensional spheres, with n > 1, is not
collapsing. Instead, a family of manifolds of the form .Z = Sim x M, where
Si(t) is a one-dimensional circle with radius (r) — 0 and .#" is any fixed (n — 1)-
dimensional manifold, is collapsing: the shrinking one-dimensional factor is flat
and does not influence the curvature, but the injectivity radius and the volume
ratio go to zero as r(f) — 0. The intuitive expectation is that such a behavior
should not occur in the Ricci flow, since a flat factor would stay constant and not
shrink. Indeed, Perelman shows that the monotonicity of % prevents the collapsing
described above, and he obtains from Theorem 3.17 the following crucial result [49,
Sect. 4].

Theorem 3.19 If g(¢) is a solution of the Ricci flow for t € [0,T) on a closed
manifold M, then (M, g(t)) is not locally collapsing at time T.

To prove this result, Perelman shows that if the flow is collapsing at time 7,
then u(g(%), r7) — —oo, by plugging suitable functions f in the functional #. On
the other hand, by Theorem 3.17, 1(g(t), r?) > u(g(0),  + r?), which cannot be
arbitrarily small, and this gives a contradiction.

As mentioned before, the collapsing behavior is related to the smallness of the
injectivity radius at the points (P, ), see e.g. [55, Sect. 8.4]. In particular, if the
solution is not locally collapsing, then it also satisfies the injectivity radius estimate
required in Theorem 3.16. Thus, Perelman’s result ensures that the injectivity radius
estimate is always satisfied.

Theorem 3.19 also allows to exclude that the cigar X' x R is obtained as limit of
rescaled flows. In fact, using (3.3) one can check that the metric on the cigar X' is
locally collapsing. Since the collapsing property is invariant under rescaling, &' x R
cannot occur as the limit of the rescalings of a noncollapsed solution.

The noncollapsing property of the Ricci flow allows to exclude case (iii) of
Hamilton’s Theorem 3.16. This result, however, does not suffice yet to define a
flow with surgeries. For this purpose, we need to know that, when the singular
time is approached, all points of the manifold with curvature larger than a certain
threshold lie in regions that can be removed by the surgeries. In this way, we know
that the manifold after surgeries has bounded curvature, so that the flow can be
restarted and exists for some given time before possible new singularities occur. We
therefore need to obtain a more detailed description of the singular regions than the
one provided by Theorem 3.16, which only describes the behavior around suitable
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sequences of points with large curvature. We will see this in the remaining part of
these notes.

3.10 _Z-Distance and Reduced Volume

In [49, Sect.7] Perelman introduces some geometric quantities which provide
further powerful results for the analysis of the singularities of the Ricci flow.

Let (.#, g(t)) be a solution of the Ricci flow, for ¢ € [0, T]. For the purposes of
this section, it is convenient to reverse the time direction, and consider the variable
7 := T — t. The metric then satisfies the backward Ricci flow %g(r) = 2Ricg(r).
Given acurve y : [t1, 1o] = A4, with 0 < 11 < 1, < T, we define the .Z-length of
y as

f(y)Z/Zﬁ[R(V(t))JrIJ?(f)IZ]dt- (3.20)

Here R(y (7)) and |y(z)|? are computed with respect to the metric g(z). Functionals
of this type are classical in Calculus of Variations, see e.g. [13, Chap. 6] and the
references therein. The .Z-length can be regarded as a generalization of the usual
energy functional for curves on a Riemannian manifold, see e.g. [25, Sect.9.2],
whose minimizers are geodesics, and it shares some basic properties. Given any
pair of points p,g € .#, we can minimize the .Z-length over all the curves
such that y(71) = p, y(72) = ¢. By standard methods, it can be proved that the
minimum exists, and it is called the .Z-distance between (p, t;) and (g, 7). The
curve y achieving the minimum is not necessarily unique; any such curve is called
an Z-geodesic and satisfies a suitable ordinary differential equation. It should be
noted that the .Z’-distance is not necessarily positive unless the evolving metric has
positive scalar curvature.

It is convenient to fix the initial endpoint p € .# and 7; = 0 and analyze the
properties of the .Z-distance as a function of the final endpoint. Namely, we define
L(g, t) to be the .Z-distance between (p,0) and (g, t) for any given ¢ € .# and
© > 0. In [49, Sect. 7], several identities and inequalities relating the derivatives
of L and the minimizers are derived, which are inspired by the corresponding first
and second order conditions satisfied by the classical geodesics. As in the case of
the ordinary distance from a given point, the function L is in general Lipschitz
continuous but not differentiable everywhere; more precisely, it is not differentiable
at those points (g, ) for which the minimizing geodesic from (p, 0) is not unique,
see e.g. [13, Corollary 6.4.10]. Therefore, the differential inequalities satisfied by L
must be understood in a suitable weak sense, for instance in the sense of barriers
introduced by Calabi in [12], or the viscosity sense [23]. We recall two important
inequalities derived by Perelman, see formulas (7.13) and (7.15) in [49].
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Theorem 3.20
(i) Ifwesetl(q,7) = #L(g, ), then [ satisfies

3l
T a—vip+r-21. (3.21)
ot 2T

(ii) Ifwe set L(q, T) := 2./TL(q, 7), then L satisfies

oL -
— + AL <2n. (3.22)
ot

As an immediate consequence, we obtain
Corollary 3.21
(i) Let us define

V(z) = / T2 . (3.23)
M

Then V is a nonincreasing function of t.
(ii) We have min_4 I(-, ) < 5 forall T > 0.

Proof We argue as if the function L were smooth, but the computations can be
justified also in the case where the inequalities of the previous theorem only hold in
a weak sense. To prove (i), let us set w(g, 1) = t~"/?¢74?_ We find, using (3.21),

9 )
N AWt wR=w (- —|VIP+ Al— = £ R) <0,
ot 2t ot

When we compute the derivative of V(7), we must take into account that the volume
element on a solution of the backward Ricci flow evolves according to

d
37 Ats) = Rditgeo),

see e.g. [17, Lemma 3.9]. We conclude

ow
V/(‘L’) = / (3— + RW) ditgry < / Awdpgr) = 0,
M\ 0T M

which proves the monotonicity of V.

To obtain (ii), let us first estimate /(g, t) in the case where 7 is small and g = p.
If we compute the .Z-distance using the constant path y = p and use the local
boundedness of R, we easily obtain an upper bound of the form L(p, t) < C73/? for
a suitable C > 0. It follows that min_4 I(-, T) < 3 for T enough small. Now, if apply



96 C. Sinestrari

the maximum principle backward in time to (3.22), we deduce that the minimum of
L(-, 7) — 2nt is a nonincreasing function of t. On the other hand, by definition,

n/l/i{n {i(-, 7) — 2nr} =4z n/l/i{n {l(~, 7) — g} ,

which is negative for small T > 0. Therefore, the above minimum stays negative for
all > 0, which proves (ii).

The function V defined in (3.23) is called the reduced volume by Perelman.
The monotonicity of the reduced volume gives an alternative argument to prove
the noncollapsing property for the solutions of the Ricci flow. Roughly speaking,
one can consider a sequence of points as in Definition 3.18 and consider for each
k the reduced volume V; obtained setting p = py and = 7} — t. Then, using the
smallness of the standard volume of suitable balls around p; given by the collapsing
assumption, it can be proved that Vi (t) becomes close to zero for suitably small 7.
On the other hand, one can show that Vi(#) is bounded away from zero, since 7 = #;
corresponds to = 0 and thus Vi(#;) can be estimated in terms of the behavior of
the manifold in a neighborhood of a fixed regular time. The two properties together
are in contradiction with the monotonicity of the reduced volume proved above, and
this allows to prove a result similar to Theorem 3.19.

It is interesting to remark that the monotonicity of the reduced volume stated in
Corollary 3.21 has some similarity with a well-known result for the mean curvature
flow, called Huisken’s monotonicity formula [40]. The proof of the two results,
however, are not related, and the applications to the analysis of singularities are
rather different in the two cases. The entropy monotonicity and the noncollapsing
property described in the previous section have also some analogues in the mean
curvature flow, see [2, 26].

3.11 Properties of «-Solutions

In the rest of these notes, we restrict ourselves three-dimensional manifolds. In
Sect. 3.8 we have seen that the profile of the solution of the Ricci flow near a
singularity can be studied by rescaling techniques. In particular, by taking the
limit of a sequence of flows rescaled around points where the curvature becomes
unbounded, one obtains an ancient solution which describes the singular profile
and enjoys some special properties. The study of such ancient solutions is the first
step to a more detailed analysis of the singularities which will enable the surgery
construction. The results in this section are taken from [49, Sects. 11 and 12], [50,
Sects. 1 and 3] We start with a definition.

Definition 3.22 Given x > 0, a nonflat solution of the Ricci flow on a (possibly
noncompact) three-dimensional manifold ./ is called a «-solution if it satisfies the
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following properties

(i) Itis ancient, i.e., it is defined for z € (—oo, T) for some T > 0.
(i) It has bounded curvature and nonnegative curvature operator at each fixed
time ¢.
(iii) The solution is k-noncollapsed, in the sense that for any time ¢ and any ball B
of radius r in (.#, g(¢)) which satisfies [Rm|(p, 1) < r~2 forall p € B, we have
that Vol (B) > k3.

As we have observed in Sect.3.8, any limit obtained by rescaling a given
solution near a singularity satisfies properties (i) and (ii) above. Property (iii) follows
from Theorem 3.19 and from the fact that the noncollapsing property is scale-
invariant. In addition, a k-solution satisfies the stronger form of Hamilton’s Harnack
inequality (3.18). Choosing V = 0 in that inequality, we obtain in particular that
% > 0. This means that the scalar curvature is pointwise nondecreasing, and
therefore any bound on R at a certain time holds also for all previous times.

Examples of «-solutions are the shrinking sphere, the shrinking cylinder or the
Bryant soliton mentioned in Sect.3.2. The product X' x R, where X' is the cigar
soliton, is not a x-solution because it does not satisfy the noncollapsing property
(iii). A product S* x S!, where S? is homothetically shrinking while S' remains
constant because it has no curvature, also violates property (iii), as it is seen by
considering arbitrarily large negative times.

There exist also more elaborate k-solutions which are not solitons. In [50,
Sect. 1.4], Perelman describes a compact «-solution for ¢+ € (—o0,0), which is
close to a shrinking sphere as t+ — 0, while as t — —oo it resembles a more and
more eccentric oval. However, the analysis is simplified by the next result, see [49,
Sect. 11.2], which associates to any «-solutions a gradient shrinking soliton.

Theorem 3.23 Let (4, g(t)) be a k-solution of the Ricci flow, let p € M, ty €
(—o0, T) be fixed arbitrarily, and let I(q, T) be the reduced length centered at (p, to)
defined in Sect. 3.10. For any t > 0, let q(tv) € .# be a point such that l(q, ) <
n/2, whose existence follows from Corollary 3.21. Then the rescalings of the metrics
g(ty — ©) around the point q(t) with factor t™" converge along a subsequence t; —
oo to a nonflat gradient shrinking soliton.

The soliton obtained from the above theorem is called an asymprotic soliton of
the «-solution. It can be proved that the only possibilities for such a soliton are the
following, up to quotients:

(i) the asymptotic soliton is a shrinking sphere;
(i) the asymptotic soliton is a shrinking cylinder S* x R.

In addition, case (i) only occurs if the k-solution is itself a sphere. This also shows
that the asymptotic soliton is unique, because the two possibilities are incompatible.
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An interesting property of noncompact «-solutions concerns the asymptotic
volume ratio, defined by

Vol B( po, r)

r—>+o00 r3

7/:

’

where py is any fixed point in .# and B( po, r) is the metric ball of radius r around
po- Then, it can be proved that on a «-solution we have ¥ = 0 at each time. Such
aresult is not in contrast with the noncollapsing property; in fact, for a fixed py and
arbitrarily large r, we cannot have the property |Rm| < =2 in the ball B( po, r), and
therefore the lower bound on the volume ratio in the noncollapsing property does
not apply on such a ball. Intuitively speaking, the property that 7" = 0 implies that
a noncompact k-solutions cannot open up asymptotically like a cone, but rather like
a paraboloid, as in the case of the Bryant soliton.

A fundamental step in Perelman’s analysis of the singularities is the following
compactness result modulo scaling for k-solutions [49, Sect. 11.7].

Theorem 3.24

(i) For any r > 0, there exists a universal constant M = M(r) such that, given
any point and time (p, 1) in a k-solution such that R(p,t) = 1 and any other
point g such that dgy(p,q) < r, we have R(q,1) < M.

(ii) Given a sequence of k-solutions {( My, gr(t))} and points py € M. such that
R(pk,0) = 1, there exists a subsequence centered at (py,t) which converges
smoothly to a limit which is also k-solution.

(iii) There exists a constant C > 0 such that, on any k solution, we have the
following derivative estimates:

IVR(p,0)|* < CIR(p, O, |0.R(p,D)| < CIR(p, D>, pe M, te(-00,T).

The above result is the main step towards a precise description of the structure
of k-solutions. We first give a formal definition of the notion of “almost cylindrical
region” inside a manifold evolving by Ricci flow.

Definition 3.25 Given a solution of the Ricci flow and ¢ > 0, we say that ( po, ) is
the center of an e-neck if, after setting Qy = R(po, to), the parabolic neighborhood

1 1
) tg— — <t <ty d’ , < —
(p.1) : 1o g, SI=h (1) (P2 P0) = 00

is e-close, after scaling with the factor Q, to a subset of a shrinking round cylinder.

Here “e-close” means that the metric, and its derivatives up to a suitable order, differ
from the corresponding ones of the cylinder by no more than ¢.

The following result [49, 11.8], see also [44, Sect. 48] or [46, Theorem 9.93],
states that on any «-solution the points either lie at the center of a neck, or they
belong to a compact region whose diameter satisfies an apriori bound.
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Theorem 3.26 For any ¢ > 0 enough small, there exists C = C(g) > 0 with the
following property. Take any k-solution of the Ricci flow and denote by M the
points which are not at the center of an e-neck at some given time ty. Then M is
compact. In addition, #; can be written as the union of at most two components
M\, M, which have the following properties, after setting Q; = R(p;, to) for an
arbitrary p; € M;:

(i) the diameter of M; is at most CQi_l/z,

(ii) we have C~'Q; < R(q,t0) < CQ,, for any q € M,.

Examples of the possible structure of M, can be obtained by looking at the «-
solutions described at the beginning of the section. The set M, is clearly empty on
a shrinking cylinder. On a sphere, M, is instead the whole manifold if € is small
enough, and thus it consists of single component, which satisfies (i) and (ii). The
Bryant soliton is a more interesting example. As mentioned in Sect. 3.2, it consists
of a rotationally symmetric metric on R? where the curvature decreases as the
distance from the origin increases. It turns out that any point sufficiently far from
the origin lies at the center of an e-neck, so that M, is a ball of radius R, with
R, becoming large if ¢ becomes small. Therefore, M, consists of a single compact
component, which satisfies properties (i) and (ii). The other «x-solution described at
the beginning, which is compact and becomes more and more oval as t — —oo,
gives instead an example where M, consists of two components: they are the two
opposite ends of the solution, while the central part consists of points which are all
centers of a neck.

3.12 Canonical Neighborhoods and the Structure
of Singularities

The results of the previous section give an accurate description of the structure
of k-solutions. The next fundamental result [49, Sect. 12.1] shows that the same
description extends to the regions with large curvature of an arbitrary solution of the
Ricci flow in three dimensions.

Theorem 3.27 Let (4, g(1)), with t € [0,T), be a solution of the Ricci flow on
a closed three-dimensional manifold .# . For any ¢ > 0 there exists ry > 0, only
depending on ¢ and the initial data, with the following property. Let ( po, to) be any
point with ty > 1 and R(pog, to) > ro_z. Then, if we set Q = R(po, ty), we have that
the parabolic neighborhood

{(pst) Dt — (‘c;Q)_l <t =<1, dé(to)(psPO) =< (SQ)_I} B

rescaled by a factor Q, is e-close to a suitable space-time subset of a k-solution.
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The power of the above result lies in the fact that the curvature R( po, fo) is only
required to be larger than some given threshold, but we do not need to assume,
for instance, that R(po,fy) is the maximum of R at time #y or is comparable
with the maximum. Thus we have no apriori bound on the curvature in the
parabolic neighborhood under consideration, which would easily yield a proof by
compactness.

Combining Theorems 3.26 and 3.27 one obtains a precise description of the
possible structure of the solution near the points with large curvature. We introduce
a further terminology. We say that a parabolic neighborhood inside a solution of
the Ricci flow is an e-cap if each point lies at the center of an e-neck outside of
a compact set satisfying properties (i) and (ii) of Theorem 3.26. Then we have the
following result.

Theorem 3.28 Ler (#,g(t)) be a three dimensional solution of the Ricci flow.
Then, for any € > 0 there exists ry > 0, only depending on ¢ and the initial data,
such that each point (po, to) with R(po, to) > ry* has a parabolic neighborhood &
satisfying one of the following properties

(i) P is an e-neck.
(ii) & is an g-cap.
(iii) & has positive curvature and coincides with the whole manifold.

A neighborhood satisfying one of the properties (i)—(iii) above is called a
canonical neighborhood. The above result allows to define surgeries at the first
singular time, as outlined in Sect. 3.7. After restarting the flow, in order to do the
following surgeries, one must then repeat the previous analysis at the subsequent
singularities. This is a highly nontrivial part of the procedure, because the estimates
needed in this study are derived in the case of a smooth solution and one should
justify them also in the case of a flow which has been modified by surgeries.
Sections 4 and 5 of [50] are devoted to this delicate issue. The rest of [50] then
studies the long time behavior of the flow with surgeries, leading to the proof of the
Thurston conjecture. Some important aspects of this part are described in the notes
of M. Boileau in this volume.

Let us finally mention that a surgery procedure has also been defined for the mean
curvature flow of suitable classes of hypersurfaces. More precisely, in [42] a flow
with surgeries was constructed for hypersurfaces in R"*!, with n > 3, which are 2-
convex, i.e. the sum of the two smallest principal curvatures is positive everywhere.
The procedure of [42] is inspired by Hamilton’s original approach [35] and the main
part consists of the analysis of the singularities, which yields a similar picture to the
one described here for the three-dimensional Ricci flow. The flow with surgeries
allows to prove that any closed 2-convex hypersurface is diffeomorphic to a sphere
or to a connected sum of S"~! x S!. More recently, the procedure was extended to
the case of surfaces in R? with positive mean curvature [9]. An alternative derivation
of these results, which uses techniques closer to Perelman’s ones for the Ricci flow,
has been given in [37, 38].
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3.13 Bibliographical Notes

A landmark date in the literature on the Ricci flow are the years 2002-2003 when
Perelman’s papers appeared. While now many expository books and survey articles
can be found, before that date the only references in the field were the original
papers, especially Hamilton’s ones. A notable exception was the survey [14] which
gave a nice overview of Hamilton’s program for geometrization and its progress at
that time. Despite the vast literature appeared in the last decade, Hamilton’s original
works still represent a fundamental reference in the field. In particular, the long
paper [33], which gives a survey of the previous results and presents many original
ones, can be recommended to anyone interested in the Ricci flow for the richness of
ideas and the beauty of the exposition. A useful reference for the results on the Ricci
flow before 2002 is the volume [16], which collects all the most relevant papers
appeared until that time.

Perelman’s papers [49-51] are famous not only for the historical relevance of the
results, but also for the difficulty of their mathematical content. Even the experts
in the field have required a long time of careful analysis before working out all the
details of the arguments. After some time, three different detailed expositions of
Perelman’s papers have appeared, namely the notes by Kleiner and Lott [44], the
paper by Cao and Zhu [15], and the book by Morgan and Tian [46]. In particular,
the notes [44] have had a great influence on the understanding of Perelman’s
papers, because preliminary versions were posted on the web while the work was in
progress. The references [15, 46] are self-contained, while the notes [44] are meant
as a complement to the Perelman’s papers, to be read along with them. All these
three references are a valuable source for Perelman’s results, and anyone who wants
to learn these topics in detail is strongly advised to look at least at one of them.
Nevertheless, interested readers should also absolutely read the original papers by
Perelman; although the proofs are in most of the cases very difficult to understand,
the main ideas are often easy to follow and the beauty of the results is stunning even
without following all the details.

While the three above mentioned references are mainly focussed on the proof of
Poincaré conjecture, the two later books [6] and [47] treat in more detail the long
time behavior of the flow with surgery and the proof of the full Thurston conjecture.
We also mention the interesting commentary on Perelman’s proof by T. Tao [54].

In addition, there are other books on the Ricci flow which are not aimed at
a presentation of the full Hamilton-Perelman’s theory, but which are excellent
references for the basic results as well as some parts of that theory. A particularly
rich and detailed source is provided by the series of books by B. Chow and many
coauthors [17-22]. On the other opposite, the books by S. Brendle [8], by P. Topping
[55] give short and clear expositions of some basic important aspects of the theory
and are definitely recommendable for a beginner. The book by B. Andrews and C.
Hopper [3] is another interesting reference for the various developments of the Ricci
flow.
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