Chapter 2
First and Second Order Systems

In this chapter, the properties of the transfer function and frequency response of first
and second order systems are studied on some examples from electrical circuit laws.
We show that their properties are governed by the poles (i.e., the zeros of the
denominator) of the transfer function which is a rational fraction. A geometric
argument based on the location of the poles of the transfer function in the complex
plane allows a qualitative interpretation of the behavior of the frequency response
with varying frequency. This geometric interpretation is easily generalized to sit-
uations with any number of zeros and poles. It proves useful for the understanding
of the general behavior of filters. The study begins here with the simplest system,
the first order system. Then the second order circuit system is presented thoroughly.
The logarithmic Bode representation of the frequency gain is introduced and its
advantages demonstrated. The quality factor Q of a resonant circuit is defined.

2.1 First Order System. R, C Circuit

Consider the electrical circuit consisting of a resistor and a capacitor in series
(Fig. 2.1). The circuit is powered by an internal resistance-free generator of elec-
tromotive force e(f). The charge on one plate of the capacitor is written g, and the

_ a0

voltage across the capacitor noted v(z) = %=

The generalized Ohm law writes:

dg  q

With a system point of view, we write e(f) as the input variable and v(¢) as the
output variable.
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Fig. 2.1 First order system; T]
R, C circuit _ l
e(t) 4 4y
2.1.1 Transfer Function
The Eq. (2.1) can be written in the form of an operator acting on g:
d 1
R— 4+ = |qg =e(1). 22
(Rg+ ¢ )a=eto 22)

This system is linear and time invariant. According to the fundamental result
shown in Chap. 1, when e(7) has the form e, the charge ¢(¢) on a plate of the
capacitor and the voltage v(#) across it will have the same exponential form. This
can be checked:

Posing e(t) = ¢ and looking for ¢() in the form: g(¢) = Be".

Replacing its expression in Eq. (2.2) we have:

d B
RBae” + Ee” =e". (2.3)

By simplifying by e*, we see that the proposed solution is valid if the following
relationship is satisfied:

(Rs+ é)B =1. (2.4)

or

1 C
(Rs+ &) RCs+1°

(2.5)

The voltage across the capacitor (system output variable) is given by:

q 1 st st
4_ — H(s)e". 2.
C RCs+1° (s)e (2:6)

v(t) =

We notice that e is eigenfunction of the system and that H(s) is its transfer
function. The circuit transfer function H(s) is thus written
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Fig. 2.2 Pole of the transfer

Jjo'l
function in the s plane

0" RC

1

H(s) = oy (2.7)

H(s) is a rational fraction with a simple pole (a simple zero of the denominator)
in (See Fig. 2.2)

1
=——. 2.8
0=~ %c (2.8)
We can equivalently write H(s) as
—50
H(s) = . 2.9
(5)=—— " (2.9)

The presence of a single simple pole is the reason for the first-order system name
applying to this circuit.

2.1.2 Frequency Response

The frequency response is a particular case of the transfer function. In the function
H(s), the variable s is a complex number that will be written in the form:
s = 0 +jw. s belongs to the complex plane. With reference to the Laplace trans-
formation detailed in Chap. 9, the s plane is also called Laplace plane. This plane is
identified by the real axis ¢ and the imaginary axis jw.

_; at jot
O e S (2.10)

If ¢ = 0, that is, for a monochromatic input signal e(¢) = el

1

=— & = H(w)d 2.11
1 +jRCw () (2.11)

v(t)
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The frequency response is:

1

H(w) = T7iRCo (2.12)

The angular frequency o is related to the frequency f by the relationship
w = 27f.

We see, of course, that e/’ is also eigenfunction of the system. The frequency
response H(w) (also called complex gain of the filter) is the transfer function H
(s) evaluated on the imaginary axis ¢ = 0.

By showing the modulus |H(w)| and the argument ¢ of the frequency response,
we write:

v(1) = H(0)™ = |H(w)|e?e" (2.13)

Therefore, while the modulus of the input signal e is 1, the output signal
modulus is |H (®)|. It appears that the modulus of the frequency response is the gain
in amplitude of the signal passing through the filter. The phase shift ¢ of the output
signal relative to the input signal is the argument of the complex gain H(w). The
magnitude and phase are functions of ® in the general case.

Note: For convenience, the function H(w) is called frequency response, although
this function is expressed as a function of the angular frequency w and not of the
frequency f.

For the variation of the gain as a function of the frequency f, we replace w by 2nf
in the expression of H(w).

As noted above, the function e/’ is the system eigenfunction but the function
cos wt = w, linear combination of two eigenfunctions, is not. The system
response for a cosine input is searched as follows:

If the electromotive force ¢/ has the form e(f) = cos wt, due to the linearity of
the system, we can write the answer in the form:

v(t) = = (H(w)e” + H(—w)e ) (2.14)

N | —

11 1 ‘ VR
t — - e](U[ - —_](JJ[ — _ - e](l)l C. 2. 15
Vo) 2<1+jRCw "1 5RCo® ) 2<1+jRCcu )“C (2.15)

c.c. is written to describe a complex conjugate of the previous term within the
equation. The sum of a complex number and of its complex conjugate is equal to
twice its real part, the following applies:

. 1 jort
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The notation Re() means that we must take the real part of the complex
expression. It comes:

1 - jRCw .
V(f) = %e{ (m) (COS wt +J Sin Cl)l)}
1

= W(COS U)t+RC(l) Sin (,Ot). (217)
w

We can rewrite this result in the form:

(7) ! ( ! cos wt + RCo sin cot) (2.18)
V(1) = —_— , .
V1I+RC?20? \V1+ R2C202? V1+R2C20?
or in another form:
(1) ! cos(wt + @) (2.19)
V(i) = —— , .
V1+R2C2? ¢
with
1 —RC
coSpp =————— and sing = 7(”, (2.20)
V1+R2C200? V1+R2C20?

and then tan p = —RCw.

Behavior of the solution at low and high frequencies

At low frequencies, that is to say, when RCw < 1, we see on the solution (2.19)
that v(¢) = cos wt. The output signal is in phase with the input signal and has equal
amplitude.

Athigh frequency, when RCw > 1, the solution (2.19) becomes: v(#) =2 ﬁ sin wt.

The output signal is in quadrature with the input signal with a phase shift

& — 7 and its amplitude decreases with frequency as (71]

Note: Conciseness of the results when expressed in the form of complex
exponentials will be compared to the heaviness from those expressed in sine and

cosine.

2.1.3 Graphic Representation of the Frequency Response

Since H(w) = 1+le > the modulus is:

1
H Ol = e (2:21)
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and phase
@ = —Arg(RCw) (2.22)

In Fig. 2.3, are represented the modulus and phase of H(w).
For the value o, of @ such that RCw, = 1, the value of the gain modulus is %

Using its value in decibels: Hgg = 201log,,(|H(w.)|) = 201og,, (%) = —3dB.

_we 1

Frequency f. = 5t = 5 is called the —3 dB cutoff frequency.

It is seen in Fig. 2.3b that the phase variation range goes from § to — 7.

Bode representation

Scale in decibels

In the Bode representation the magnitudes logarithm are represented. As mentioned
above, the decibel value of a quantity A is Agg = 201log;; A. This unit of measure
was introduced by G. Bell to describe the acoustic sensitivity of the human ear
(hence the name of this unit). The sensitivity of the ear is logarithmic: if the
intensity of a sound is multiplied by 10, the ear feels a multiplication by 2. If the
intensity is multiplied by 100, the ear feels a multiplication by 4. This physiological
property allows the ear to hear correctly loud sounds, but remain sensitive to very
low sounds. Moreover, as will be discussed in Chap. 3, the note of a musical
instrument is accompanied by the presence of harmonics whose frequencies are
multiples of the fundamental frequency. The amplitudes of these harmonics are
specific to each instrument. They can be several tens of times lower than that of the
fundamental component. As the ear analyzes the sounds from frequency, its log-
arithmic sensitivity somehow enhances the amplitude of low harmonics. This
allows it to be physiologically sensitive to harmonics, so to the musicality of the
instrument. It is important to remember that the representation in logarithm rein-
forces the low values of a variable relatively to strong values. This property is
exploited in the Bode representation with which we may monitor small changes of

a b
@ , ‘ (b)
: i : : b
? 0_6 _'" 1 ,-‘_—\-..\_ 0.5 ".'
L~ (=1 0
o oggf \51.0_5
oy | Seoe
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@ (radis) @ (radfs)

Fig. 2.3 Frequency response of R C circuit. a Modulus. b Phase
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Fig. 2.4 Log-log plot of
gain magnitude (first order
system)

logy,(|H (@)))

el i i
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log, (RCw)

the variable values, whereas in linear representation, they would have been unde-
tectable. This representation has better dynamics. This explains why the gain of the
filters is most often plotted in dB.

Another quality of the logarithmic representation is that a variation with fre-
quency in power law appears as a straight line whose slope gives the value of the
power law coefficient.

By definition, the decibel value of the frequency response is equal to 20 times
the base 10 logarithm of the frequency response modulus.

Han = 20 log o(|H(w)]). (2.23)

Assuming that at high frequencies, the system has an asymptotic behavior of the
form |H(w)| ~ ", then Hyg = 20log,, w" = n20log,,w. In a logarithmic rep-
resentation Hgg = f(201log,, w), the variation is linear.

Figure 2.4 shows the gain in dB of the first order filter. Note the linear
asymptotic behavior of the high-frequency curve. The asymptote passes through the
point (0, 0), that is to say, for the x-axis value w = %. The slope of the line is —1,
reflecting the asymptotic gain as L (Fig. 2.4). |[H(w)| decreases by 20 decibels per
decade (a decade corresponds to a multiplication of the frequency by a factor of 10).
This decrease is also —6 dB per octave (the octave is defined in music as the
interval between two notes when the frequency of a note is twice that of the other.
For example, the frequency of the note C is multiplied by 2 when going on a piano
keyboard from a C to a C immediately above).

2.1.4 Geometric Interpretation of the Variation
of the Frequency Response

It has been shown above that the transfer function is: H(s) = =%, with sp = — A

The frequency response is:
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—50
H(o) == (2.24)

In the complex plane s = ¢ + jow. The point of the plane corresponding to the
real pole sy = — % is noted on Fig. 2.5. The point M is the point jo representative
of the monochromatic signal to the frequency w. The complex number in the
denominator of H(w) can be associated to the vector PM. The modulus of H(w) is
inversely proportional to the length PM of that vector:

|—So| 1 1

Hio)| =0 = o
PM  RCPM

(2.25)

1
R2C?

We find the variation in function of the frequency of the modulus of H(w)
according to the variation in length of the segment PM when the point M scans the
vertical axis ¢ = 0 from —joo (frequency —o0) to +joo (frequency + o0).

For very high negative frequencies the segment PM is very large, and its inverse
is very small. Thus |H(w)| is very small. When the frequency decreases in absolute
value to the zero frequency, the segment PM decreases, and |H(w)| increases.

The segment PM is minimal for & = 0 and its inverse |H(w)| is maximal. The
gain will decrease continuously when w increases from zero, the segment PM
continuously growing. As shown on Fig. 2.6. Since the phase of the output signals
is equal to the argument of H(w),

Using the Pythagorean theorem we write PM = /w? +

9(0) = Arg(H(w)) = Arg(—s) — Arg(jo — s0).

so being real and negative, we have ¢(w) = —Arg(jo — o).

The argument of jo — s¢ is equal to the angle formed by the vector PM with the
horizontal axis. When the frequency is largely negative this angle is close to — 7, the
phase of H(w) (the opposite to that angle) is then close to 7. The change of phase
with frequency is shown Fig. 2.6.

N .
Fig. 2.5 Vector PM situation 4 jo
for a given frequency
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Fig. 2.6 Frequency response of R C circuit after geometric interpretation. a Modulus. b Phase

Fig. 2.7 R C Circuit with c| |
output taken at resistor | ]
terminals

e(t) pte)

2.1.5 R, C Circuit with Output on the Resistor Terminals

This system is a second example of a first order system. The circuit is identical to
that of Sect. 1.1 but the output voltage is taken at the terminals of the resistor (Fig.
2.7). We have the following diagram:
The calculation of the charge across the capacitor is the same as in Sect. 2.1.1.
When e(7) = e we have again:

C 1
t) = ———c¢". 2.26
90 = res+1 (226)
dg RCs
t)=R—=———¢" = H(s)e". 2.27
V=R = Res41® T HOE (227)
The transfer function is in this case:
RC RC
H(s) = o= g = (2.28)
RCs+1 s—S8) S—S
The transfer function has a zero in s = 0 and a pole in sy = —Rl—c.
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Geometric interpretation of the variation of gain with frequency:
We have:
jo
H(w) = . 2.29
() =2 (229)

As can be seen in Fig. 2.5, the gain modulus is equal to the ratio of two
segments:

oM

H()| =5

(2.30)

As o varies, the point M scans upward the axis ¢ = 0.

When |w| is very large, the lengths of the segments OM and PM are very slightly
different, the gain is close to 1. When w is close to zero, the numerator becomes
small while the denominator remains finite. The gain in amplitude |H(w)| is close to
Zero.

The phase is the argument of the numerator of H(w) minus the argument of its
denominator:

p(w) = Arg(jo) — Arg(jo — o). (2.31)

Arg(jw) equals —% when @ < 0 and equals 5 if « > 0 (there is a 7 jump when
passes through zero). As seen above, —Arg(jw — sp) varies from  to —7 when
varies from —00 to +00. The variations of the gain and phase with @ are shown in

Fig. 2.8.

(a) First order system with zero: RC=1 (b) First order system with zero: RC=1
0 ' : = T 2 T H T T

Gain (dB)

8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 & 3
@ (radfs) @ (radfs)

Fig. 2.8 Frequency gain for second R C circuit. a Modulus. b Phase
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2.2 Second Order System. R, L, C Series Circuit

The emf e(?) is applied to the terminals of a circuit composed of an inductor L, a

resistor R and a capacitor C in series (Fig. 2.9). As above, the electric charge on a

plate of the capacitor is denoted by ¢, and v(¢) is the voltage across the capacitor.
Generalized Ohm’s law takes the form:

d’¢  dg  q
L=—2 R 9 ). 2.32
dr? + dr + C e(?) ( )

2.2.1 Transfer Function

This system is linear, invariant by translation in time. The circuit transfer function H
(s) is obtained by taking e(f) = e" for excitation and seeking ¢(f) of the form
q(t) = Be™:
LBd—2€5’ +RBie“ + Ee“ =e” (2.33)
dr? dr C ’ '

That is to solve the equation

Ls2+Rs+l B=1. 2.34
C

. . _ l _ C
It is necessary to have the equality B = j—p— 1= P TRG T

The voltage across the capacitor is given by:

Q(t) 1 st st
=T T e e 1S e (2.35)

The system transfer function is therefore:

1
 LCs2+RCs+1°

Fig. 2.9 Second order [T& 1
circuit; R L C in series R a 5 53

H(s) (2.36)
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The transfer function is again a rational fraction which must initially determine
the poles. The denominator is a polynomial in s. A general property of polynomials
with complex coefficients is that they always have roots. These roots belong to the
field of complex numbers. In addition, another property of polynomials is that when
all the coefficients of the various powers of the variable s are real, the roots are
either real or come in complex conjugate pairs.

Search of the Poles of the Transfer Function
The polynomial being of second degree, he always has two roots which will be
distinct or multiple. For this reason, this circuit is called a second order filter.

The transfer function has the general form:

His) = LCs? +1RCS 1 % (s — sl)l(s —5) (237)
Analysis of the roots of the quadratic polynomial LCs*> 4+ RCs + 1:
The discriminant of the polynomial is:
A =RC*—4LC. (2.38)
The roots of the polynomial are noted s; and s,.
o IfA>0, 5,= —RCEVRCGE-4lC R R (2.39)

2LC 2L 412 LC

The two roots are real.

R
. IfFA=0,51=5=— 3L the polynomial has a double real root. (2.40)

R /1 R?
° IfA<O, 510 = — L +j Ic a2 the two roots are complex conjugate:

(2.41)
Writing

1 R?

2K 2.42
LC 4L (242)

Wy =



2.2 Second Order System. R, L, C Series Circuit 23

we have:

R .
S12 = —Zing (243)

2.2.2 Second Order System Frequency Response

The poles of the transfer function will condition the frequency response of the
system H(w), response to a monochromatic input signal of the form e,
Simply replacing s by jw in the expression of H(s), we have

1 1 1

H(w) = =— .
(@) —LCw?+jRCow+1 LC (joo — s1)(joo — 52)

(2.44)

Note that H(0) = 1. Calculation programs like Matlab easily enable graphical
representation of the modulus and phase of H(w).

2.2.3 Geometric Interpretation of the Variation
of the Frequency Response

It is interesting to further develop a geometric argument to interpret the variation of
the frequency response. Its modulus is:

1 1
LC |jo — s1||jo — 52|

|H (o) (2.45)

Having placed the poles s; (point P;) and s, (point P;) in the complex plane
(a,jw), we see that the modulus of H(w) is inversely proportional to the lengths of
segments joining point M (representing jo) to the points P, and P;.

1 1

H(0)| = =35
LC MP,MP;

(2.46)

The phase is given by the sum of the angles made by the vectors P{M and P,M
with the x-axis:

p(w) = Arg(H(w)) = —Arg(jo — s1) — Arg(jo — s7). (2.47)

One can thus deduce qualitatively the following variations of gain and phase:

e If A >0, poles s; and s, lie on the real axis w = 0 (Fig. 2.10).
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(@) jo (b) (0]
1

Qv

B _R B 0
L

Segments EM and ]32M . Modulus of frequency response.

Fig. 2.10 Geometric interpretation in case of two real poles. a Poles situation. b Gain modulus

Fig. 2.11 Phase variation p(w)
given by geometric 74
interpretation
0 (0]
_}r -

We see in Fig. 2.10 that the maximum gain value is obtained for zero frequency,
value of o for which the segments P;M and P,M are minimal. The gain decreases
as & when |w| — oo, each of the two segments PiM and P,M growing like |o).
The circuit behaves as a low pass filter.

When o is largely negative, angles of the two vectors Pl—M and PZ_M with the
horizontal are each approximately —7; phase will be 7.

When o increases, M scans vertically the axis ¢ = 0 and angles vary from — 7 to
% (Fig. 2.11). They will be 0 for @ = 0, the phase will be zero. Then as the angles

increase toward 7 the phase tends toward —.

e If A =0, both poles are merged on the real axis (Fig. 2.12). The discussion is
similar to the previous case and the system still has a low-pass filter behavior
(Fig. 2.13).

e If A <0, the two poles are complex conjugates. We note H; and H, the pro-
jections of P; and P, on the axis jo (Fig. 2.14). For large negative values of w,
we have the same behavior as before, the segments P{M and P,M are large and
the modulus |H(w)| very small, and the phase tends toward = (Figs. 2.14, 2.15
and 2.16).
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Fig. 2.12 Two poles merged on real axis
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Fig. 2.13 Frequency gain in case of a double real pole. a Magnitude. b Phase
Fig. 2.14 Vectors P{M and 4 jo
P, M situation for a given
frequency .
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o~

Fig. 2.15 Gain magnitudes N ‘H (a))‘
for different damping
situations

Q)]

(2)

. ~>
-, 0 o 0, o
Fig. 2.16 Gain phases for Cf[“’) A
different damping situations 4 n
&
+ - -
cEb o Wy
~ 11 _

e When o increases, a first maximum of |H(w)| will occur when the product of
the lengths of the segments PiM and P,M will reach a minimum. This will
occur to a first intermediate position of M between H, and O.

The more points P; and P, will be close to the imaginary axis, that is to say, the
R

more 5 will be small compared to @y, the more segments P1M and P,M can
become smaller and |H(w)| can become great. The resonance pulsation , for
which |H(w)| is maximal will be closer to @y when the points P; and P, are close
to the imaginary axis.

1 1 1
i ~ 15 _ ) 2.48
| (w)|max | ((,1)())| LCH{P,HP> ( )

The quantity % characterizes the damping of the circuit. Curves 1, 2 and 3 in
Fig. 2.15 show the trend of the gain when the damping is increasing (with respect to
o). Thus, it is to remember that as the pole is closer to the vertical axis, the
resonance is sharper and the resonance frequency nearer to .

Regarding the phase, it is found that when the pole is close to the vertical axis,
the angle of the vector W/I with horizontal changes abruptly from a value close to
— 7 to a value close to 5 when w passes through resonance (Fig. 2.16). In the case of
strong resonance, phase starts from 7 and varies from 7 to 0 when o passes the
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value —m, where the phase passes to —7. In the case of a damped system (pole
farther from the vertical axis) angles vary more gradually.

It may be noted to put an end to this discussion that, as before, the gain decreases
as # when |w| — oo, both segments P;1M and P,M in the denominator of the
frequency response increasing as ||.

On the following graphs showing the magnitude (Fig. 2.17) and phase
(Fig. 2.18) of the gain, in the case where L = 0.1, C = 0.1 and where R was varied
by taking the values 0.1, 0.3, 0.5, 0.7, 0.9.

The module is shown in linear scale:

% represents roughly the half width of the modulus of H(w).

Phase varies from 7 to —.

The resonance frequency w, which is the abscissa of the maximum of the
frequency response modulus, is analytically determined by annulling the derivative

12 T ! T T T T T

(o)

@ (radfs)

Fig. 2.17 Numerical simulations: gain magnitudes for different damping

Fig. 2.18 Numerical simulations: gain phases for different damping
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of |H(w)|. The denominator of the frequency responsemodule includes the sum of
squares of the real and the imaginary parts:

1
el = \/(1 — LCa?)* + R2C?? (2.49)

The resonant frequency w, is the frequency for which w =0.

This amounts to calculating the solutions of the equation canceling the derivative
of the denominator. It comes:

1 R?

— . 2.
LC 212 (2:50)

W, =

There are two solutions with opposite signs. Only the positive frequency is
significant for real signals. It can be seen on the positive root that as the resistance
R increases it causes the decrease of the resonant frequency, as it was anticipated
qualitatively.

To calculate the filter gain at the resonance, this root is reported in the gain
expression. It comes:

1 1
H ()| = 2 = RCon
(1-LCw?)" +RC?? ®o

(2.51)

Where wg is given by (2.42). This result is remarkable for its simplicity.

2.2.4 Bode Representation of the Gain

Figure 2.19 shows the variation of 20 log,(|H(w)]|) :f(20 log,, :70) for the fol-

lowing values of the system parameters: R=1Q, L=10"*H, C= 10 °F.

This gives the resonant frequency w, = 9.975 x 10*rad/s. The gain for the
resonance frequency is approximately equal to 20 dB. The theoretical gain in
decibels for the resonance frequency is calculated from the formula (2.51). It is

1
2010g,0/H ()] = 2010g,0 e = 20.01 dB. (2.52)

The system resonant frequency w, = 9.975 x 10* rad/s is slightly lower than the
frequency wo = 9.9875 x 10*rad/s, imaginary part of the positive pole frequency.
Resonance is sharp.
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Fig. 2.19 Log-log plot of 40 T T T T
gain magnitude (second order i i i i
system)

‘H (w)lin dB

b (R R
60 -40 -20 0 20 40

20logyo(@/ @)

Note the linear behavior of the curve at high frequencies. As seen in Fig. 2.19, at
high frequencies |H(w)| decreases of 40 decibels per decade (when the frequency is
multiplied by 10), as characteristic of the decay in % This decrease corresponds
to —12 dB per octave (when the frequency is multiplied by 2).

The asymptotic line to the high frequency curve (dotted line in Fig. 2.19) passes
through the point (0, 0), that is to say, for the abscissa value w = w,. Please note
that this is only true in the case of sharp resonance that is specified in the following
paragraph.

2.3 Case of Sharp Resonance

We have seen that in the case of a sharp resonance, the resonance frequency which
corresponds to the maximum of |H(w)| is near wy. We can use in this case an
approximate expression of |[H(w)| in the vicinity of the resonance. Geometrically,
when o is near wy, we allocate all of the variation of the modulus |H(w)]| to the
variation of the segment MP;. In the scheme of this approximation, the gain is
maximum when M is in Hy:

1 1 1
H ~|H =— . 2.53
H(0) ey H (@0)] = s o (2.53)
We have approximately H; P, = H,H,, then:
H(0) o H(@0)] = (2.54)
w >~ (0] = — . .
max O LCH P\ H\H,

Under this approximation of sharp resonance, as H|P; = % and H H, = 2wy,
we have
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then:
=0y ——=——. (2.55)

Bandwidth at —3 dB of the resonator
Noting M, the point on the imaginary axis as H{M; = HP| and w; the cor-
responding angular frequency, we have

H ()| 1 1 1 1 1
)| =——— ~
LCM,P M P, LC H,P
11 1£2 \/(M1H1)2+(H1P1)2 12 256
1 1 1 (2.56)
LC /2(H1P1)2H1H2
Therefore
H ()| = —=|H(w)] (257)
1 _\/§ max* .
Expressing this ratio in decibels:
1
H(w1)|gg = 201ogo|H (w1)| = 2010g,o|H(®)|,x + 2010810 —,
|H(01)]4p 10lH (1) 10lH ()] 0775 (2.58)

|H(w1)|dB = |H(w)|max(dB)_3 dB.

At point M, (pulsation w;) symmetrical of M; with respect to Hj, the attenuation
is also 3 dB relatively to the maximum gain of the filter. Bandwidth at =3 dB is
then as follows:

R
ACUZ(L)z—O)l =2H1P1 Zz

2.4 Quality Factor Q

We name Quality factor Q the ratio

Wo

2= 40

(2.59)

The sharper the resonance, the smaller Aw and the higher Q.
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In this case:

1 R? LC 47

Since the damping is small, the second term in the root can be neglected when
compared to the first term. Then

1L L1
0 = /EI_QZ \/;E (2.61)

Or, writing approximately

L
LC? =1, Q= %. (2.62)

It is noted that, in the case of sharp resonance, the value of Q is equal to the
maximum gain at resonance. Indeed, it has been seen that |H(w,)| = #«m' As in the
case of sharp resonance, the relationship LCw% =1 is approximately satisfied, it
finally comes |H(w,)| =22 =
ceding paragraph (Eq. (2.55)).

Decrease over time in the amplitude of the eigenfunctions corresponding to
the values of the poles

The eigenfunctions of the resonant system for values of s equal to those of the
poles have the form

0, as it had been shown geometrically in the pre-

R R

sipf e_itij“’(lt _ e—iteij(uot (263)

€

The amplitude of these functions varies with time as e Ina pseudoperiod

Ty = (2773, this amplitude will vary by a factor

e T — o 7T — o7, (2.64)
When the Q-factor is great compared to 1, we can perform a limited expansion of
the exponential and write: e ¢ 2 | -5+

In a pseudoperiod, the amplitudes of functions e’ and e*' decrease by a factor

g. It will be shown in the following that the following linear combination of these

functions e*'?’ is the response of second order system in a very short pulse (Dirac
pulse). This impulse response has the form:

hf) = ———— (e — ) U(r). (2.65)



32 2 First and Second Order Systems

In practice, in the case of complex conjugate poles, one measures the Q-factor
from the decay of A(f) during the pseudoperiod Ty.

Summary

The important first and second order electrical R, L, C circuit systems were studied
in this chapter. The position of the poles of the transfer functions was used for
qualitatively explaining the variation in frequency of the module and phase
responses. This interpretation is fundamental in understanding the behavior of these
filters and provides a generalized view of the frequency response of electronic
systems. The Bode representation has been presented. The concept of quality factor
used to characterize the properties of many physical systems was introduced.

Exercises

I. Consider the circuit composed of the series arrangement of a resistor
R=100 Q, an inductor coil value L =0.01 H, and a capacitance
C = 10"'° F. Note e(t) the voltage across the assembly and v(f) the voltage
across the capacitor.

1. Itis assumed that the emf e(7) has the form e(¢) = e where s is a complex
number capacitor (s = g+ jw).

(a) Give the expression of the voltage v(¢).

(b) Give the expression of the filter transfer function. What are the poles of
this transfer function? Represent the position of the poles.

(c) Give the expression of the filter’s frequency response. By a geometric
argument based on the position of the poles, give the aspect of the
variation of gain with frequency module.

2. Note that the transfer function can be written as a product of two terms of
the first order H(s) = H;(s)H(s). From the variation of |H;(w)| with @,
give the —3dB bandwidth of the first filter. By noticing that |Hz(w)
remains approximately constant in the vicinity of the resonance, give the
bandwidth at =3 dB of |H(w)|.

II. Consider again the circuit including the elements R, L and C placed in series
with the output at the resistor terminals this time. Show that the transfer
function is in this case:

RCs

H(s) = — =%
R TR T

Locate the zeros of H(s) in the complex plane. Show that the circuit does not
allow the continuous to pass (the frequency response is zero at zero fre-
quency). Can this system keep a resonator character? Show that the resonance

frequency is equal to wgy = 4 /i whatever damping. Explain qualitatively that

the presence of the zero of the transfer function pushes the positive resonance
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Fig. 2.20 Gain magnitude (a); with zoom in (b)

III.

A)

(B)

frequency toward higher frequencies, frequency as the negative pole frequency
tends to decrease.

Which is the gain of the resonance filter? Show that the gain decreases at high
frequencies.

Qualitatively, observe that the presence of the zero of the transfer function at
o = 0 pushes the positive resonance frequency toward higher frequencies,
while the negative pole tends to decrease that frequency. What is the filter gain
at resonance? Show that the gain decreases as % at high frequencies.

Create a circuit of the second order by arranging an inductor L, a resistor R and
a capacitor C in series. The input signal is feeding the ensemble and the output
signal is taken across the capacitance.

The modulus of this filter frequency response is given by Fig. 2.20:

1. What is the value of the quality Q-factor of the circuit?

2. (a) Making the approximation of a sharp resonance, taking R = 4.7 Q,
evaluate L and C knowing that the resonant frequency is precisely
6.1389 10° Hz.

(b) Place the poles of the filter transfer function in the Laplace plane.

The impulse response of that filter is given in Fig. 2.21.
Evaluate from these curves L and C the quality factor of the circuit, still taking
R=47Q.

Solution:

(A)

In the graph of the frequency response we can estimate its maximum ampli-
tude at about 46. In the course, it has been shown that the maximum amplitude
is equal to the Q-factor. So we evaluate Q = 46.
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Fig. 2.21 Impulse response (a); with zoom in (b)

(B)

Second method for determining Q: Q = Aw = Af (Af is the bandwidth at

—3 dB). The amplitude at —3 dB is estimated to f/6- =325.
On the graph of the frequency response the resonance frequency is seen to be
fo=6.14 x 10°Hz. The frequencies for which the frequency response is
attenuated by —3 dB are 6.21 x 10° Hz and 6.075 x 10° Hz, and It can be

inferred that Q = % = 45.5, which value must be equal to the value

given by the first method, the difference being due to uncertainties determi-
nations on the graph. Since Q = 45.5 = @ , the resonance frequency in this
case of sharp resonance is given by: LCw0 = 1. It comes L = 5.510° H and
C=12x10°F

Determination from the impulse response: we measure graphically the pseu-

doperiod Ty of the signal and we deduce wy = 2" In a pseudoperiod, the

amplitude varies by the factor e 2. We deduce Q from it. We then calculate the
constants L. and C of the circuit knowing R = 4.7 Q.



2 Springer
http://www.springer.com/978-3-319-42380-7

Analog and Digital Signal Analysis

From Basics to Applications

Cohen Tenoudji, F.

2016, XX, 608 p. 256 illus., 9 illus. in color., Hardcover
ISEM: 978-3-319-42380-7



	2 First and Second Order Systems
	2.1 First Order System. R, C Circuit
	2.1.1 Transfer Function
	2.1.2 Frequency Response
	2.1.3 Graphic Representation of the Frequency Response
	2.1.4 Geometric Interpretation of the Variation of the Frequency Response
	2.1.5 R, C Circuit with Output on the Resistor Terminals

	2.2 Second Order System. R, L, C Series Circuit
	2.2.1 Transfer Function
	2.2.2 Second Order System Frequency Response
	2.2.3 Geometric Interpretation of the Variation of the Frequency Response
	2.2.4 Bode Representation of the Gain

	2.3 Case of Sharp Resonance
	2.4 Quality Factor Q


