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Abstract The aim of this paper is to develop a structural approach for the con-
struction of statistical criterion of static and fatigue failure for the transversely
isotropic piezoelectric materials. We use a probabilistic model of the mechanism of
brittle microfracture. The microdamageability is considered as a process of
appearance of flat elliptic or circular microcracks randomly dispersed over volume,
the concentration of which increases with a load. Daniel’s structural model of
accumulation of microcracks is used for progressive microdamageability. Statistical
criterion is convenient to use in the study of fatigue failure under cyclic loading.
The reason for its applicability in such problems is experimentally established
connection of fatigue failure mechanism with the phenomenon of accumulation of
microdamages in the material. Statistical criterion relates macrodestruction begin-
ning with a certain critical value of microcracks density. The model consists of
derivation of constitutive equations for a damaged material, choosing the fracture
criterion and the law of microdamage distribution; and determining effective
electroelastic properties of the damaged medium and the model of accumulation of
microdamages by the modified Eshelby method. The approach proposed makes it
possible to find the residual ultimate strength of the material after n-fold loading and
the conditional fatigue limit for the prescribed testing base N.

1 Introduction

The necessity of studying the processes of static and dynamic deformation of
piezoceramic bodies is determined by continuously expanding range of application
of piezoceramic materials. In frame of the mathematical theory of deforming of the
piezoceramic such materials are treated as brittle and their fracture occurs at low
strain level. A large body of studies reviewed in [1–5] shows that fatigue failure of
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materials is a complex multiple-stage process which includes dispersed microfailure
of structural elements. This is attributed to the fact that engineering materials
contain randomly scattered over a volume microdefects, which under cyclic loading
initiate microcracks. Later these microdefects coalescence lead to formation of
macrocracks and loss of the body integrity. Moreover, in accordance with the ideas
of the mechanics of deformable solids, the main reason of fatigue failure of
structural members under cyclic loading is accumulation of microdefects to the
point where their concentration becomes critical due to increase in values of true
stresses as a result of decrease in the effective area of a cross section with the cycles
of loading. Because of this the inherent random nature of fatigue failure requires a
probabilistic treatment to evaluate the life of structural components using the
models describing process of simultaneous elastic deformation and dispersed
fracture of materials [6, 7]. For example, some life assessment approaches based on
the continuum mechanics and fracture mechanics models are outlined in [8, 9].

In the present paper, the new probabilistic structural approach for determining
the service life of piezoelectric materials under multiple static or cyclic loading
based on the microdamageability model [10] is proposed. In implementing this
approach, the statistical fatigue failure criterion expressed in terms of damage
measures (microcrack density) is employed in combination with the approximate
model of microcrack accumulation under repeated loading. The criterion is iden-
tified with the statistical fracture criterion [2, 11]. The statistical nature of such
criterion is attributed to the probabilistic character of microfailures in a microin-
homogeneous material. The main point of the statistical criterion lies in the fact that
the value of microdefect concentration, which origin under the loading kind being
considered, is identified with the critical value of microdefect concentration that
initiates the start of macrofailure (formation of a macrocrack) independently of the
stress-state mode. It is assumed that the microdefect concentration under reversed
cyclical loading increases only during the tensile half cycle when the internal
stresses increase to amplitude value. At separation-like mode of microfailure, as
distinct from shear-like one, the effective area of the load-bearing cross section in
compression does not change due to the fact that the planes of the arising cracks are
collinear with the direction in which compression acts.

We consider a mechanical failure of material and at this stage of investigation of
the problem it is not essential whether such failures are caused by the mechanical,
electrical, or electromechanical loading. The general procedure of the approach
includes following stages. In the first phase, we derive constitutive equations for a
damaged material, choose the fracture criterion and low of microdamage distribu-
tion. Such material is simulated by a solid with reduced electroelastic characteris-
tics. In this case the type of elastic symmetry of medium being simulated depends
on the pattern of microdamage distribution over the body volume as well as on the
stress–strain state volume of a material. At the second phase, the method for
determining effective electroelastic properties of the damaged medium and the
model of accumulation of microdamages are employed. We assume that during
deformation, cracks do not grow, do not interact. The volume density (concentra-
tion) of microdefects varies with increase in the level of average stresses due to
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features of orientation of anisotropic materials. Destruction of the structural ele-
ments occurs at different levels of stress due to random nature of the orientation and
differences of the values of ultimate strength of the structural elements in different
directions.

2 Structural Model of Accumulation of Flat Microcracks
in the Elastic–Brittle Material

To describe the phenomenon of fatigue failure of materials, we use the structural
model of material microdamageability. The microdamageability is considered as the
process of occurence of the flat scattered microcracks. According to this model, the
size and distribution of microcracks in real bodies are associated with discontinu-
ities of structural elements. The shape and dimensions of the cracks are identified
with them for ruptures in the cross sections of the structural elements of the
material. To describe progressive accumulation of microdamages, the Daniels
structural model is used. The main point of this model is outlined in detail in
references [11, 12].

With respect to transversally isotropic material, which is simulating prepolarized
piezoceramic, the Mises–Hill strength criterion can be used. Let the average stresses
σij i, j =1, 2, 3ð Þ be given in the laboratory (fixed) coordinate system 0x1x2x3,
associated with a representative volume of the material, then this criterion can be
written as

σ211
σ2ðbiÞ11

+
σ222

σ2ðbiÞ11
+

σ233
σ2ðbiÞ33

+
σ212

σ2ðbiÞ12
+

1
σ2ðbiÞ13

σ213 + σ223
� �

−
2

σ2ðbiÞ11
−

1
σ2ðbiÞ33

 !
σ11σ22

−
1

σ2ðbiÞ33
ðσ22σ33 + σ11σ33Þ=1.

ð1Þ

The main axes of symmetry of mechanical properties are directed along coor-
dinate axes (0x3—polarization axis, axes 0x1, 0x2 lie in isotropic plane). According
to this criterion, to determine fracture start, it is necessary to know the four con-
stants. These constants characterize fracture under pure tension (i=1) or pure
compression (i=2) in main direction of anisotropy σðbiÞ11 = σðbiÞ22, σðbiÞ33

� �
and

pure shear in main planes σðbiÞ12, σðbiÞ13
� �

.
For the considered material the tensile strength (compression) and pure shear

dependents on the direction determined by angle ϑ—angle of rotation of coordinate
system 0x1x2x3 relative to the axis 0x2 or axis 0x1. The formulas for the tensile
strength (compression) σðbiÞϑ in a direction determined by the angle ϑ, measured
from the 0x3 axis, can be written as
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σ′ðbiÞϑ = σ′ðbiÞ33 =
σðbiÞ33ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 ϑ+ sin2 ϑ
σ2ðbiÞ33
σ2ðbiÞ11

+
σ2ðbiÞ33
σ2ðbiÞ13

− 1
� �

sin2 ϑ cos2 ϑ

s

=
σðbiÞ33ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos4 ϑ+ sin2 ϑ
σ2ðbiÞ33
σ2ðbiÞ11

+
σ2ðbiÞ33
σ2ðbiÞ13

sin2 ϑ cos2 ϑ
r .

ð2Þ

Let 0′x′1x
′

2x
′

3 be the local coordinate systems chosen in such a way that the 0′x′3 axes
would be directed along the normal to the sphere (unit radius) surface. The ele-
mental area dΩ= sin ϑ dϑ dψ is singled out around the 0′x′3 axis on the surface of
the random sphere. This area cuts N structural elements (ϑ is the longitude; ψ is the
latitude). In this case, the same local true stress σ3̄3 acts in the section of the N
intersected structural elements. The true stresses σ3̄3 differ from the conditional σ′33
in that the first ones refer to the areas of the damaged medium whereas the second
ones refer to the areas of the continuous medium. The local conditional stresses σ′33
and average stresses σkl given in the body are connected by equation

σ′33 = σklα3kα3l,

where α3k, α3l are the direction cosines of the local coordinate system with respect
to the laboratory coordinate system. The relation of the first strength theory

σ3̄3 ≥ σ ϑð Þ ð3Þ

Here σ ϑð Þ is the random value, which stands for the ultimate magnitude of the
true tensile or compressive normal stresses σ3̄3 for differently oriented structural
elements. When the true tensile stress σ3̄3 reaches up the level of σ ϑð Þ in the
appropriate elemental area, the microcracks of rupture are formed with side surfaces
being normal to the direction axis 0′x′3. When the conditional stress is compressive,
the microcracks are oriented predominantly in parallel to the direction of σ ̄33 due to
the difference of Poisson’s ratio of the structural elements. To approximate distri-
butions of the microstrength properties of structural elements, the power law is used

FiðσiÞ= σi − σ0i
σmi − σ0i

� �αi

ð4Þ

and

fi σið Þ= dFi σið Þ
dσi

= αi
1

σmi − σ0i

� �
σi − σ0i
σmi − σ0i

� �αi − 1

ð5Þ

is the distribution density of the random value σi.
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σ0 i, , σm i, αi are the distribution parameters; σ0 i, , σm i are minimal and maximal
values of these variables, respectively; αi is the microstrength scattering parameter.
The distribution parameters are determined in sample quantities by the method of
moments in particular. For example, it is necessary to determine, using experi-
mental data, two selective moments: average magnitude σ ̄b1 and dispersion of the

random value D̄2
b1.

σb̄1 =
Zσm11
σ01

σ f1dσ =
α1

1 + α1
σ ̄m1 + σ01;

D̄2
b1 =

Zσm1
σ01

ðσ − σ ̄b1Þ2f1dσ = α1

α1 + 1ð Þ2 α1 + 2ð Þ σ ̄
2
m1,

ð6Þ

here σm̄1 = σm1 − σ01. From (6) follows

k21 =
D̄2

b1

σ ̄b1 − σ01ð Þ2 =
D̄b1 ̸σb̄1ð Þ2

1− σ01 ̸σb̄1ð Þ2 =
1

α1 α1 + 2ð Þ ;

α1 = − 1+
1
k1

ffiffiffiffiffiffiffiffiffiffiffiffi
1+ k21

q
, σ ̄m1 =

1+ α1
α1

σ ̄b1 − σ01ð Þ.
ð7Þ

Due to the small size of the structural elements it is impossible to determine
σ0i, , σmi, αi directly. To find these values indirect methods are used. Experimental
data of corresponding conditional parameters of macrostress of rupture is taken
from set of macrosamples. The procedure of determining of these parameters is
described in more detail in [11].

It should be noted that the element fails when the stress σ ̄33 reaches up to the
ultimate magnitude. Failure of single elements forms the population of independent
random events. After some quantity of structural elements fail, redistribution of
stresses between the nonfailed elements occurs.

If the conditional local tensile stress σ′33 presents an independent loading
parameter, then the true local stress in the sections with nonfailed structural ele-
ments can be regarded within the framework of the model being considered as the
random value σ3̄3 = σ′33 ̸ 1− n1

N

� �
. The distribution of the true local stress σ ̄33

depends on the number n1 of the failed elements. N is the total number of the
elements. The expected value of the number n1 has the form ⟨n1⟩=NF1 σ ̄33ð Þ, and
the coefficient of variation becomes kw1 =

1−F1 σ ̄33ð Þ
NF1 σ ̄33ð Þ
h i1 ̸ 2

. From the last formula, it

follows that for real materials it is possible to neglect the scatter of the values n1 and
σ3̄3. As a result, we have
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σ ̄33 ≈
σ′33

1−F1 σ ̄33ð Þ ð8Þ

Taking into account (3) and (5), the densities of microcracks of normal rupture
under tension or compression are determined by expressions

εi =Fiðσ3̄3Þ= σ ̄33 − σ0i
σmi − σ0i

� �αi

ði=1, 2Þ. ð9Þ

In the case of local true tensile stresses σ3̄3, we have formula (8). In the case of
compression i=2ð Þ, the cracks origin surfaces are parallel to the direction in which
local normal stresses act. In this connection the effective area remains unchanged
and, as a result, σ3̄3 = σ′33.

Thereby, the average densities microcracks of structural elements, which are cut
by the unit surface of the representative volume, are defined by the relations

ε1 =
1
N ̄

Z2π
0

Zπ
0

F1 σ ̄33ð ÞdΩ=
1
N ̄

Z2π
0

Zπ
0

F1 σ ̄33ð Þ sin ϑ dϑ dψ ð10Þ

in case of the stresses σij are tensile, and

ε2 =
1
N ̄

Z2π
0

Zπ
0

F2 σ′33
� �

dΩ=
1
N ̄

Z2π
0

Zπ
0

F2 σ′33
� �

sin ϑ dϑ dψ ð11Þ

in case of the stresses σij are compressive.
N ̄=4π is the normalizing factor, which follows from the condition

1
N ̄

Z2π
0

Zπ
0

Fi σ ̄33ð Þ sin ϑ dϑ dψ =1.

The physical meaning of the values εi i=1, 2ð Þ is that it represents the relative
fraction of the unit area of the sphere surface where the normal stresses (tensile or
compressive) exceed the ultimate strength σi of the material of the microparticles
that are cut by the surface of this sphere. The volume concentration of flat
microdefects which are destroyed under tension or compression is determined by
the ratio of the number of destructed microparticles N0i to their total number N
ðpi =N0i N̸Þ in the representative volume. Such a result can be obtained using the
technique that is common in petrography in analyzing the thin sections of sedi-
ments, so pi = εi.

16 D. Babich et al.



3 Statistical Fracture Criterion in Terms of Damage
Measures of a Material

Relations (1)–(5) and (8) make it possible to determine the microcrack density
allowing for loading rate and their orientation, which depends on the direction of
the local conditional stresses σ′33ðϑ,ψÞ that cause microcracking. Of especial
importance is allowed for the orientation in the case of complex stress state since
macrocracks arise mostly in the planes normal (parallel) to the direction in which
the maximum tensile (compressive) local stresses σ′33max

ðϑm,ψmÞ act.
For two-parametric approximation of the ultimate microstrength distribution, the

microcrack concentration in the random volume of transversally isotropic piezo-
electric material is defined by the formula

εi =Fi σ ̄33ð Þ= σ ̄33
σmi

� �αi

i=1, 2ð Þ, ð12Þ

where under tensile stress (σ′33 > 0) and under compression (σ′33 < 0) for local stress
σ3̄3 there are formulas

σ ̄33 ≈
σ′33

1−F1 σ ̄33ð Þ , σ ̄33 = σ′33 ð13Þ

The statistical fracture criterion expressed in terms of damage measures of a
material is defined by the relation

Fiðσ3̄3maxÞ≤ εicr i=1, 2ð Þ, ð14Þ

where Fiðσ3̄3maxÞ= εim is the concentration of cracks in the cross section in which
the normal local conditional stress reaches up to the maximum value, and εicr is the
critical value of the concentration of cracks.

It should be noted that the accumulation of microcracks in the material depends
on the specific loading of the body (the multiplicity, the loading rate, and others.).
We suppose that before the deformation in material was the initial microdamage
with density εi0. The distribution function of the ultimate strength of the structural
elements (12) in this case determines the relative proportion of structural elements
not destroyed in remaining cross-sectional area of the body. The relative area of
undefeated structural elements is 1− εi0ð Þ, and the tensile strength in this area is
equal to or less than a certain value σ. Then, under monotonic (static) loading, when
stresses increase up to the value σ′33 the microcrack concentration is defined as
follows:
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εi = εi0 + 1− εið ÞFi σ ̄33ð Þ= εi0 + 1− εið Þ σ ̄33
σi

� �αi

i=1, 2ð Þ ð15Þ

Critical concentrations of microcracks when εi0 = 0 are determined by the
relation

ε1cr 1− ε1crð Þα1 − 1 =
σ′b1ð Þ33
σm1

 !α1

, ε2cr = 1− ε2crð Þ
σ′b2ð Þ33
σm2

 !α2

. ð16Þ

Here, σ bið Þ33 = σ bið Þ ϑ i=1, 2ð Þ are the average values of the ultimate strength,
which are calculated by the formula (2) under tension and compression, respec-
tively. Samples of material are cut at an angle ϑ to the direction of the principal axis
of anisotropy, which coincides with the axis of the prepolarization.

In the case of complex stress state determined by main stresses σii i=1, 2, 3ð Þ in
the laboratory coordinate system, the strength of statistical criterion for transversely
isotropic body can be constructed on the basis of Mises–Hill strength criterion. For
this purpose, the expression of Mises–Hill strength criterion (1) is represented in the
main stresses

σ211
σ2ðbiÞ11

+
σ222

σ2ðbiÞ11
+

σ233
σ2ðbiÞ33

+
2

σ2ðbiÞ11
−

1
σ2ðbiÞ33

 !
σ11σ22 −

1
σ2ðbiÞ33

ðσ22σ33 + σ11σ33Þ=1.

ð17Þ

Stresses σkk , σ bið Þkk k=1, 2, 3ð Þ in (17) can be expressed by the corresponding
densities of microcracks ε ið Þk . Using (12), we get following formulas:

ε ið Þk =Fiðσk̄kÞ= σ ̄kk
σ mið Þk

� �α ið Þk
ðk=1, 2, 3Þ, ε bið Þk =Fiðσ ̄ bið ÞkkÞ=

σ ̄ bið Þkk
σ mið Þk

� �α
ið Þk
;

Hk = ðε ið Þk − ε ið Þk0Þ
1

α ið Þk ð1− ε ið ÞkÞ1−
1

α ið Þk ;

Gk = ðε bið ÞkÞ
1

α ið Þk ð1− ε bið ÞkÞ
1− 1

α ið Þk ;

σkk =Hkσ mið Þk; σ bið Þkk =Gkσ mið Þk ;
σkk

σ bið Þkk

� �2

=
Hk

Gk

� �2

,

ð18Þ

Thereby, formula (17) can be written in concentrations of microcracks

∑
3

k=1

Hk

Gk

� �2
+

2

G2
1 σ mið Þ1
� �2 −

1

G2
3 σ mið Þ3
� �2

" #
× H1H2ðσ mið Þ1Þ2

−
H3

G2
3 σ mið Þ3
� � ∑

2

k=1
σ mið ÞkHk =1.

ð19Þ
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In (18) and (19) it is indicated by the index i tension (i=1) or compression
(i=2), the index k is associated with the symbols of the principal axis of the
anisotropy of the material.

4 Constitutive Equations of State for the Piezoelectric
Ceramics with Cracks

Polarized piezoceramic is modeled as a transversely isotropic medium with the axis
of isotropy coincident with the axis of polarization. In the laboratory coordinate
system 0x1x2x3, (0x3 is axis of polarization) state equations have the form

ε11 = a1111σ11 + a1122σ22 + a1133σ33 + d113E3,

ε22 = a1122σ11 + a1111σ22 + a1133σ33 + d113E3,

ε33 = a1133σ11 + a1133σ22 + a3333σ33 + d333E3,

ε23 = a2323σ23 + d233E2, ε13 = a2323σ13 + d233E1,

ε23 = a1212σ12 = 2 a1111 − a1122ð Þ σ12,
D1 = ϶11 E1 + d232σ13, D2 = ϶11 E2 + d232σ23,

D3 = ϶33 E3 + d113 σ11 + σ22ð Þ+ d333E3.

ð20Þ

Suppose that underloading in piezoelectric materials causes microdamages in the
form of flat circular cracks. This type of microfracture, most unfavorable to
the material because of the degree of influence of microcracks on the stiffness of the
material is mainly related to the area and volume of cracks opening.

To determine the effective electroelastic constants in (20), the principle of the
energy equivalence is used:

W =W ð0Þ + W̄ ð21Þ

Here,

W =
1
2
σijεij +EjDj =

1
2
aEijkl σijσkl +

1
2
Ei diklσkl + ϶σik Ek
� � ð22Þ

is the energy density of deformation of the continuous electroelastic medium [7]
that simulates the damaged material;

W ð0Þ =
1
2
aEð0Þijkl σijσkl +

1
2
Ei dð0Þikl σkl + ϶σð0Þik Ek

	 

ð23Þ

is the density of the deformation energy of a solid medium; subscripts with E, σ in
(23) indicates the dependence of these parameters on the electric Eð Þ field and
mechanical stress σð Þ; W̄ is the density of the released internal energy of the
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damaged medium, which can be represented as the change in mechanical and
electrical energy. These changes in mechanical and electrical energy are associated
with the damage of the material in the form of closed or opened flat cracks.

The effective electroelastic constants in (10) are determined from expression
(11). For this purpose the terms entering in (11) should be written in terms of the
components of the stress tensor σij and components of the electric field vector. It is
assumed that Ei and σijEi are given in a representative volume. The coefficients of
the terms σ2ij, σijEi, EiEj should be equated. It makes it possible to determine the
effective compliances aijkl, piezoelectric coefficients dikl, and dielectric constants ϶ik
of fractured materials by

aijkl = a 0ð Þ
ijkl + aījkl , dijk = d 0ð Þ

ijk + dījk,

϶ij = ϶ 0ð Þ
ij + ϶̄ij ði, j, k, l = 1, 2, 3Þ ,

ð24Þ

where the values aījkl, dījk, ϶̄ij are the changes in the electroelastic parameters of a
continuous medium, due to the disruption of the continuity of the material.

For purely elastic materials, the density of the released elastic energy is deter-
mined on the basis of the Eshelby principle [13]. With regard to inhomogeneous
electroelastic materials, the Eshelby principle is modified due to the need to take
into account the electric component in the overall energy balance of the body. For
this purpose, a local criterion of microfracture for electroelastic materials is used
[14]. Due to the disruption of connections of the nth crack under rupture and
opening (shear) of crack faces, the internal elastic energy is released and electric
energy is loosed. The density of the released energy can be represented as the work
of relative sliding and opening of crack faces induced by the action of stresses,
which may arise under the given loading in the microvolumes of a continuous free
of crack medium, and is determined as

W̄n =
1
2

Z
sn

∑
3

i=1
σ 0ð Þn
i3 u ̄ni +Dð0Þn

i Φn
i

	 

dsn , ð25Þ

where un̄i i=1, 2, 3ð Þ are the discontinuities of displacements at points of the
surface of the nth crack in the direction of the local coordinate system; sn is the half

of surface area of the nth crack; σ 0ð Þn
i3 ð i=1, 2, 3Þ are the components of the

tensor of the given average stress in nth cracks coordinate system—0nxn1x
n
2x

n
3. In the

case of elliptic cracks, the 0xn1, 0x
n
2 axes are directed along major (an) and minor

(bn) semi-axes, respectively, while the 0nxn3-axis directed along the normal to their

planes; Dð0Þn
i , are the components of the electric induction in a solid medium in nth

cracks coordinate system, Φn
i i=1, 2, 3ð Þ are the discontinuities of the electric

potential at the points of microcracks surfaces, which are directed along the axes in
nth cracks coordinate system. With the use of (24) the expression for the change of
the density energy of deformation due to the formation of elliptical or circular
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microcracks in the inhomogeneous transversely isotropic material is determined in
accordance with the procedure for isotropic materials [14]. In particular, the density
of the released energy under tensile could be expressed in the form

W̄ =
1

12π
∑
3

k=1

Z2π
0

Zπ
0

F1 σ ̄33ð ÞB′

k sin ϑ dϑ dψ . ð26Þ

In case of the compression, we have

W̄ =
1

12π
∑
2

k=1

Z2π
0

Zπ
0

F2 σ′33
� �

B′

k sin ϑ dϑ dψ . ð27Þ

B′

k is determined by expression

B′

k θ,ψð Þ= 1
2π

Z2π
0

1
2
S′k σ′k3
� �2 − 1

2
E′

k dkilσ′il + ϶ki
� �

E′
i

� �
dϕ k=1, 2, 3. ð28Þ

S ̸
k a 0ð Þ

klmn, θ
n,ψn,ϕn

	 

in (28) denotes compliances of the material in the nth

cracks plane. Definition of which is an independent task for individual crack.
Engineering elastic constants are expressed in terms of the effective compliances

by relations

1
Eii

= aiiii, −
νij
Eii

= ajjii, Gij =
1
aijij

i, j=1, 2, 3. ð29Þ

Eii, Gij, νij are elastic, shift moduli, Poisson’s ratios accordingly.
A two-parameter distribution function of the ultimate strength of the structural

elements of the material is used to determine the effective electroelastic parameters.
Additionally, we rely on the continuum model of piezoelectric ceramics with
progressive accumulation of damageability in the form of circular microcracks in
the isotropic plane [15]. Material is subjected to uniaxial tension stresses σ33 in the
direction of polarization. And the component of electrical field E0

3 is given. Under
these assumptions, electroelastic effective parameters are determined by the
expression of type (24)

a3333 =
1
E0
33

+ p
4
π

1− ν′
� �2
E0
11

" #
,

϶33 = 1− pð Þ ϶ 0ð Þ
33 , d333 = 1− pð Þ d 0ð Þ

333 .

ð30Þ
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When considering the cyclic alternating load it should be noted the difference in the
mechanism of microfracture of material under the same multiple compression and
multiple tensile stresses. In the first case, the concentration of microdefects in
subsequent compressions (excluding first) is not changed, in the second, it increases
due to the decrease in the effective cross-sectional area.

To illustrate the approach for the determination of the durability of structures
such as piezoelectric transducers electromechanical power using statistical fracture
criterion, we consider the problem of the durability of piezoceramic rods during
longitudinal vibrations excited by the time-variable (t) difference of potential
exerted on the end faces of the rod in the form

ψ x3 = 0 =ψ x3 = l =±V0eiωt. ð31Þ

For solving the problem of the durability of the rods it is necessary and sufficient
to have the dates of the maximum values of the axial normal stress under given
parameters of external loading, as well as the critical values of concentration of
microcracks under pure tensile samples of the concrete material. Procedure for
determining the durability of material under more general types of electrome-
chanical loading remains the same for the resource problems with more complex
structures. The definition of parameters in (5) is independent task in each case.

Thus, the first step in solving the question of the durability of structures is the
solution of the problem of stress–strain state of the structure under specific oper-
ational impacts. The problem of the longitudinal vibrations piezoceramic prismatic
rod with length l and the axial polarization was considered in [6]. Vibrations excited
by the variable potential difference were applied to the electrodes of the end of rod.
External stresses on the entire surfaces of the rod are absent. Equation (20) for this
case in coordinate system 0x1x2x3 have the form

εij = aijkl σkl + dij kEk ð i, j, k, l=1, 2, 3Þ;
Di = dijkσjk + ϶ij Ej ð i, j, k, l=1, 2, 3Þ ,

ε33 = aE3333σ33 + d333E3; D3 = ϶σ33 E3 + d333σ33.

ð32Þ

The problem on longitudinal vibrations of the rod is reduced to solving of the
equation for axial displacements u(x, t)

u3, 33 + d333ψ , 33 = ρaE3333u3, tt;
d333
aE3333

u3, 33 − ϶σ33 1− k2333
� �

ψ , 33 = 0,
ð33Þ
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where k2333 = d2333 a̸
E
3333 ϶σ33 is longitudinal static electromechanical coupling factor,

ρ is the density of material.
Solving this task the amplitude value of axial stress in the rod is received in the

form

σ ̄33 =
Aλ

aE3333 1− k2333
� � cos λ l

2
− x3

� �
+

d333
aE3333

B, ð34Þ

where

A= −
d333 1− k2333

� �
λl
2 cos

λl
2 − k2333 sin

λl
2

V0; B=
λl
2 cos

λl
2

λl
2 cos

λl
2 − k2333 sin

λl
2

2V0

l

� �
;

λ=ω c̸, c=1 ̸
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρaE3333 1− k2333

� �q
.

ð35Þ

ω—is frequency.
According to (34) and (35) the maximum amplitude value of stress is in the

middle of the rod

σ ̄33 =
Aλ

aE3333 1− k2333
� � + d333

aE3333
B=

d333ω cos ωl2c − 1
� �

caE3333
ωl
2c cos

ωl
2c − k2333 sin

ωl
2c

� �V0. ð36Þ

Let ε1 0ð Þ =0 and material is subjected to uniaxial cyclic tensile stress with
amplitude value σ3̄3. The first (n = 1) tensile half cycle of the undamaged rod leads
to origin of the damage with the density

ε1 1ð Þ = 1− ε1 1ð Þ
� �1− α1 σ ̄33 0ð Þ

σm1

� �α1

ð37Þ

The following n cycles of tensile cause breaking of structural elements in the cross
section of the sample whose density is determined by

ε1 nð Þ = ε1 n− 1ð Þ + 1− ε1 nð Þ
� �1− α1 σ ̄33 n− 1ð Þ

σm1

� �α1

, ð38Þ

where ε1 n− 1ð Þ and σ ̄33 n− 1ð Þ are the concentration of microdefects and amplitude
value of the stress, respectively, that have appeared after the previous (n − 1)th
cycle of tensile. The fatigue failure of the specimen begins at the Nth cycle when
the microcrack concentration becomes critical, i.e., with ε1 Nð Þ = ε1cr, where

ε1cr = ε1 N − 1ð Þ + 1− ε1crð Þ1−α1 σ ̄33 N − 1ð Þ
σm1

� �α1

ð39Þ
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Thus, a number of cycles N determine the cyclical service life of the specimen,
which is found either by solving the sequence of Eq. (38) or using an inverse
calculation step based on (39).

Two-sided approximate estimation of the durability of the sample can be
obtained by identifying the increment of the concentration of microdefects after any
act of loading with minimum and maximum increments, respectively.

Δmin = ε1ð2Þ − ε1ð1Þ,

Δmax = ε1cr − ε1 N − 1ð Þ = 1− ε1crð Þ1− α1 σ ̄33 N − 1ð Þ
σm1

� �α1

.
ð40Þ

According this approach, we get durability N

ε1cr Δ̸max <N < ε1cr Δ̸min ð41Þ

Another approximate determination of the service life N is attributed to calcu-
lation by (38) the sequence of the n values of increments of the microcrack density
Δnε1 for sampling acts of tension along the loading path, which is accompanied by
the following averaging. Such approach yields

N = ε1cr
1
n
∑
n

i=1

σ ̄33 ið Þ
σm1

� �α1

ð1− ε1 ið ÞÞ1− α1

� �− 1

, ð42Þ

where ε1 ið Þ = i ε1crn is the microdefect concentration within the range ε1 1ð Þ, ε1cr
� �

.
The approach proposed makes it possible to find the residual ultimate strength of

the material σðb1Þoc after n-fold loading and the conditional fatigue limit σ1yc for the
prescribed testing base N. The unknown values are determined by

σðb1Þoc = σm1 ε1cr − ε1ðnÞ
� �1 α̸1 1− ε1crð Þ1− 1 α̸1 ;

σ1y = σm1ε1cr1 α̸1 1− ε1crð Þ1− 1 α̸1 N̸1 α̸1
0 ,

ð43Þ

where ε1 nð Þ is the microdefect concentration caused by the n-fold loadings. In
relations (38)–(41) index in brackets show the dependence of the amplitude value of
stress σ ̄33 n− 1ð Þ on the number of half cycles of tension. Such dependence, according
to (36), is associated with the change compliance aE3333, piezoelectric d333 and
dielectric ϶σ33 constants with increasing concentration of microdefects, which
increases with the half cycles of tension.

Half cycles of compression in this model does not affect on the constructions
resource at the same compressive loading. However, fatigue failure is possible
under compression due to increasing the stress amplitude with increasing the
compression cycles without changing the effective area.
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6 Numerical Example

To illustrate the approach for determining the durability of structures such as
piezoceramic transducer of the electromechanical energy using a statistical fracture
criterion, the problem of the durability of piezoceramic rods at the longitudinal
vibrations is considered. For the piezoelectric ceramic CTBS-3 rod value of cyclical
durability N is calculated. Rod has length equal to l= 0.2m and parameters

Eð0Þ
11 =Eð0Þ

22 = 1.12 × 1011 Pa, Eð0Þ
33 = 1.19× 1011 Pa

νð0Þ12 = νð0Þ21 = 0.30, ρ=7.10× 103
kg
m3 , σðb3Þ0 = 0.36 × 108 Pa, Dðb3Þ0 = 0.14 × 107 Pa,

k2 = 0.04, ϶ð0Þ33 = 0.21 × 10− 7 Φ
m
, eð0Þ333 = 0.43 × 102

Kl
m2 , d

ð0Þ
333 = 0.36 × 10− 9 Kl

N
.

Longitudinal vibrations excited by the time-variable difference of potential is
exerted on the end faces

V0 = 2× 104eiωt, ω= 2× 104 Hz.

The parameters of (38) and (39), determining the concentration of microdefects
under cyclic loading, in accordance with (7), have values

α1 = 24.660 , σm1 = 0.427× 108 Pa.

Critical concentrations of microcracks in accordance with (16) is

ε1cr = 0.305 × 10− 1

Assessment of the durability of piezoceramic rod under cyclic tension which is
caused by potential difference accordance of (40) and (41) gives the result

0.859 × 1039 >N >0.305× 1037.

Using (42), we obtain more specific result: N =0.240 × 1038.
As it follows from the fatigue theory, such results are well admissible. It should

be noted that the service life of the rod is minimal when the exciting frequency
coincides with the main frequency of the natural vibrations of the rod, i.e., under
conditions of resonance.

Structural Probabilistic Modeling of Fatigue Fracture … 25



7 Conclusions

In the paper, the statistical fracture criterion under static and cyclic loadings has
been proposed based on modern ideas about the macrodestruction mechanism of
brittle materials. This criterion can be used in the assessment of durability, residual
strength for piezoceramic products at electroelasticity loading.

References

1. Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)
2. Bolotin, V.V.: Prediction of Service Life of Machines and Structures. Mashinostroenie,

Moscow (in Russian) (1984)
3. Suo, Z., Kuo, C.-M., Barnett, D.M., Willis, J.R.: Fracture mechanics for piezoelectric

ceramics. J. Mech. Phys. Solids 40(4), 739–765 (1992)
4. Fuchs, H.O., Stephens, R.J.: Metal Fatigue in Engineering. Wiley, New York (1980)
5. Pook, L.: Metal Fatigue. Springer, New York (2009)
6. Luo, J., Bowen, P.: A probabilistic methodology for fatigue life prediction. Acta Materiala 51

(12), 3537–3550 (2003)
7. Righiniotis, T.D., Chryssanthopoulos, M.K.: Probabilistic fatigue analysis under constant

amplitude loading. J. Construct. Steel Res. 59(7), 867–886 (2003)
8. Xiao, Y.C., Li, S., Gao, Z.: A continuum damage mechanics model for high cycle fatigue. Int.

J. Fatigue 20(7), 503–608 (1998)
9. Upadhyaya, Y.S., Sridhara, B.K.: Fatigue life prediction. A continuum damage mechanics and

fracture mechanics approach. Mater. Des. 35, 220–224 (2012)
10. Babich, D.V., Bastun, V.N.: On dispersed microdamageability of elastic-brittle materials

under deformation. J. Strain Anal. 45(1), 57–66 (2010)
11. Babich, D.V.: A statistical strength criterion for brittle materials. Strength Mater. 43(5),

573–582 (2011)
12. Babich, D.V.: Simulation of coupled processes of deformation and cracking in elastic brittle

materials. Strength Mater. 36(2), 178–184 (2004)
13. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related

problems. Proc. R. Soc. Lond. A 241, 376–393 (1957)
14. Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity of Piezoelectric and Conductive

Bodies, Moscow: Nauka, p. 470 (1988). (In Russian)
15. Babich, D.V., Bezverkhyi, O.I., Dorodnykh, T.I.: Continuum model of deformation of

piezoelectric materials with cracks. Appl. Mech. Mater. 784, 161–172 (2015)

26 D. Babich et al.



http://www.springer.com/978-3-319-42401-9


	2 Structural Probabilistic Modeling of Fatigue Fracture for Piezoceramic Materials Under Cyclic Loading
	Abstract
	1 Introduction
	2 Structural Model of Accumulation of Flat Microcracks in the Elastic–Brittle Material
	3 Statistical Fracture Criterion in Terms of Damage Measures of a Material
	4 Constitutive Equations of State for the Piezoelectric Ceramics with Cracks
	5 Application of Statistical Fracture Criterion in Problems of Durability Piezoceramic Structures Submission of Electronic Version of Papers
	6 Numerical Example
	7 Conclusions
	References


