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Abstract The chapter deals with the problem of a space with an acoustical source,
which forms a field of some values. All apply to an acoustic field characterized by
an acoustic pressure p. In the low-frequency range and high values of boundary
impedance, the modal approach is successfully applied. In this case, the field vari-
ation in all points of space is described by a specific time-dependent variable w(z).
The field shape is related to eigenfunctions ¥ (), which are the solution of the eigen-
value problem. Eventually, the acoustic pressure distribution p(r, ) is defined by a
sum over a set of a space’s eigenfunctions ¥'(r) and time components w(t). Each w(¥)
contains the source factor Q, which is an integral of the strength source multiplied
by the related eigenfunction values in points where the source is located. Thereafter,
if the integration is calculated over a region, where the value of the eigenfunction
¥, is zero, the source factor Q is zero as well. Considering the above, the aim of this
research is to obtain the space where as many points as possible exist, where eigen-
function ¥,, values are equal to zero, for as many eigenfrequency w,, as possible.
In order to find the specific configuration of the topology, an optimization problem
is formulated. The eigenfunctions are considered as design variables. A minimum
of multiobjective functions, based on eigenvalue problem solutions is searched. As
the result of the optimization, the shape of space and point locations is obtained.
The specified point is a possible source location, which guarantees reduction of res-
onances in a particular frequency range.

1 Introduction

This chapter deals with the problem of reduction of acoustic resonances that may
occur when a source is placed inside the domain. This kind of problem appears in
room acoustics, where locations of the source inside the enclosure are preferable,
to avoid the situation when speech becomes unintelligible or unclear. In the case of
devices, an improper location makes their work more oppressive. According to the
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aim of the room acoustics research, the best acoustic properties of the room are the
most common problem in the area of interest [9]. Some works deal with the room
size and determination of the room ratio, in particular, the optimal enclosure ratio and
shape, which make rooms suitable for music listening or conference rooms audience
friendly [19]. More generally, the rooms’ shapes and irregularity influence reverber-
ation time and time decay of particular modes, which is investigated in the works
of [6, 8, 23]. The problem of the best geometry of the room, in order to create the
best acoustic properties, is solved by Cox, D’Antonio, and Avis [4]. It is achieved by
optimization methods exclusively for a simple enclosure at a low frequency. Another
group of the investigations is generally focused on a modification of existing bound-
ary conditions. In practice it is investigating a proper distribution of absorbing mater-
ial in the room. Diihring, Jensen, and Sigmund designed the rooms by using topology
optimization. Their work shows how to reduce a noise by choosing the best configu-
ration of a reflecting material in the design domain without changing its size [5]. In
their paper there is also the review of how other researchers achieve improvement of
speech intelligibility by an absorbing material distribution in the room. This method
reduces the amplitude response from the loudspeaker and time reverberation. The
space/enclosure boundary modification by locating specific acoustic structures, in
the form of resonators or wall shaping, is another method that can be applied to affect
the acoustic field [27]. Boundary shaping and distributing reflecting and/or absorb-
ing materials, together with optimization methods (i.e., topology optimization) are
applied by other authors in the case of small devices design [10, 25]. The values that
describe the acoustic field are considered separately in the area of interest. The first
is acoustic pressure, as the scalar value is commonly used. Because of the ease mea-
surements of sound pressure, this quantity is suitable in many cases. The intensity is
the vector quantity which is more complicated to measure [22], but gives the ener-
getic assessment of the acoustic problem. Pan analyzes the enclosed spaces from the
energetic point of view and modal approach [16-18]. These works show that inten-
sity prediction by using the mode model needs mode coupling consideration. At the
same time in their work, Franzoni and Bliss [7], show this problem. Simultaneously,
the existence of the intensity vortices and a set of vortex modes with eigenfrequen-
cies, which form a harmonic series, predicted by Waterhouse [26], are confirmed.
The numerical studies based on the mode model, which is presented by Meissner,
show those properties of the intensity field [11]. In this work, the active and reactive
components of intensity inside an L-shaped room are investigated. His previous and
following works [13] indicate that vortices of active intensity are strongly related
to zeros of eigenfunctions. This feature is applied in this chapter as a criterion of
resonance reduction, which appears in closed space. In the case of optimization, or
generally in a control of the acoustic field inside an enclosure, many factors should be
considered, including area of boundaries, their configuration, location, the acoustic
properties of the cover materials, and sound/noise source position. Genetic algo-
rithms (GAs) successfully calculate the minimum of objective functions, consider-
ing a large number of design variables, such as room surfaces with their acoustic
impedance [2, 3]. The authors show how to minimize the level of acoustic pressure
inside the whole enclosure, using properties of modal amplitudes (time components
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in modal expansion in steady states of an acoustic pressure) by applying a specific
configuration of a boundary condition. The configuration is found without chang-
ing the size of the enclosure. This chapter deals with the problem of reduction, or
more generally control, of the acoustic field. It is realized considering two aspects.
On the one hand the source, which is located inside the domain on the specific loca-
tion, may generate lower values of acoustic pressure than sources that occupy other
places. However, those areas are dependent on the domain shape. Those features are
introduced in the optimization criteria.

2 The Modal Approach to Acoustic Field Description
in a Bounded Space

An acoustic field in an enclosure is a specific case of acoustic wave propagation.
The sound source generates an acoustic signal, which is usually partly absorbed
and reflected by boundaries. If the source is permanently active the acoustic energy
absorbed on the boundaries is equalized in the short term by the energy from the
source. After the transient period, the steady-state acoustic field dominating in an
enclosure is attained. In order to describe the acoustic field distribution inside a
room, the modal approach can be applied under several restrictions [15]. One of
them is a low-frequency range of signals generated by a source, which is limited by
the Schroeder frequency [20, 21]. This kind of signal guarantees the sparsely dis-
tributed acoustic modes, and in the case of high impedance on boundaries, mode
uncoupling can be applied. The modal approach assumes that the acoustic field dis-
tribution inside an enclosure is dependent on its normal modes (eigenfunctions). The
modes are obtained by the solution of the Helmholtz equation for a domain bounded
by perfectly rigid walls. It is defined by Neumann’s boundary condition equal to zero.
After that, eigenfunctions ¥, (r), in all enclosure points with coordinates r(x, y, z),
together with eigenfrequencies w,, are determined. Applying eigenfunction ¥,,(r) in
the modal expansion leads to the sum in the form:

p(r, 1) = )" W, (OF,(r), ¢))
m=0

where orthogonality and normalization of eigenfunctions are required [12]. Addi-
tionally, low frequencies and a narrow band of excitation allow reducing an infinite
sum to a finite number N of factors. The first factor in modal expansion, the time
components w(t), describe acoustic pressure variation in time, during increasing and
decreasing sound, when a source starts and becomes mute. In a steady-state field
condition, w(f) represents the magnitude of acoustic pressure in a particular point of
the domain. If the sum 1 describes the acoustic field inside the room with a source, it
satisfies the linear, inhomogeneous wave equation and the specific boundary condi-
tions. Most often, the conditions are determined by the acoustic impedance. Modal
expansion is introduced in the following wave equation [14],
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1 0*p(r,1)

- Vp(r,t) + —
p(r,1) = o

=f(r.0), 2
where c is the sound velocity in air and function f defines the source power or outflow.
Both the function, p(r, t), and each eigenfunction ¥, (r), satisfy the Green theorem.
Finally it leads to the solution represented by a set of ordinary differential equations
of time components w, (). Denoting upper dots as time derivates and omitting inde-
pendent variables r and ¢, the equations take the form:

2

v 2
W, + w,w, + (pc* / LSy, = ——— / f¥,dv. 3)
s Z \/V v

Equation 3 shows a form of a second-order linear differential equation with constant
coefficients, in the case where the mod coupling is neglected. Coefficient p repre-
sents a density of medium inside the volume V, bounded by surface S characterized
by acoustic impedance Z. The general solutions are presented in [1]. If a source is
harmonic and described by the function f in the form f = g(r)e/”', the solutions can
be obtained after some algebraic calculations. The amplitude of harmonic time com-
ponents w,(¢) is given by formulae:

0, 0

- and  wy, =
(0? = 0?) + 2ja, 0 @

“)

W = _.—’
" 2Jjayw — w?

where index no means a solution for a particular frequency, Ow a time component,

which is the solution of Eq. 3 in the case w,, = 0; that is, eigenvalue 4, = 4/ %2 =0.
The coefficients a and Q are defined by the integrals:

! Z/T"st d 0 ¢ / ¥ 4V (5)
a, = =pc —_ an = = qr,ayv,
2 fsz Noo

Generally coefficients « and Q5 are described in Eq. 3: damping in the system
caused by the impedance Z of the boundaries S and a source component. The source
component in each equation is an integral of a specific eigenfunction multiplied by
a source magnitude g(r) in points, where the source is located. Outside the source
location the integral becomes zero. If eigenfunction ¥, in the source location has
values close to zero, the whole source component in Eq. 5 and consequently related
time component w,,,, in Eq. 4 have minimal absolute values. Moreover, in the case
of harmonic source, the time components for eigenfrequencies w,, significantly dif-
ferent from w, tend to zero. Consequently, the solution of the wave equation 2 in the
form of sum 1, which contains time components 4, gets minimum.

Therefore, the question arises about a space geometry configuration with the inte-
rior region, where an active source without regard for damping in the acoustic system
and the strength of a source guarantee minimal values of acoustic pressure for par-
ticular frequencies.
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3 Optimization Problem

In view of these aspects, the optimization problem is formulated. The result of the
optimization is a shape of the enclosure and the interior area, where points of eigen-
functions with value equal to zero or close to zero are located. In the case of arbitrary
shapes of the enclosure those points are in different locations for different eigenfunc-
tions. There are shapes of closed spaces that own this feature. One of them is a circle
in a two-dimensional or sphere in a three-dimensional domain. In their centers are
the points, where many eigenfunctions have zero values. Therefore, the enclosure is
searched among N different shapes of different k dimensions. These dimensions are
considered as design variables, called X, and k € N. Each set of design variables
{X, } is related to a set of eigenfunctions of the exact shape of the enclosure. Thereby,
some following set {¥,,¥|,¥,,... Y, ...V, }y = {¥,}n = {X,}y of potential solu-
tions is considered, where m represents the limit of the number of following functions
considered for each shape. The expected solution is the enclosure, where many zero
points are located, as close to each other as possible. It means that two configurations
are possible: first, when the zero points for eigenfunctions coincide with others and
create one spot, and second, when the zero points for some eigenfunctions overlie
an area of enclosure. There are three criteria C1, C2, and C3 that express the above
cases:

Cl=|rf|¥,(r7) =0,n € (0,m) € Ny,i € N|| = max (6)

C2 = a):|5”n(rjf"):0,ne(O,m)e.}\fo,jej\fl’—>max 7
C

C3=2 ro = ri — min (8)

i=1

In Eq. 8 r, is a coordinate of an assumed source location inside the enclosure. In
the case of an arbitrary enclosure, some eigenfunctions are possible that have very
small values (but with not many zero points) in the whole space, whereas others
are characterized by significant variation from negatives to positives. The first are
preferable in the case of reduction of acoustic pressure. Therefore, it is a suitable
approach to look for not zeros but some minimal values. It is proposed to concern 1 %
of the mean of all absolute values of all eigenfunctions in the considered range (0, N)
as a reference, instead of zero. It generates modification in (6) and (7) ¥, (r; J) =
0.01 - mean({¥,}y). On the basis of the criteria the multicriteria objective function
(Fobj) is created in the form:
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min Foy;((#,)y) = [-C1,=C2, c3l’ ©9)
nIN
subject  to
A lein < Xl < leax
A

A kain < Xk < kaax

3.1 Solution for an Example 2D Problem

The genetic algorithm is implemented in order to find solutions. The GA uses pro-
cedures of nondominated selection of solutions, so-called Pareto solutions. During
the selection, which process repeats iteratively, the fitness values of F,; are cal-
culated. The fitness values determine the potential solutions. In each iteration, the
chosen set of solutions, in a so-called Pareto set, is compared by GA and nondomi-
nated individuals are chosen. Here, the fitness values are calculated, using the mod-
ified criteria C'1 and C2, which are taken as negatives and values of criterion C3 is
taken directly, bearing in mind that GA searches the minimum. As an example the
shape represented by a two-dimensional object shown in Fig. 1 is optimized. The
optimized object is created as a union of three squares (the big one and two small
on the sides) and a circle. The four characteristic dimensions, which vary during
the optimization, are indicated as design variables X, defining {¥,}. There are:
X, side of the big square; X,, X;, sides of the small squares; and X,, radius of the
circle. The constraints are defined as X, = 10, X,,,,,., = 12, X, .. =5, X,,... = 6,
Xapin =3, X3 = 6, Xypin = 4, and X, = 6. Additionally, the point indicated in
criterion C3 with coordinates (0, 0) is chosen. Two shapes determined by dimen-
sions related to optimization constraints, the solutions, that is, the points distributed

Fig.1 The design
variables: X,—side of the 6
big square, X,, X;—sides of 5
the smalls squares and 4
X,—radius of the circle 31 =

-10 -5 0 5 10
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Fig. 2 Points distribution
inside examined object in the

case of design variable 4l
{Xmax} and criteria values
Cl=-3,C2=-48,C3 = o Lol
19.5902 (circles o), and -
criteria values 5 of
Cl=-5C2=-47,C3 = s
27.2038 (asterisks =) B -2}
£
T .4f
.6 b
-8 |

Fig. 3 Pareto optimal
solutions found by genetic
algorithm in case of 10
Iteration for 30 Individuals
in Pareto set

inside the objects, satisfying modified criteria values, are shown in Fig.2. It seen
in this figure, that in both cases the points are located far from point r,. As men-
tioned in the previous section, these points can be considered as the area, where a
located sound source shall be damped in the range of frequencies w — w;. The GA
after 10 iterations, during each of them comparing the Pareto set N = 30 indicates
Pareto optimal solutions shown in Fig. 3. Values of criteria are shown on the proper
axes. These points lie on a 2-dimensional hyperplane in 3-dimensional criteria space.
These three criteria, according to Eq. 9, are related to a set of design variables X,
which describe a particular space. In order to give the background for the general
optimization solution, in Figs.4, 5 and 6 some of the chosen spaces related to the
specific criteria values from an optimal set are shown. In the Fig. 4 there is a space,
where at the point shown is the place where an emitted signal is strongly damped
for 17 frequencies equal to proper eigenfrequecies. Figure 5 indicates the space with
the closest point to the point (0, 0). But at this point the number of damped frequen-
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Fig. 4 The space related to
the optimal solution found in
the case of minimal value of
criterion C2 = —17
(C1=-1,C3 =2.8774).
The circle o, indicates the
point, where 17 different
frequencies are damped

Fig. 5 The space related to
the optimal solution found in
the case of minimal value of
criterion C3 = 1.4954
(C1=-1;C2=—7). The
circle o, indicates the point
the closest to point (0, 0)
where 7 different frequencies
are damped

Fig. 6 The space related to
the optimal solution found in
the case of minimal value of
criterion C1 = —38
(C2=-1;C3 =79.9091).
The circles o, indicate the
points where only one
frequency is damped

dimension 2 [m]
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Fig.7 The magnitude of 0.2
the source at the point, found
by optimization. Red square

symbols indicate 0.16

0.18

eigenfrequencies of the § 0.4

space. Blue square symbols Z

indicate the eignfrequencies, 2 012

which does not excite g 0.1 5.5 FEOREm
resonance, for the source at ‘g

this point 3

20 40 60 80 100 120
frequency [Hz]

cies equals 7. Subsequently Fig. 6 presents the space with the maximal number of
points, which are found and fulfill the optimization criteria. Thirty-eight points are
indicated, where only one frequency is damped.

4 Conlusions

The results presented are related to the work by [11, 13] that deals with the prob-
lem from energetic aspects. It is stated there that the vortex of acoustic intensity is
characterized by zero pressure at its center. The null pressure is reached when all
eigenfunctions get a zero value at the vortex center: the completely reduced acoustic
pressure is in the case when all eigenfunctions get zero values in a particular point. As
was stated, it is nearly impossible in reality. Therefore, the optimal solution is search
and it is stated that it is possible to find the space where there are the point(s) which
guarantee that the source located at these point(s) does not excite the acoustic reso-
nance in the chosen frequency range. The field is generated by the point sound source,
which by the pressure or volume impact of some magnitude influences the acoustic
field. The character of the created field is well described when the modal approach
is used to solve the problem in a low-frequency range and weak sound damping. The
modal amplitudes (time components) can be reduced or “literally vanished” if the
sound source is located in a proper point(s) inside the space. The example shows
how to find the maximal field reduction for a specific source location, by “optimal
shaping” the space. In this case two main approaches can be distinguished to gain a
limited area with points, where the sound source is damped in a wide frequency range
or many points, where the source with small dimension is damped at many possible
locations, but in a narrow frequency range for each. This feature is shown for the
analyzed example space. At some point, found by using optimization, the source is
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damped in a significant way. The simulation data in Fig. 7 illustrate this property.
The square red symbols in this figure indicate eigenfrequencies of this space. The
harmonic source of these or very close frequencies may excite acoustic resonance.
Square blue symbols indicate the eigenfrequencies that do not excite resonances for
the source at this point.
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