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Abstract The chapter deals with the problem of a space with an acoustical source,

which forms a field of some values. All apply to an acoustic field characterized by

an acoustic pressure p. In the low-frequency range and high values of boundary

impedance, the modal approach is successfully applied. In this case, the field vari-

ation in all points of space is described by a specific time-dependent variable w(t).
The field shape is related to eigenfunctions 𝛹 (r), which are the solution of the eigen-

value problem. Eventually, the acoustic pressure distribution p(r, t) is defined by a

sum over a set of a space’s eigenfunctions 𝛹 (r) and time components w(t). Each w(t)
contains the source factor Q, which is an integral of the strength source multiplied

by the related eigenfunction values in points where the source is located. Thereafter,

if the integration is calculated over a region, where the value of the eigenfunction

𝛹m is zero, the source factor Q is zero as well. Considering the above, the aim of this

research is to obtain the space where as many points as possible exist, where eigen-

function 𝛹m values are equal to zero, for as many eigenfrequency 𝜔m as possible.

In order to find the specific configuration of the topology, an optimization problem

is formulated. The eigenfunctions are considered as design variables. A minimum

of multiobjective functions, based on eigenvalue problem solutions is searched. As

the result of the optimization, the shape of space and point locations is obtained.

The specified point is a possible source location, which guarantees reduction of res-

onances in a particular frequency range.

1 Introduction

This chapter deals with the problem of reduction of acoustic resonances that may

occur when a source is placed inside the domain. This kind of problem appears in

room acoustics, where locations of the source inside the enclosure are preferable,

to avoid the situation when speech becomes unintelligible or unclear. In the case of

devices, an improper location makes their work more oppressive. According to the
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aim of the room acoustics research, the best acoustic properties of the room are the

most common problem in the area of interest [9]. Some works deal with the room

size and determination of the room ratio, in particular, the optimal enclosure ratio and

shape, which make rooms suitable for music listening or conference rooms audience

friendly [19]. More generally, the rooms’ shapes and irregularity influence reverber-

ation time and time decay of particular modes, which is investigated in the works

of [6, 8, 23]. The problem of the best geometry of the room, in order to create the

best acoustic properties, is solved by Cox, D’Antonio, and Avis [4]. It is achieved by

optimization methods exclusively for a simple enclosure at a low frequency. Another

group of the investigations is generally focused on a modification of existing bound-

ary conditions. In practice it is investigating a proper distribution of absorbing mater-

ial in the room. Dühring, Jensen, and Sigmund designed the rooms by using topology

optimization. Their work shows how to reduce a noise by choosing the best configu-

ration of a reflecting material in the design domain without changing its size [5]. In

their paper there is also the review of how other researchers achieve improvement of

speech intelligibility by an absorbing material distribution in the room. This method

reduces the amplitude response from the loudspeaker and time reverberation. The

space/enclosure boundary modification by locating specific acoustic structures, in

the form of resonators or wall shaping, is another method that can be applied to affect

the acoustic field [27]. Boundary shaping and distributing reflecting and/or absorb-

ing materials, together with optimization methods (i.e., topology optimization) are

applied by other authors in the case of small devices design [10, 25]. The values that

describe the acoustic field are considered separately in the area of interest. The first

is acoustic pressure, as the scalar value is commonly used. Because of the ease mea-

surements of sound pressure, this quantity is suitable in many cases. The intensity is

the vector quantity which is more complicated to measure [22], but gives the ener-

getic assessment of the acoustic problem. Pan analyzes the enclosed spaces from the

energetic point of view and modal approach [16–18]. These works show that inten-

sity prediction by using the mode model needs mode coupling consideration. At the

same time in their work, Franzoni and Bliss [7], show this problem. Simultaneously,

the existence of the intensity vortices and a set of vortex modes with eigenfrequen-

cies, which form a harmonic series, predicted by Waterhouse [26], are confirmed.

The numerical studies based on the mode model, which is presented by Meissner,

show those properties of the intensity field [11]. In this work, the active and reactive

components of intensity inside an L-shaped room are investigated. His previous and

following works [13] indicate that vortices of active intensity are strongly related

to zeros of eigenfunctions. This feature is applied in this chapter as a criterion of

resonance reduction, which appears in closed space. In the case of optimization, or

generally in a control of the acoustic field inside an enclosure, many factors should be

considered, including area of boundaries, their configuration, location, the acoustic

properties of the cover materials, and sound/noise source position. Genetic algo-

rithms (GAs) successfully calculate the minimum of objective functions, consider-

ing a large number of design variables, such as room surfaces with their acoustic

impedance [2, 3]. The authors show how to minimize the level of acoustic pressure

inside the whole enclosure, using properties of modal amplitudes (time components
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in modal expansion in steady states of an acoustic pressure) by applying a specific

configuration of a boundary condition. The configuration is found without chang-

ing the size of the enclosure. This chapter deals with the problem of reduction, or

more generally control, of the acoustic field. It is realized considering two aspects.

On the one hand the source, which is located inside the domain on the specific loca-

tion, may generate lower values of acoustic pressure than sources that occupy other

places. However, those areas are dependent on the domain shape. Those features are

introduced in the optimization criteria.

2 The Modal Approach to Acoustic Field Description
in a Bounded Space

An acoustic field in an enclosure is a specific case of acoustic wave propagation.

The sound source generates an acoustic signal, which is usually partly absorbed

and reflected by boundaries. If the source is permanently active the acoustic energy

absorbed on the boundaries is equalized in the short term by the energy from the

source. After the transient period, the steady-state acoustic field dominating in an

enclosure is attained. In order to describe the acoustic field distribution inside a

room, the modal approach can be applied under several restrictions [15]. One of

them is a low-frequency range of signals generated by a source, which is limited by

the Schroeder frequency [20, 21]. This kind of signal guarantees the sparsely dis-

tributed acoustic modes, and in the case of high impedance on boundaries, mode

uncoupling can be applied. The modal approach assumes that the acoustic field dis-

tribution inside an enclosure is dependent on its normal modes (eigenfunctions). The

modes are obtained by the solution of the Helmholtz equation for a domain bounded

by perfectly rigid walls. It is defined by Neumann’s boundary condition equal to zero.

After that, eigenfunctions 𝛹m(r), in all enclosure points with coordinates r(x, y, z),
together with eigenfrequencies 𝜔m are determined. Applying eigenfunction 𝛹m(r) in

the modal expansion leads to the sum in the form:

p(r, t) =
∞∑

m=0
wm(t)𝛹m(r), (1)

where orthogonality and normalization of eigenfunctions are required [12]. Addi-

tionally, low frequencies and a narrow band of excitation allow reducing an infinite

sum to a finite number N of factors. The first factor in modal expansion, the time

components w(t), describe acoustic pressure variation in time, during increasing and

decreasing sound, when a source starts and becomes mute. In a steady-state field

condition, w(t) represents the magnitude of acoustic pressure in a particular point of

the domain. If the sum 1 describes the acoustic field inside the room with a source, it

satisfies the linear, inhomogeneous wave equation and the specific boundary condi-

tions. Most often, the conditions are determined by the acoustic impedance. Modal

expansion is introduced in the following wave equation [14],
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− ∇2p(r, t) + 1
c2

𝜕
2p(r, t)
𝜕t2

= f (r, t), (2)

where c is the sound velocity in air and function f defines the source power or outflow.

Both the function, p(r, t), and each eigenfunction 𝛹n(r), satisfy the Green theorem.

Finally it leads to the solution represented by a set of ordinary differential equations

of time components wn(t). Denoting upper dots as time derivates and omitting inde-

pendent variables r and t, the equations take the form:

ẅn + 𝜔nwn + (𝜌c2 ∫S

𝛹
2
n

Z
dS)ẇn = − c2√

V ∫V
f𝛹ndV . (3)

Equation 3 shows a form of a second-order linear differential equation with constant

coefficients, in the case where the mod coupling is neglected. Coefficient 𝜌 repre-

sents a density of medium inside the volume V , bounded by surface S characterized

by acoustic impedance Z. The general solutions are presented in [1]. If a source is

harmonic and described by the function f in the form f = q(r)ej𝜔t, the solutions can

be obtained after some algebraic calculations. The amplitude of harmonic time com-

ponents wn(t) is given by formulae:

wn𝜔 =
Qn

(𝜔2
n − 𝜔2) + 2j𝛼n𝜔

and w0𝜔 = −
Q0

2j𝛼0𝜔 − 𝜔2 , (4)

where index n𝜔 means a solution for a particular frequency, 0𝜔 a time component,

which is the solution of Eq. 3 in the case 𝜔n = 0; that is, eigenvalue 𝜆n =
√

𝜔2
n

c2
= 0.

The coefficients 𝛼 and Q are defined by the integrals:

𝛼n =
1
2
𝜌c2 ∫S

𝛹
2
n

Z
dS and Qn = − c2√

V ∫V
q𝛹ndV , (5)

Generally coefficients 𝛼 and Q5 are described in Eq. 3: damping in the system

caused by the impedance Z of the boundaries S and a source component. The source

component in each equation is an integral of a specific eigenfunction multiplied by

a source magnitude q(r) in points, where the source is located. Outside the source

location the integral becomes zero. If eigenfunction 𝛹n in the source location has

values close to zero, the whole source component in Eq. 5 and consequently related

time component wn𝜔 in Eq. 4 have minimal absolute values. Moreover, in the case

of harmonic source, the time components for eigenfrequencies 𝜔n, significantly dif-

ferent from 𝜔, tend to zero. Consequently, the solution of the wave equation 2 in the

form of sum 1, which contains time components 4, gets minimum.

Therefore, the question arises about a space geometry configuration with the inte-

rior region, where an active source without regard for damping in the acoustic system

and the strength of a source guarantee minimal values of acoustic pressure for par-

ticular frequencies.
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3 Optimization Problem

In view of these aspects, the optimization problem is formulated. The result of the

optimization is a shape of the enclosure and the interior area, where points of eigen-

functions with value equal to zero or close to zero are located. In the case of arbitrary

shapes of the enclosure those points are in different locations for different eigenfunc-

tions. There are shapes of closed spaces that own this feature. One of them is a circle

in a two-dimensional or sphere in a three-dimensional domain. In their centers are

the points, where many eigenfunctions have zero values. Therefore, the enclosure is

searched among N different shapes of different k dimensions. These dimensions are

considered as design variables, called Xk and k ∈ 1. Each set of design variables

{Xk} is related to a set of eigenfunctions of the exact shape of the enclosure. Thereby,

some following set {𝛹0, 𝛹1, 𝛹2,…𝛹n,…𝛹m}N ≡ {𝛹n}N ≡ {Xk}N of potential solu-

tions is considered, wherem represents the limit of the number of following functions

considered for each shape. The expected solution is the enclosure, where many zero

points are located, as close to each other as possible. It means that two configurations

are possible: first, when the zero points for eigenfunctions coincide with others and

create one spot, and second, when the zero points for some eigenfunctions overlie

an area of enclosure. There are three criteria C1, C2, and C3 that express the above

cases:

C1 = ||r∗i |𝛹n(r∗i ) = 0, n ∈ ⟨0,m⟩ ∈ 0, i ∈ 1
|| → max (6)

C2 = |||𝜔
∗
n|𝛹n(r∗j ) = 0, n ∈ ⟨0,m⟩ ∈ 0, j ∈ 1

||| → max (7)

C3 =
C1∑

i=1

√
r0 − r∗i → min (8)

In Eq. 8 r0 is a coordinate of an assumed source location inside the enclosure. In

the case of an arbitrary enclosure, some eigenfunctions are possible that have very

small values (but with not many zero points) in the whole space, whereas others

are characterized by significant variation from negatives to positives. The first are

preferable in the case of reduction of acoustic pressure. Therefore, it is a suitable

approach to look for not zeros but some minimal values. It is proposed to concern 1%
of the mean of all absolute values of all eigenfunctions in the considered range ⟨0,N⟩
as a reference, instead of zero. It generates modification in (6) and (7) 𝛹n(ri,j) =
0.01 ⋅ mean({𝛹n}N). On the basis of the criteria the multicriteria objective function

(Fobj) is created in the form:
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min
{𝛹n}N

Fobj({𝛹n}N) = [−C1,−C2,C3]T (9)

subject to ∶
∧ X1min < X1 < X1max

∧ ⋯

∧ Xkmin < Xk < Xkmax

3.1 Solution for an Example 2D Problem

The genetic algorithm is implemented in order to find solutions. The GA uses pro-

cedures of nondominated selection of solutions, so-called Pareto solutions. During

the selection, which process repeats iteratively, the fitness values of Fobj are cal-

culated. The fitness values determine the potential solutions. In each iteration, the

chosen set of solutions, in a so-called Pareto set, is compared by GA and nondomi-

nated individuals are chosen. Here, the fitness values are calculated, using the mod-

ified criteria C1 and C2, which are taken as negatives and values of criterion C3 is

taken directly, bearing in mind that GA searches the minimum. As an example the

shape represented by a two-dimensional object shown in Fig. 1 is optimized. The

optimized object is created as a union of three squares (the big one and two small

on the sides) and a circle. The four characteristic dimensions, which vary during

the optimization, are indicated as design variables Xk defining {𝛹n}N . There are:

X1, side of the big square; X2, X3, sides of the small squares; and X4, radius of the

circle. The constraints are defined as X1min = 10, X1max = 12, X2min = 5, X2max = 6,

X3min = 5, X3max = 6, X4min = 4, and X4max = 6. Additionally, the point indicated in

criterion C3 with coordinates r0(0, 0) is chosen. Two shapes determined by dimen-

sions related to optimization constraints, the solutions, that is, the points distributed

Fig. 1 The design

variables: X1—side of the

big square, X2, X3—sides of

the smalls squares and

X4—radius of the circle
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Fig. 2 Points distribution

inside examined object in the

case of design variable

{Xkmax} and criteria values

C1 = −3,C2 = −48,C3 =
19.5902 (circles o), and

criteria values

C1 = −5,C2 = −47,C3 =
27.2038 (asterisks ∗)

Fig. 3 Pareto optimal

solutions found by genetic

algorithm in case of 10

Iteration for 30 Individuals

in Pareto set
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inside the objects, satisfying modified criteria values, are shown in Fig. 2. It seen

in this figure, that in both cases the points are located far from point r0. As men-

tioned in the previous section, these points can be considered as the area, where a

located sound source shall be damped in the range of frequencies 𝜔 → 𝜔
∗
n. The GA

after 10 iterations, during each of them comparing the Pareto set N = 30 indicates

Pareto optimal solutions shown in Fig. 3. Values of criteria are shown on the proper

axes. These points lie on a 2-dimensional hyperplane in 3-dimensional criteria space.

These three criteria, according to Eq. 9, are related to a set of design variables Xk,

which describe a particular space. In order to give the background for the general

optimization solution, in Figs. 4, 5 and 6 some of the chosen spaces related to the

specific criteria values from an optimal set are shown. In the Fig. 4 there is a space,

where at the point shown is the place where an emitted signal is strongly damped

for 17 frequencies equal to proper eigenfrequecies. Figure 5 indicates the space with

the closest point to the point (0, 0). But at this point the number of damped frequen-
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Fig. 4 The space related to

the optimal solution found in

the case of minimal value of

criterion C2 = −17
(C1 = −1;C3 = 2.8774).

The circle o, indicates the

point, where 17 different

frequencies are damped

Fig. 5 The space related to

the optimal solution found in

the case of minimal value of

criterion C3 = 1.4954
(C1 = −1;C2 = −7). The

circle o, indicates the point

the closest to point (0, 0)

where 7 different frequencies

are damped

Fig. 6 The space related to

the optimal solution found in

the case of minimal value of

criterion C1 = −38
(C2 = −1;C3 = 79.9091).

The circles o, indicate the

points where only one

frequency is damped
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Fig. 7 The magnitude of

the source at the point, found

by optimization. Red square
symbols indicate

eigenfrequencies of the

space. Blue square symbols

indicate the eignfrequencies,

which does not excite

resonance, for the source at

this point
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cies equals 7. Subsequently Fig. 6 presents the space with the maximal number of

points, which are found and fulfill the optimization criteria. Thirty-eight points are

indicated, where only one frequency is damped.

4 Conlusions

The results presented are related to the work by [11, 13] that deals with the prob-

lem from energetic aspects. It is stated there that the vortex of acoustic intensity is

characterized by zero pressure at its center. The null pressure is reached when all

eigenfunctions get a zero value at the vortex center: the completely reduced acoustic

pressure is in the case when all eigenfunctions get zero values in a particular point. As

was stated, it is nearly impossible in reality. Therefore, the optimal solution is search

and it is stated that it is possible to find the space where there are the point(s) which

guarantee that the source located at these point(s) does not excite the acoustic reso-

nance in the chosen frequency range. The field is generated by the point sound source,

which by the pressure or volume impact of some magnitude influences the acoustic

field. The character of the created field is well described when the modal approach

is used to solve the problem in a low-frequency range and weak sound damping. The

modal amplitudes (time components) can be reduced or “literally vanished” if the

sound source is located in a proper point(s) inside the space. The example shows

how to find the maximal field reduction for a specific source location, by “optimal

shaping” the space. In this case two main approaches can be distinguished to gain a

limited area with points, where the sound source is damped in a wide frequency range

or many points, where the source with small dimension is damped at many possible

locations, but in a narrow frequency range for each. This feature is shown for the

analyzed example space. At some point, found by using optimization, the source is
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damped in a significant way. The simulation data in Fig. 7 illustrate this property.

The square red symbols in this figure indicate eigenfrequencies of this space. The

harmonic source of these or very close frequencies may excite acoustic resonance.

Square blue symbols indicate the eigenfrequencies that do not excite resonances for

the source at this point.

References

1. Błażejewski A.: Modal approach application and significance analysis inside bounded space in

a steady state acoustic field condition. International Journal of Dynamics and Control 3 50–57

(2015)

2. Błażejewski, A. Krzyżyński, T.: Application of genetic algorithms in multi-objective optimiza-

tion in room acoustics. Logistyka 6, 281–289 (2010)

3. Błażejewski, A. Krzyżyński, T.: Multi-objective optimization of the acoustic impedance dis-

tribution for room steady state sound field condition. in: Cempel C., Dobry W. (eds.) Vibration

in Physical Systems 24 pp. 57–62 (2010)

4. Cox, T.J. D’Antonio, P. A. M.: Room sizing and optimization at low frequencies. Journal of

the Audio Engineering Society 52(6), 640–651 (2004)

5. Dühring, M.B. Jensen, J. S. Sigmund O.: Acoustic design by topology optimization. Journal

of Sound and Vibration 317, 557–575 (2008)

6. Easwaran V, Craggs, A.: An application of acoustic finite element models to finding the rever-

beration times of irregular rooms. Acta Acustica united with Acustica 82, 54–64 (1996)

7. Franzoni, L.P. Bliss, D.: A discussion of modal uncoupling and an approximate closed-

formsolution for weakly coupled systems with application to acoustics. Journal of the Acousti-

cal Society of America 103, 1923–1932 (1998)

8. Gerretsen, E.: Estimation methods for sound levels and reverberation time in a room with irreg-

ular shape or absorption distribution. Acta Acustica united with Acustica 92, 797–806 (2006)

9. Kutruff, H.: Room Acoustics, fifth edition. Taylor & Francis Group, New York (2009)

10. Luo, J. Gea, H. Optimal stiffener design for interior sound reduction using a topology opti-

mization based approach. Journal of Vibration and Acoustics 125, 267–273 (2003)

11. Meissner, M.: Analytical and numerical study of acoustic intensity field in irregularly shaped

room. Applied Acoustics 74, 661–668 (2013)

12. Meissner, M.: Influence of wall absorption on low-frequency dependence of reverberation time

in room of irregular shape. Applied Acoustics 69, 583–590 (2008)

13. Meissner, M.: Numerical investigation of acoustic field in enclosures: Evaluation of active and

reactive components of sound intensity. Journal of Sound and Vibration 338, 154–168 (2015)

14. Morse, P.M., B. R. Sound waves in rooms. Reviews of Modern Physics 16, 69–150 (1994)

15. Morse, P.M., I. K.: Theoretical acoustics. Mc Graw-Hill, New York (1968)

16. Pan, J.: A note on the prediction of sound intensity. Journal of the Acoustical Society of Amer-

ica 93, 1641–1644 (1993)

17. Pan, J.: A second note on the prediction of sound intensity. Journal of the Acoustical Society

of America 97, 691–694 (1995)

18. Pan, J.: A third note on the prediction of sound intensity. Journal of the Acoustical Society of

America 105, 560–562 (1999)

19. Rayna, A.L. Sancho, J.: Technical note: the influence of a room shape on speech intelligibility

in rooms with varying ambient noise levels. Noise Control Engineering Journal 31, 173–179

(1988)

20. Schroeder, M.: Reverberation: Theory and measurement. Journal of the Acoustical Society of

America. Proceedings Wallace Clement Sabine Centennial Symposium (1994)



Reduction of Low Frequency Acoustical Resonances . . . 25

21. Schroeder, M.: The ,, Schroeder frequency" revisited. Journal of the Acoustical Society of

America 99(5), 3240–3241 (1996)

22. Schultz, T.J. Smith, P. M. Malme, C.I.: Measurement of acoustic intensity in reactive sound

field. Journal of the Acoustical Society of America 57 1263–1268 (1975)

23. Sum, K. Pan, J.: Geometrical perturbation of an inclined wall on decay times of acoustic modes

in a trapezoidal cavity with an impedance surface. Journal of the Acoustical Society of America

120, 3730–3743 (2006)

24. Vito, A.: Thesis title Thesis title Thesis title Thesis title Thesis title. PhD thesis, Univer-

sity/School. A sentence about the Supervisor (2015)

25. Wadbro, E. Berggren, M.: Topology optimization of an acoustic horn. Computer Methods in

Applied Mechanics and Engineering 196 420–436 (2006)

26. Waterhouse, R.: Vortex modes in rooms. Journal of the Acoustical Society of America 82,

1782–1791 (1987)

27. Zhu, X. Zhu, Z. C. Cheng, J.: Using optimized surface modifications to improve low frequency

response in a room. Applied Acoustics 65, 841–860 (2004)



http://www.springer.com/978-3-319-42407-1


	Reduction of Low Frequency Acoustical Resonances Inside Bounded Space Using Eigenvalue Problem Solutions and Topology Optimization
	1 Introduction
	2 The Modal Approach to Acoustic Field Description  in a Bounded Space
	3 Optimization Problem
	3.1 Solution for an Example 2D Problem

	4 Conlusions
	References


